An incremental-learning model-based multiobjective estimation of distribution algorithm

Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions have led to improved search efficiency, but they incur a high computational cost owing to their use of a repetitive learning or iterative st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 569; s. 430 - 449
Hlavní autoři: Liu, Tingrui, Li, Xin, Tan, Liguo, Song, Shenmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2021
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions have led to improved search efficiency, but they incur a high computational cost owing to their use of a repetitive learning or iterative strategy. To overcome this drawback, we propose an algorithm for incremental-learning model-based multiobjective estimation of distributions. A learning mechanism based on an incremental Gaussian mixture model is embedded within the search procedure. In the proposed algorithm, all new solutions generated during the evolution are passed to a data stream, which is fed incrementally into the learning model to adaptively discover the structure of the Pareto-optimal set. The parameters of the model are updated continually as each newly generated datum is collected. Each datum is learned only once for the model, regardless of whether it has been preserved or deleted. Moreover, a sampling strategy based on the learned model is designed to balance the exploration/exploitation dilemma in the evolutionary search. The proposed algorithm is compared with six state-of-the-art algorithms for several benchmarks. The experimental results show that there is a significant improvement over the representative algorithms.
AbstractList Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions have led to improved search efficiency, but they incur a high computational cost owing to their use of a repetitive learning or iterative strategy. To overcome this drawback, we propose an algorithm for incremental-learning model-based multiobjective estimation of distributions. A learning mechanism based on an incremental Gaussian mixture model is embedded within the search procedure. In the proposed algorithm, all new solutions generated during the evolution are passed to a data stream, which is fed incrementally into the learning model to adaptively discover the structure of the Pareto-optimal set. The parameters of the model are updated continually as each newly generated datum is collected. Each datum is learned only once for the model, regardless of whether it has been preserved or deleted. Moreover, a sampling strategy based on the learned model is designed to balance the exploration/exploitation dilemma in the evolutionary search. The proposed algorithm is compared with six state-of-the-art algorithms for several benchmarks. The experimental results show that there is a significant improvement over the representative algorithms.
Author Song, Shenmin
Tan, Liguo
Liu, Tingrui
Li, Xin
Author_xml – sequence: 1
  givenname: Tingrui
  surname: Liu
  fullname: Liu, Tingrui
  email: liutingrui@126.com
  organization: Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  email: eshing_li@126.com
  organization: Sino-German Robotics School, Shenzhen Institute of Information Technology, Shenzhen 518172, China
– sequence: 3
  givenname: Liguo
  surname: Tan
  fullname: Tan, Liguo
  email: tanliguo@hit.edu.cn
  organization: Research Center of Basic Space Science, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Shenmin
  surname: Song
  fullname: Song, Shenmin
  email: songshenmin@hit.edu.cn
  organization: Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
