An incremental-learning model-based multiobjective estimation of distribution algorithm
Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions have led to improved search efficiency, but they incur a high computational cost owing to their use of a repetitive learning or iterative st...
Uloženo v:
| Vydáno v: | Information sciences Ročník 569; s. 430 - 449 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2021
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions have led to improved search efficiency, but they incur a high computational cost owing to their use of a repetitive learning or iterative strategy. To overcome this drawback, we propose an algorithm for incremental-learning model-based multiobjective estimation of distributions. A learning mechanism based on an incremental Gaussian mixture model is embedded within the search procedure. In the proposed algorithm, all new solutions generated during the evolution are passed to a data stream, which is fed incrementally into the learning model to adaptively discover the structure of the Pareto-optimal set. The parameters of the model are updated continually as each newly generated datum is collected. Each datum is learned only once for the model, regardless of whether it has been preserved or deleted. Moreover, a sampling strategy based on the learned model is designed to balance the exploration/exploitation dilemma in the evolutionary search. The proposed algorithm is compared with six state-of-the-art algorithms for several benchmarks. The experimental results show that there is a significant improvement over the representative algorithms. |
|---|---|
| AbstractList | Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions have led to improved search efficiency, but they incur a high computational cost owing to their use of a repetitive learning or iterative strategy. To overcome this drawback, we propose an algorithm for incremental-learning model-based multiobjective estimation of distributions. A learning mechanism based on an incremental Gaussian mixture model is embedded within the search procedure. In the proposed algorithm, all new solutions generated during the evolution are passed to a data stream, which is fed incrementally into the learning model to adaptively discover the structure of the Pareto-optimal set. The parameters of the model are updated continually as each newly generated datum is collected. Each datum is learned only once for the model, regardless of whether it has been preserved or deleted. Moreover, a sampling strategy based on the learned model is designed to balance the exploration/exploitation dilemma in the evolutionary search. The proposed algorithm is compared with six state-of-the-art algorithms for several benchmarks. The experimental results show that there is a significant improvement over the representative algorithms. |
| Author | Song, Shenmin Tan, Liguo Liu, Tingrui Li, Xin |
| Author_xml | – sequence: 1 givenname: Tingrui surname: Liu fullname: Liu, Tingrui email: liutingrui@126.com organization: Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Xin surname: Li fullname: Li, Xin email: eshing_li@126.com organization: Sino-German Robotics School, Shenzhen Institute of Information Technology, Shenzhen 518172, China – sequence: 3 givenname: Liguo surname: Tan fullname: Tan, Liguo email: tanliguo@hit.edu.cn organization: Research Center of Basic Space Science, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Shenmin surname: Song fullname: Song, Shenmin email: songshenmin@hit.edu.cn organization: Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China |
| BookMark | eNp9kMtqwzAQRUVJoUnaD-jOP2B3pFi2Q1chtE0h0E2gS6HHKJWx5SIpgf59naSrLrIaZuBc5p4ZmfjBIyGPFAoKtHpqC-djwYDRAsoCKL0hU9rULK_Ykk7IFIBBDozzOzKLsQWAsq6qKflc-cx5HbBHn2SXdyiDd36f9YPBLlcyosn6Q5fcoFrUyR0xw5hcL8eLzwabGRdTcOpw3mW3H4JLX_09ubWyi_jwN-dk9_qyW2_y7cfb-3q1zTVb1ilnCihnusaFtlqxCi0rrWYNGGXKBmtuq5ozZRRyLRuty8pyNI1pGNeNxcWc1JdYHYYYA1qhXTq_loJ0naAgTnpEK0Y94qRHQClGPSNJ_5HfYWwVfq4yzxcGx0ZHh0FE7dBrNC6MboQZ3BX6F-xlg1I |