BookMark eNp9kMtqwzAQRUVJoUnaD-jOP2B3pFi2Q1chtE0h0E2gS6HHKJWx5SIpgf59naSrLrIaZuBc5p4ZmfjBIyGPFAoKtHpqC-djwYDRAsoCKL0hU9rULK_Ykk7IFIBBDozzOzKLsQWAsq6qKflc-cx5HbBHn2SXdyiDd36f9YPBLlcyosn6Q5fcoFrUyR0xw5hcL8eLzwabGRdTcOpw3mW3H4JLX_09ubWyi_jwN-dk9_qyW2_y7cfb-3q1zTVb1ilnCihnusaFtlqxCi0rrWYNGGXKBmtuq5ozZRRyLRuty8pyNI1pGNeNxcWc1JdYHYYYA1qhXTq_loJ0naAgTnpEK0Y94qRHQClGPSNJ_5HfYWwVfq4yzxcGx0ZHh0FE7dBrNC6MboQZ3BX6F-xlg1I
CitedBy_id crossref_primary_10_1007_s12293_025_00458_2
crossref_primary_10_1007_s40747_022_00759_w
crossref_primary_10_1016_j_oceaneng_2022_112820
crossref_primary_10_1016_j_swevo_2023_101261
crossref_primary_10_1049_rpg2_12632
crossref_primary_10_1016_j_ins_2022_07_174
crossref_primary_10_1016_j_sasc_2024_200090
crossref_primary_10_1016_j_mechmachtheory_2022_105088
crossref_primary_10_1109_ACCESS_2021_3110853
crossref_primary_10_1016_j_ins_2022_01_043
crossref_primary_10_1088_1742_6596_2759_1_012004
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1016_j_eswa_2024_123186
crossref_primary_10_1016_j_swevo_2023_101258
crossref_primary_10_1016_j_swevo_2023_101324
Cites_doi 10.1109/TEVC.2016.2521868
10.1016/j.asoc.2020.106078
10.1016/S0888-613X(02)00090-7
10.1145/1830483.1830549
10.1109/ICCKE.2016.7802115
10.1109/TEVC.2007.894202
10.1109/TEVC.2018.2865495
10.1016/j.neucom.2019.02.002
10.1007/s42979-020-00265-1
10.3233/ICA-160529
10.1109/TEVC.2007.892759
10.1016/j.neucom.2015.08.092
10.1145/1228716.1228751
10.1109/4235.996017
10.1109/ISME.2010.274
10.1007/3-540-45712-7_29
10.1016/j.ejor.2006.08.008
10.1016/j.neucom.2014.03.070
10.1016/j.swevo.2020.100815
10.1016/j.swevo.2016.12.002
10.1109/TEVC.2005.861417
10.1016/j.neucom.2019.06.025
10.1109/TEVC.2018.2865931
10.1016/j.ins.2019.05.046
10.1145/1068009.1068122
10.1109/BRACIS.2017.32
10.1145/1276958.1277067
10.1016/j.ins.2013.06.037
10.1109/MCI.2017.2742868
10.1145/1276958.1277079
10.1109/TEVC.2015.2395073
10.1109/TEVC.2013.2281535
10.3233/ICA-170547
10.1007/s10489-019-01503-7
10.1109/CEC.2013.6557783
10.1016/j.neucom.2014.05.025
10.1007/s00366-016-0473-y
10.1016/j.swevo.2018.02.009
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.04.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 449
ExternalDocumentID 10_1016_j_ins_2021_04_011
S0020025521003327
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-2b0152c7e3cfcb26ef24fc280dbd48e75f6752bdbe5ca8cc46f5ed8d825c8fe3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660041200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:59:37 EST 2025
Sat Nov 29 07:25:49 EST 2025
Fri Feb 23 02:45:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Incremental learning
Estimation of distribution
Evolutionary algorithm
Multiobjective optimization
Gaussian mixture model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-2b0152c7e3cfcb26ef24fc280dbd48e75f6752bdbe5ca8cc46f5ed8d825c8fe3
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_04_011
crossref_primary_10_1016_j_ins_2021_04_011
elsevier_sciencedirect_doi_10_1016_j_ins_2021_04_011
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Li (b0110) 2007; 11
Rostami, Neri, Gyaurski (b0230) 2020; 1
Deb, Jain (b0090) 2014; 18
Wu, Li, Kwong, Zhang, Zhang (b0010) 2019; 23
Zhou, Zhang, Zhang (b0020) 2012
Zhang, Zhang, Gao, Song (b0030) 2016; 173
Maza, Touahria (b0180) 2019; 49
Li, Zhang, Song (b0035) 2018; 43
Ma, Liu, Qi, Li, Jiao, Liu, Wu (b0025) 2014; 145
Huband, Hingston, Barone, While (b0210) 2006; 10
Rostami, Neri (b0220) 2016; 23
Bosman, Thierens (b0150) 2002; 31
Zhang, Sun, Liu, Zhang, Zhang (b0040) 2019; 497
R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing 89.
Rodríguez Villalobos, Coello Coello (b0105) 2012
Deb, Goyal (b0240) 1996; 26
Zhang, Zhou, Song, Zhang, Gao, Zhang (b0055) 2016; 20
Cheng, Jin, Narukawa, Sendhoff (b0065) 2015; 19
Martins, Delgado, Santana, Lüders, Aderbal, De Almeida (b0135) 2016
Deb, Pratap, Agarwal, Meyarivan (b0080) 2002; 6
H.L. Liu, F.Q. Gu, Y.M. Cheung, T-MOEA/D: MOEA/D with objective transform in multi-objective problems, in: Proceedings - 2010 International Conference of Information Science and Management Engineering, ISME 2010, Vol. 2, 2010, pp. 282–285.
Laumanns, Ocenasek (b0120) 2002; 2439
Li, Zhang, Song (b0195) 2019; 339
Rostami, Neri (b0225) 2017; 34
D.H. Phan, J. Suzuki, R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, IEEE, 2013, pp. 1836–1845.
E. Mohagheghi, M.R. Akbarzadeh, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE 2016, IEEE, 2016, pp. 54–59.
He, Huang, Cheng, Tan, Jin (b0190) 2020
M. Pelikan, K. Sastry, D.E. Goldberg, Multiobjective hBOA, clustering, and scalability, in: GECCO 2005 – Genetic and Evolutionary Computation Conference, 2005, pp. 663–670.
S. Calinon, A. Billard, Incremental learning of gestures by imitation in a humanoid robot, in: HRI 2007 – Proceedings of the 2007 ACM/IEEE Conference on Human-Robot Interaction – Robot as Team Member, 2007, pp. 255–262.
Corne, Jerram, Knowles, Oates, Martin (b0085) 2001
M.S.R. Martins, M. Delgado, R. Luders, R. Santana, R.A. Goncalves, C.P. De Almeida, Probabilistic analysis of pareto front approximation for a hybrid multi-objective Bayesian estimation of distribution algorithm, in: Proceedings – 2017 Brazilian Conference on Intelligent Systems, IEEE, 2017, pp. 384–389.
Xu, Wunsch (b0200) 2008; vol. 10
E.C. Garrido-Merchan, D. Hernandez-Lobato, Predictive entropy search for multi-objective bayesian optimization with constraints, Neurocomputing 361 (Oct. 7) (2019) 50–68.
F. Gu, H.L. Liu, K.C. Tan, A multiobjective evolutionary algorithm using dynamic weight design method, International Journal of Innovative Computing, Information and Control 8 (5 B) (2012) 3677–3688.
Li, Zhang, Tsang, Ford (b0155) 2004
Zhang, Zhou, Jin (b0015) 2008; 12
Rostami, Neri, Epitropakis (b0005) 2017; 24
Li, Kwong (b0070) 2014; 146
P.A. Bosman, The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization, in: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, GECCO ’10, 2010, pp. 351–358.
Liu, Ishibuchi, Masuyama, Nojima (b0045) 2020; 24
Sun, Zhang, Zhou, Zhang, Zhang, Tu, Ye (b0050) 2019; 23
Shim, Tan, Cheong, Chia (b0170) 2013; 248
Liu, Li, Tan, Song (b0060) 2021; 61
P.A. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, 2007, pp. 500–507.
C.W. Ahn, R.S. Ramakrishna, Multiobjective real-coded bayesian optimization algorithmrevisited: Diversity preservation, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, ACM Press, 2007, pp. 593–600.