| CitedBy_id | crossref_primary_10_1007_s12293_025_00458_2 crossref_primary_10_1007_s40747_022_00759_w crossref_primary_10_1016_j_oceaneng_2022_112820 crossref_primary_10_1016_j_swevo_2023_101261 crossref_primary_10_1049_rpg2_12632 crossref_primary_10_1016_j_ins_2022_07_174 crossref_primary_10_1016_j_sasc_2024_200090 crossref_primary_10_1016_j_mechmachtheory_2022_105088 crossref_primary_10_1109_ACCESS_2021_3110853 crossref_primary_10_1016_j_ins_2022_01_043 crossref_primary_10_1088_1742_6596_2759_1_012004 crossref_primary_10_1016_j_asoc_2022_109430 crossref_primary_10_1016_j_eswa_2024_123186 crossref_primary_10_1016_j_swevo_2023_101258 crossref_primary_10_1016_j_swevo_2023_101324 |
| Cites_doi | 10.1109/TEVC.2016.2521868 10.1016/j.asoc.2020.106078 10.1016/S0888-613X(02)00090-7 10.1145/1830483.1830549 10.1109/ICCKE.2016.7802115 10.1109/TEVC.2007.894202 10.1109/TEVC.2018.2865495 10.1016/j.neucom.2019.02.002 10.1007/s42979-020-00265-1 10.3233/ICA-160529 10.1109/TEVC.2007.892759 10.1016/j.neucom.2015.08.092 10.1145/1228716.1228751 10.1109/4235.996017 10.1109/ISME.2010.274 10.1007/3-540-45712-7_29 10.1016/j.ejor.2006.08.008 10.1016/j.neucom.2014.03.070 10.1016/j.swevo.2020.100815 10.1016/j.swevo.2016.12.002 10.1109/TEVC.2005.861417 10.1016/j.neucom.2019.06.025 10.1109/TEVC.2018.2865931 10.1016/j.ins.2019.05.046 10.1145/1068009.1068122 10.1109/BRACIS.2017.32 10.1145/1276958.1277067 10.1016/j.ins.2013.06.037 10.1109/MCI.2017.2742868 10.1145/1276958.1277079 10.1109/TEVC.2015.2395073 10.1109/TEVC.2013.2281535 10.3233/ICA-170547 10.1007/s10489-019-01503-7 10.1109/CEC.2013.6557783 10.1016/j.neucom.2014.05.025 10.1007/s00366-016-0473-y 10.1016/j.swevo.2018.02.009 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2021.04.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 449 |
| ExternalDocumentID | 10_1016_j_ins_2021_04_011 S0020025521003327 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-2b0152c7e3cfcb26ef24fc280dbd48e75f6752bdbe5ca8cc46f5ed8d825c8fe3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660041200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:59:37 EST 2025 Sat Nov 29 07:25:49 EST 2025 Fri Feb 23 02:45:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Incremental learning Estimation of distribution Evolutionary algorithm Multiobjective optimization Gaussian mixture model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-2b0152c7e3cfcb26ef24fc280dbd48e75f6752bdbe5ca8cc46f5ed8d825c8fe3 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_04_011 crossref_primary_10_1016_j_ins_2021_04_011 elsevier_sciencedirect_doi_10_1016_j_ins_2021_04_011 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhang, Li (b0110) 2007; 11 Rostami, Neri, Gyaurski (b0230) 2020; 1 Deb, Jain (b0090) 2014; 18 Wu, Li, Kwong, Zhang, Zhang (b0010) 2019; 23 Zhou, Zhang, Zhang (b0020) 2012 Zhang, Zhang, Gao, Song (b0030) 2016; 173 Maza, Touahria (b0180) 2019; 49 Li, Zhang, Song (b0035) 2018; 43 Ma, Liu, Qi, Li, Jiao, Liu, Wu (b0025) 2014; 145 Huband, Hingston, Barone, While (b0210) 2006; 10 Rostami, Neri (b0220) 2016; 23 Bosman, Thierens (b0150) 2002; 31 Zhang, Sun, Liu, Zhang, Zhang (b0040) 2019; 497 R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing 89. Rodríguez Villalobos, Coello Coello (b0105) 2012 Deb, Goyal (b0240) 1996; 26 Zhang, Zhou, Song, Zhang, Gao, Zhang (b0055) 2016; 20 Cheng, Jin, Narukawa, Sendhoff (b0065) 2015; 19 Martins, Delgado, Santana, Lüders, Aderbal, De Almeida (b0135) 2016 Deb, Pratap, Agarwal, Meyarivan (b0080) 2002; 6 H.L. Liu, F.Q. Gu, Y.M. Cheung, T-MOEA/D: MOEA/D with objective transform in multi-objective problems, in: Proceedings - 2010 International Conference of Information Science and Management Engineering, ISME 2010, Vol. 2, 2010, pp. 282–285. Laumanns, Ocenasek (b0120) 2002; 2439 Li, Zhang, Song (b0195) 2019; 339 Rostami, Neri (b0225) 2017; 34 D.H. Phan, J. Suzuki, R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, IEEE, 2013, pp. 1836–1845. E. Mohagheghi, M.R. Akbarzadeh, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE 2016, IEEE, 2016, pp. 54–59. He, Huang, Cheng, Tan, Jin (b0190) 2020 M. Pelikan, K. Sastry, D.E. Goldberg, Multiobjective hBOA, clustering, and scalability, in: GECCO 2005 – Genetic and Evolutionary Computation Conference, 2005, pp. 663–670. S. Calinon, A. Billard, Incremental learning of gestures by imitation in a humanoid robot, in: HRI 2007 – Proceedings of the 2007 ACM/IEEE Conference on Human-Robot Interaction – Robot as Team Member, 2007, pp. 255–262. Corne, Jerram, Knowles, Oates, Martin (b0085) 2001 M.S.R. Martins, M. Delgado, R. Luders, R. Santana, R.A. Goncalves, C.P. De Almeida, Probabilistic analysis of pareto front approximation for a hybrid multi-objective Bayesian estimation of distribution algorithm, in: Proceedings – 2017 Brazilian Conference on Intelligent Systems, IEEE, 2017, pp. 384–389. Xu, Wunsch (b0200) 2008; vol. 10 E.C. Garrido-Merchan, D. Hernandez-Lobato, Predictive entropy search for multi-objective bayesian optimization with constraints, Neurocomputing 361 (Oct. 7) (2019) 50–68. F. Gu, H.L. Liu, K.C. Tan, A multiobjective evolutionary algorithm using dynamic weight design method, International Journal of Innovative Computing, Information and Control 8 (5 B) (2012) 3677–3688. Li, Zhang, Tsang, Ford (b0155) 2004 Zhang, Zhou, Jin (b0015) 2008; 12 Rostami, Neri, Epitropakis (b0005) 2017; 24 Li, Kwong (b0070) 2014; 146 P.A. Bosman, The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization, in: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, GECCO ’10, 2010, pp. 351–358. Liu, Ishibuchi, Masuyama, Nojima (b0045) 2020; 24 Sun, Zhang, Zhou, Zhang, Zhang, Tu, Ye (b0050) 2019; 23 Shim, Tan, Cheong, Chia (b0170) 2013; 248 Liu, Li, Tan, Song (b0060) 2021; 61 P.A. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, 2007, pp. 500–507. C.W. Ahn, R.S. Ramakrishna, Multiobjective real-coded bayesian optimization algorithmrevisited: Diversity preservation, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, ACM Press, 2007, pp. 593–600. Yuan, Dai, Zhang (b0185) 2017; 33 Tian, Cheng, Zhang, Jin (b0235) 2017; 12 Beume, Naujoks, Emmerich (b0095) 2007; 181 Rostami (10.1016/j.ins.2021.04.011_b0225) 2017; 34 Sun (10.1016/j.ins.2021.04.011_b0050) 2019; 23 Rodríguez Villalobos (10.1016/j.ins.2021.04.011_b0105) 2012 10.1016/j.ins.2021.04.011_b0115 Liu (10.1016/j.ins.2021.04.011_b0060) 2021; 61 10.1016/j.ins.2021.04.011_b0175 10.1016/j.ins.2021.04.011_b0075 10.1016/j.ins.2021.04.011_b0130 Bosman (10.1016/j.ins.2021.04.011_b0150) 2002; 31 Zhang (10.1016/j.ins.2021.04.011_b0015) 2008; 12 Maza (10.1016/j.ins.2021.04.011_b0180) 2019; 49 Rostami (10.1016/j.ins.2021.04.011_b0005) 2017; 24 10.1016/j.ins.2021.04.011_b0205 Martins (10.1016/j.ins.2021.04.011_b0135) 2016 Tian (10.1016/j.ins.2021.04.011_b0235) 2017; 12 Li (10.1016/j.ins.2021.04.011_b0035) 2018; 43 Laumanns (10.1016/j.ins.2021.04.011_b0120) 2002; 2439 Zhang (10.1016/j.ins.2021.04.011_b0110) 2007; 11 Li (10.1016/j.ins.2021.04.011_b0195) 2019; 339 Liu (10.1016/j.ins.2021.04.011_b0045) 2020; 24 Deb (10.1016/j.ins.2021.04.011_b0240) 1996; 26 10.1016/j.ins.2021.04.011_b0140 Rostami (10.1016/j.ins.2021.04.011_b0220) 2016; 23 10.1016/j.ins.2021.04.011_b0160 Zhang (10.1016/j.ins.2021.04.011_b0040) 2019; 497 Yuan (10.1016/j.ins.2021.04.011_b0185) 2017; 33 Zhang (10.1016/j.ins.2021.04.011_b0030) 2016; 173 10.1016/j.ins.2021.04.011_b0125 Wu (10.1016/j.ins.2021.04.011_b0010) 2019; 23 10.1016/j.ins.2021.04.011_b0145 Rostami (10.1016/j.ins.2021.04.011_b0230) 2020; 1 10.1016/j.ins.2021.04.011_b0100 Li (10.1016/j.ins.2021.04.011_b0155) 2004 10.1016/j.ins.2021.04.011_b0165 Deb (10.1016/j.ins.2021.04.011_b0090) 2014; 18 He (10.1016/j.ins.2021.04.011_b0190) 2020 Huband (10.1016/j.ins.2021.04.011_b0210) 2006; 10 Cheng (10.1016/j.ins.2021.04.011_b0065) 2015; 19 Zhou (10.1016/j.ins.2021.04.011_b0020) 2012 Beume (10.1016/j.ins.2021.04.011_b0095) 2007; 181 Deb (10.1016/j.ins.2021.04.011_b0080) 2002; 6 Corne (10.1016/j.ins.2021.04.011_b0085) 2001 10.1016/j.ins.2021.04.011_b0215 Shim (10.1016/j.ins.2021.04.011_b0170) 2013; 248 Ma (10.1016/j.ins.2021.04.011_b0025) 2014; 145 Li (10.1016/j.ins.2021.04.011_b0070) 2014; 146 Xu (10.1016/j.ins.2021.04.011_b0200) 2008; vol. 10 Zhang (10.1016/j.ins.2021.04.011_b0055) 2016; 20 |