Yuan, Dai, Zhang (b0185) 2017; 33
Tian, Cheng, Zhang, Jin (b0235) 2017; 12
Beume, Naujoks, Emmerich (b0095) 2007; 181
Rostami (10.1016/j.ins.2021.04.011_b0225) 2017; 34
Sun (10.1016/j.ins.2021.04.011_b0050) 2019; 23
Rodríguez Villalobos (10.1016/j.ins.2021.04.011_b0105) 2012
10.1016/j.ins.2021.04.011_b0115
Liu (10.1016/j.ins.2021.04.011_b0060) 2021; 61
10.1016/j.ins.2021.04.011_b0175
10.1016/j.ins.2021.04.011_b0075
10.1016/j.ins.2021.04.011_b0130
Bosman (10.1016/j.ins.2021.04.011_b0150) 2002; 31
Zhang (10.1016/j.ins.2021.04.011_b0015) 2008; 12
Maza (10.1016/j.ins.2021.04.011_b0180) 2019; 49
Rostami (10.1016/j.ins.2021.04.011_b0005) 2017; 24
10.1016/j.ins.2021.04.011_b0205
Martins (10.1016/j.ins.2021.04.011_b0135) 2016
Tian (10.1016/j.ins.2021.04.011_b0235) 2017; 12
Li (10.1016/j.ins.2021.04.011_b0035) 2018; 43
Laumanns (10.1016/j.ins.2021.04.011_b0120) 2002; 2439
Zhang (10.1016/j.ins.2021.04.011_b0110) 2007; 11
Li (10.1016/j.ins.2021.04.011_b0195) 2019; 339
Liu (10.1016/j.ins.2021.04.011_b0045) 2020; 24
Deb (10.1016/j.ins.2021.04.011_b0240) 1996; 26
10.1016/j.ins.2021.04.011_b0140
Rostami (10.1016/j.ins.2021.04.011_b0220) 2016; 23
10.1016/j.ins.2021.04.011_b0160
Zhang (10.1016/j.ins.2021.04.011_b0040) 2019; 497
Yuan (10.1016/j.ins.2021.04.011_b0185) 2017; 33
Zhang (10.1016/j.ins.2021.04.011_b0030) 2016; 173
10.1016/j.ins.2021.04.011_b0125
Wu (10.1016/j.ins.2021.04.011_b0010) 2019; 23
10.1016/j.ins.2021.04.011_b0145
Rostami (10.1016/j.ins.2021.04.011_b0230) 2020; 1
10.1016/j.ins.2021.04.011_b0100
Li (10.1016/j.ins.2021.04.011_b0155) 2004
10.1016/j.ins.2021.04.011_b0165
Deb (10.1016/j.ins.2021.04.011_b0090) 2014; 18
He (10.1016/j.ins.2021.04.011_b0190) 2020
Huband (10.1016/j.ins.2021.04.011_b0210) 2006; 10
Cheng (10.1016/j.ins.2021.04.011_b0065) 2015; 19
Zhou (10.1016/j.ins.2021.04.011_b0020) 2012
Beume (10.1016/j.ins.2021.04.011_b0095) 2007; 181
Deb (10.1016/j.ins.2021.04.011_b0080) 2002; 6
Corne (10.1016/j.ins.2021.04.011_b0085) 2001
10.1016/j.ins.2021.04.011_b0215
Shim (10.1016/j.ins.2021.04.011_b0170) 2013; 248
Ma (10.1016/j.ins.2021.04.011_b0025) 2014; 145
Li (10.1016/j.ins.2021.04.011_b0070) 2014; 146
Xu (10.1016/j.ins.2021.04.011_b0200) 2008; vol. 10
Zhang (10.1016/j.ins.2021.04.011_b0055) 2016; 20
References_xml – volume: 43
  start-page: 31
  year: 2018
  end-page: 49
  ident: b0035
  article-title: A self-adaptive mating restriction strategy based on survival length for evolutionary multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
– reference: E. Mohagheghi, M.R. Akbarzadeh, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE 2016, IEEE, 2016, pp. 54–59.
– start-page: 283
  year: 2001
  end-page: 290
  ident: b0085
  article-title: PESA-II: region-based selection in evolutionary multiobjective optimization
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– volume: 19
  start-page: 838
  year: 2015
  end-page: 856
  ident: b0065
  article-title: A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 313
  year: 2016
  end-page: 329
  ident: b0220
  article-title: Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm
  publication-title: Integrated Computer-Aided Engineering
– volume: 1
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0230
  article-title: On algorithmic descriptions and software implementations for multi-objective optimisation: A comparative study
  publication-title: SN Computer Science
– reference: S. Calinon, A. Billard, Incremental learning of gestures by imitation in a humanoid robot, in: HRI 2007 – Proceedings of the 2007 ACM/IEEE Conference on Human-Robot Interaction – Robot as Team Member, 2007, pp. 255–262.
– volume: 20
  start-page: 792
  year: 2016
  end-page: 806
  ident: b0055
  article-title: A self-organizing multiobjective evolutionary algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 24
  start-page: 439
  year: 2020
  end-page: 453
  ident: b0045
  article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: vol. 10
  year: 2008
  ident: b0200
  publication-title: Clustering
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b0210
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0090
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0080
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 145
  start-page: 336
  year: 2014
  end-page: 352
  ident: b0025
  article-title: MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem
  publication-title: Neurocomputing
– volume: 339
  start-page: 77
  year: 2019
  end-page: 93
  ident: b0195
  article-title: MOEA/D with the online agglomerative clustering based self-adaptive mating restriction strategy
  publication-title: Neurocomputing
– reference: M.S.R. Martins, M. Delgado, R. Luders, R. Santana, R.A. Goncalves, C.P. De Almeida, Probabilistic analysis of pareto front approximation for a hybrid multi-objective Bayesian estimation of distribution algorithm, in: Proceedings – 2017 Brazilian Conference on Intelligent Systems, IEEE, 2017, pp. 384–389.
– reference: D.H. Phan, J. Suzuki, R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, IEEE, 2013, pp. 1836–1845.
– reference: P.A. Bosman, The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization, in: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, GECCO ’10, 2010, pp. 351–358.
– reference: C.W. Ahn, R.S. Ramakrishna, Multiobjective real-coded bayesian optimization algorithmrevisited: Diversity preservation, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, ACM Press, 2007, pp. 593–600.
– volume: 61
  year: 2021
  ident: b0060
  article-title: A novel adaptive greedy strategy based on gaussian mixture clustering for multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 146
  start-page: 65
  year: 2014
  end-page: 74
  ident: b0070
  article-title: A general framework for evolutionary multiobjective optimization via manifold learning
  publication-title: Neurocomputing
– volume: 24
  start-page: 315
  year: 2017
  end-page: 335
  ident: b0005
  article-title: Progressive preference articulation for decision making in multi-objective optimisation problems
  publication-title: Integrated Computer-Aided Engineering
– reference: E.C. Garrido-Merchan, D. Hernandez-Lobato, Predictive entropy search for multi-objective bayesian optimization with constraints, Neurocomputing 361 (Oct. 7) (2019) 50–68.
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: b0015
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b0095
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– start-page: 357
  year: 2016
  end-page: 364
  ident: b0135
  article-title: HMOBEDA: Hybrid multi-objective Bayesian Estimation of distribution algorithm
  publication-title: GECCO 2016 – Proceedings of the 2016 Genetic and Evolutionary Computation Conference
– reference: F. Gu, H.L. Liu, K.C. Tan, A multiobjective evolutionary algorithm using dynamic weight design method, International Journal of Innovative Computing, Information and Control 8 (5 B) (2012) 3677–3688.