| References_xml | – volume: 43 start-page: 31 year: 2018 end-page: 49 ident: b0035 article-title: A self-adaptive mating restriction strategy based on survival length for evolutionary multiobjective optimization publication-title: Swarm and Evolutionary Computation – reference: E. Mohagheghi, M.R. Akbarzadeh, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE 2016, IEEE, 2016, pp. 54–59. – start-page: 283 year: 2001 end-page: 290 ident: b0085 article-title: PESA-II: region-based selection in evolutionary multiobjective optimization publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – volume: 19 start-page: 838 year: 2015 end-page: 856 ident: b0065 article-title: A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling publication-title: IEEE Transactions on Evolutionary Computation – volume: 23 start-page: 313 year: 2016 end-page: 329 ident: b0220 article-title: Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm publication-title: Integrated Computer-Aided Engineering – volume: 1 start-page: 1 year: 2020 end-page: 23 ident: b0230 article-title: On algorithmic descriptions and software implementations for multi-objective optimisation: A comparative study publication-title: SN Computer Science – reference: S. Calinon, A. Billard, Incremental learning of gestures by imitation in a humanoid robot, in: HRI 2007 – Proceedings of the 2007 ACM/IEEE Conference on Human-Robot Interaction – Robot as Team Member, 2007, pp. 255–262. – volume: 20 start-page: 792 year: 2016 end-page: 806 ident: b0055 article-title: A self-organizing multiobjective evolutionary algorithm publication-title: IEEE Transactions on Evolutionary Computation – volume: 24 start-page: 439 year: 2020 end-page: 453 ident: b0045 article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts publication-title: IEEE Transactions on Evolutionary Computation – volume: vol. 10 year: 2008 ident: b0200 publication-title: Clustering – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b0210 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b0090 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0080 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 145 start-page: 336 year: 2014 end-page: 352 ident: b0025 article-title: MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem publication-title: Neurocomputing – volume: 339 start-page: 77 year: 2019 end-page: 93 ident: b0195 article-title: MOEA/D with the online agglomerative clustering based self-adaptive mating restriction strategy publication-title: Neurocomputing – reference: M.S.R. Martins, M. Delgado, R. Luders, R. Santana, R.A. Goncalves, C.P. De Almeida, Probabilistic analysis of pareto front approximation for a hybrid multi-objective Bayesian estimation of distribution algorithm, in: Proceedings – 2017 Brazilian Conference on Intelligent Systems, IEEE, 2017, pp. 384–389. – reference: D.H. Phan, J. Suzuki, R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization, in: 2013 IEEE Congress on Evolutionary Computation, CEC 2013, IEEE, 2013, pp. 1836–1845. – reference: P.A. Bosman, The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization, in: Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, GECCO ’10, 2010, pp. 351–358. – reference: C.W. Ahn, R.S. Ramakrishna, Multiobjective real-coded bayesian optimization algorithmrevisited: Diversity preservation, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, ACM Press, 2007, pp. 593–600. – volume: 61 year: 2021 ident: b0060 article-title: A novel adaptive greedy strategy based on gaussian mixture clustering for multiobjective optimization publication-title: Swarm and Evolutionary Computation – volume: 146 start-page: 65 year: 2014 end-page: 74 ident: b0070 article-title: A general framework for evolutionary multiobjective optimization