– volume: 33
  start-page: 293
  year: 2017
  end-page: 305
  ident: b0185
  article-title: A novel multi-objective evolutionary algorithm based on LLE manifold learning
  publication-title: Engineering with Computers
– volume: 173
  start-page: 1868
  year: 2016
  end-page: 1884
  ident: b0030
  article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
  publication-title: Neurocomputing
– start-page: 145
  year: 2004
  end-page: 154
  ident: b0155
  article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– volume: 34
  start-page: 50
  year: 2017
  end-page: 67
  ident: b0225
  article-title: A fast hypervolume driven selection mechanism for many-objective optimisation problems
  publication-title: Swarm and Evolutionary Computation
– reference: M. Pelikan, K. Sastry, D.E. Goldberg, Multiobjective hBOA, clustering, and scalability, in: GECCO 2005 – Genetic and Evolutionary Computation Conference, 2005, pp. 663–670.
– volume: 23
  start-page: 376
  year: 2019
  end-page: 390
  ident: b0010
  article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b0235
  article-title: Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 497
  start-page: 129
  year: 2019
  end-page: 148
  ident: b0040
  article-title: Balancing exploration and exploitation in multiobjective evolutionary optimization
  publication-title: Information Sciences
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: b0240
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– volume: 23
  start-page: 541
  year: 2019
  end-page: 555
  ident: b0050
  article-title: Learning from a stream of nonstationary and dependent data in multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 505
  year: 2012
  end-page: 512
  ident: b0105
  article-title: A new multi-objective evolutionary algorithm based on a performance assessment indicator
  publication-title: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12
– reference: H.L. Liu, F.Q. Gu, Y.M. Cheung, T-MOEA/D: MOEA/D with objective transform in multi-objective problems, in: Proceedings - 2010 International Conference of Information Science and Management Engineering, ISME 2010, Vol. 2, 2010, pp. 282–285.
– reference: R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing 89.
– volume: 31
  start-page: 259
  year: 2002
  end-page: 289
  ident: b0150
  article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
  publication-title: International Journal of Approximate Reasoning
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0190
  article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (gans)
  publication-title: IEEE Transactions on Cybernetics
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0110
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: P.A. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, 2007, pp. 500–507.
– volume: 248
  start-page: 191
  year: 2013
  end-page: 213
  ident: b0170
  article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm
  publication-title: Information Sciences
– volume: 2439
  start-page: 298
  year: 2002
  end-page: 307
  ident: b0120
  article-title: Bayesian optimization algorithms for multi-objective optimization
  publication-title: Lecture Notes in Computer Science
– start-page: 1
  year: 2012
  end-page: 8
  ident: b0020
  article-title: A multiobjective evolutionary algorithm based on decomposition and probability model
  publication-title: 2012 IEEE Congress on Evolutionary Computation
– volume: 49
  start-page: 4237
  year: 2019
  end-page: 4257
  ident: b0180
  article-title: Feature selection for intrusion detection using new multi-objective estimation of distribution algorithms
  publication-title: Applied Intelligence
– volume: 20
  start-page: 792
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2021.04.011_b0055
  article-title: A self-organizing multiobjective evolutionary algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2521868
– ident: 10.1016/j.ins.2021.04.011_b0215
  doi: 10.1016/j.asoc.2020.106078
– volume: 31
  start-page: 259
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2021.04.011_b0150
  article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/S0888-613X(02)00090-7
– ident: 10.1016/j.ins.2021.04.011_b0165
  doi: 10.1145/1830483.1830549
– ident: 10.1016/j.ins.2021.04.011_b0175