via manifold learning publication-title: Neurocomputing – volume: 24 start-page: 315 year: 2017 end-page: 335 ident: b0005 article-title: Progressive preference articulation for decision making in multi-objective optimisation problems publication-title: Integrated Computer-Aided Engineering – reference: E.C. Garrido-Merchan, D. Hernandez-Lobato, Predictive entropy search for multi-objective bayesian optimization with constraints, Neurocomputing 361 (Oct. 7) (2019) 50–68. – volume: 12 start-page: 41 year: 2008 end-page: 63 ident: b0015 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation – volume: 181 start-page: 1653 year: 2007 end-page: 1669 ident: b0095 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research – start-page: 357 year: 2016 end-page: 364 ident: b0135 article-title: HMOBEDA: Hybrid multi-objective Bayesian Estimation of distribution algorithm publication-title: GECCO 2016 – Proceedings of the 2016 Genetic and Evolutionary Computation Conference – reference: F. Gu, H.L. Liu, K.C. Tan, A multiobjective evolutionary algorithm using dynamic weight design method, International Journal of Innovative Computing, Information and Control 8 (5 B) (2012) 3677–3688. – volume: 33 start-page: 293 year: 2017 end-page: 305 ident: b0185 article-title: A novel multi-objective evolutionary algorithm based on LLE manifold learning publication-title: Engineering with Computers – volume: 173 start-page: 1868 year: 2016 end-page: 1884 ident: b0030 article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble publication-title: Neurocomputing – start-page: 145 year: 2004 end-page: 154 ident: b0155 article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization – volume: 34 start-page: 50 year: 2017 end-page: 67 ident: b0225 article-title: A fast hypervolume driven selection mechanism for many-objective optimisation problems publication-title: Swarm and Evolutionary Computation – reference: M. Pelikan, K. Sastry, D.E. Goldberg, Multiobjective hBOA, clustering, and scalability, in: GECCO 2005 – Genetic and Evolutionary Computation Conference, 2005, pp. 663–670. – volume: 23 start-page: 376 year: 2019 end-page: 390 ident: b0010 article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b0235 article-title: Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Computational Intelligence Magazine – volume: 497 start-page: 129 year: 2019 end-page: 148 ident: b0040 article-title: Balancing exploration and exploitation in multiobjective evolutionary optimization publication-title: Information Sciences – volume: 26 start-page: 30 year: 1996 end-page: 45 ident: b0240 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Computer Science and Informatics – volume: 23 start-page: 541 year: 2019 end-page: 555 ident: b0050 article-title: Learning from a stream of nonstationary and dependent data in multiobjective evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 505 year: 2012 end-page: 512 ident: b0105 article-title: A new multi-objective evolutionary algorithm based on a performance assessment indicator publication-title: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12 – reference: H.L. Liu, F.Q. Gu, Y.M. Cheung, T-MOEA/D: MOEA/D with objective transform in multi-objective problems, in: Proceedings - 2010 International Conference of Information Science and Management Engineering, ISME 2010, Vol. 2, 2010, pp. 282–285. – reference: R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing 89. – volume: 31 start-page: 259 year: 2002 end-page: 289 ident: b0150 article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms publication-title: International Journal of Approximate Reasoning – start-page: 1 year: 2020 end-page: 14 ident: b0190 article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (gans) publication-title: IEEE Transactions on Cybernetics – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b0110 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – reference: P.A. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference, 2007, pp