  doi: 10.1109/ICCKE.2016.7802115
– start-page: 145
  year: 2004
  ident: 10.1016/j.ins.2021.04.011_b0155
  article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2021.04.011_b0015
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.894202
– volume: 23
  start-page: 541
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2021.04.011_b0050
  article-title: Learning from a stream of nonstationary and dependent data in multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2865495
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.04.011_b0190
  article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (gans)
  publication-title: IEEE Transactions on Cybernetics
– volume: 339
  start-page: 77
  year: 2019
  ident: 10.1016/j.ins.2021.04.011_b0195
  article-title: MOEA/D with the online agglomerative clustering based self-adaptive mating restriction strategy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.002
– start-page: 357
  year: 2016
  ident: 10.1016/j.ins.2021.04.011_b0135
  article-title: HMOBEDA: Hybrid multi-objective Bayesian Estimation of distribution algorithm
– volume: 1
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2021.04.011_b0230
  article-title: On algorithmic descriptions and software implementations for multi-objective optimisation: A comparative study
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00265-1
– volume: 24
  start-page: 439
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2021.04.011_b0045
  article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 313
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2021.04.011_b0220
  article-title: Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-160529
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2021.04.011_b0110
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 173
  start-page: 1868
  year: 2016
  ident: 10.1016/j.ins.2021.04.011_b0030
  article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.092
– ident: 10.1016/j.ins.2021.04.011_b0075
  doi: 10.1145/1228716.1228751
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2021.04.011_b0080
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.ins.2021.04.011_b0115
  doi: 10.1109/ISME.2010.274
– volume: 2439
  start-page: 298
  year: 2002
  ident: 10.1016/j.ins.2021.04.011_b0120
  article-title: Bayesian optimization algorithms for multi-objective optimization
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/3-540-45712-7_29
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.ins.2021.04.011_b0095
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– volume: 146
  start-page: 65
  year: 2014
  ident: 10.1016/j.ins.2021.04.011_b0070
  article-title: A general framework for evolutionary multiobjective optimization via manifold learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.070
– volume: 61
  year: 2021
  ident: 10.1016/j.ins.2021.04.011_b0060
  article-title: A novel adaptive greedy strategy based on gaussian mixture clustering for multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100815
– start-page: 505
  year: 2012
  ident: 10.1016/j.ins.2021.04.011_b0105
  article-title: A new multi-objective evolutionary algorithm based on a performance assessment indicator
– volume: 34
  start-page: 50
  year: 2017
  ident: 10.1016/j.ins.2021.04.011_b0225
  article-title: A fast hypervolume driven selection mechanism for many-objective optimisation problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2016.12.002
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.ins.2021.04.011_b0210
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– ident: 10.1016/j.ins.2021.04.011_b0145
  doi: 10.1016/j.neucom.2019.06.025
– volume: 23
  start-page: 376
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.04.011_b0010
  article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2865931
– volume: 497
  start-page: 129
  year: 2019
  ident: 10.1016/j.ins.2021.04.011_b0040
  article-title: Balancing exploration and exploitation in multiobjective evolutionary optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.05.046
– ident: 10.1016/j.ins.2021.04.011_b0125
  doi: 10.1145/1068009.1068122
– ident: 10.1016/j.ins.2021.04.011_b0140
  doi: 10.1109/BRACIS.2017.32
– ident: 10.1016/j.ins.2021.04.011_b0160
  doi: 10.1145/1276958.1277067
– volume: 248
  start-page: 191
  year: 2013
  ident: 10.1016/j.ins.2021.04.011_b0170
  article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.06.037
– volume: vol. 10
  year: 2008
  ident: 10.1016/j.ins.2021.04.011_b0200
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2021.04.011_b0235
  article-title: Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– ident: 10.1016/j.ins.2021.04.011_b0130
  doi: 10.1145/1276958.1277079
– start-page: 283
  year: 2001
  ident: 10.1016/j.ins.2021.04.011_b0085
  article-title: PESA-II: region-based selection in evolutionary multiobjective optimization
– volume: 19
  start-page: 838
  issue: 6
  year: 2015
  ident: 10.1016/j.ins.2021.04.011_b0065
  article-title: A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2395073
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2021.04.011_b0090
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 24
  start-page: 315
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2021.04.011_b0005
  article-title: Progressive preference articulation for decision making in multi-objective optimisation problems
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-170547
– volume: 49
  start-page: 4237
  issue: 12
  year: 2019
  ident: 10.1016/j.ins.2021.04.011_b0180
  article-title: Feature selection for intrusion detection using new multi-objective estimation of distribution algorithms
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-019-01503-7
– volume: 26
  start-page: 30
  issue: 1
  year: 1996
  ident: 10.1016/j.ins.2021.04.011_b0240
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Computer Science and Informatics
– start-page: 1
  year: 2012
  ident: 10.1016/j.ins.2021.04.011_b0020
  article-title: A multiobjective evolutionary algorithm based on decomposition and probability model
– ident: 10.1016/j.ins.2021.04.011_b0100
  doi: 10.1109/CEC.2013.6557783
– ident: 10.1016/j.ins.2021.04.011_b0205
– volume: 145
  start-page: 336
  year: 2014
  ident: 10.1016/j.ins.2021.04.011_b0025
  article-title: MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.025
– volume: 33
  start-page: 293
  issue: 2
  year: 2017
  ident: 10.1016/j.ins.2021.04.011_b0185
  article-title: A novel multi-objective evolutionary algorithm based on LLE manifold learning
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0473-y
– volume: 43
  start-page: 31
  year: 2018
  ident: 10.1016/j.ins.2021.04.011_b0035
  article-title: A self-adaptive mating restriction strategy based on survival length for evolutionary multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.009
SSID ssj0004766
Score 2.4499676
Snippet Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 430
SubjectTerms Estimation of distribution
Evolutionary algorithm
Gaussian mixture model
Incremental learning
Multiobjective optimization
Title An incremental-learning model-based multiobjective estimation of distribution algorithm
URI https://dx.doi.org/10.1016/j.ins.2021.04.011
Volume 569
WOSCitedRecordID wos000660041200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBcj3WE7jK7bWNt16DB2WBE4shTJxzBa2jHKYIHlZqKv1CGxS5qM_vl9suSPdu1YD7uY8JAVJ-_n96X3gdAnoKuUOU5AVUkC9r8i0lFHhqNM1faJEq4eNiEuLuR0mv2IJ6bX9TgBUZby5ia7-q-sBhow25fOPoHd7aZAgM_AdLgC2-H6T4wf-9xFHcJ-syVZNrGPeuYN8VrLhDTCSi2CtDv2nTZWre1ofC_dOAbreLacV-tic7nqW7GxhqleEFVoa5p_L7YBA-V8vS06qidOiy7tN9Y8FPNt1UZ5Ynrwz0tbruLSGJCgwzYdrisQSIh3VfpCloeBLFFMsngWEzQuC01L_xDmIa6wAA_E91Wnw7onbRTNdxpn31NobZphk8G2yGGL3G-RJyxPfCn4DhU8kwO0Mz4_mX7rKmlFON1ufkJzDl5nBN57joctmZ51MtlFr6JbgccBDq_RM1vuoZe9ZpN76CiWqODPuMc_HIX7G_RrXOKHgIN7wMF3gYM74ODK4T5wcAuct2hyejL5ekbi2A2iaSY2hCowEakWNtVOKzqyjjKnqUyMMkxawR04mVQZZbmeSa3ZyHFrpJGUa-ls-g4Nyqq07xFmqTbOavBAlGQuSyU3iVTcgk0ujVViHyXNP5jr2JLeT0ZZ5o9ybh99aW-5Cv1Y_raYNWzJ49sQDMUcIPb4bQdP-Y5D9KJ7CT6gwWa9tUfouf69Ka7XHyO-bgFaLpqo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+incremental-learning+model-based+multiobjective+estimation+of+distribution+algorithm&rft.jtitle=Information+sciences&rft.au=Liu%2C+Tingrui&rft.au=Li%2C+Xin&rft.au=Tan%2C+Liguo&rft.au=Song%2C+Shenmin&rft.date=2021-08-01&rft.issn=0020-0255&rft.volume=569&rft.spage=430&rft.epage=449&rft_id=info:doi/10.1016%2Fj.ins.2021.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_04_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon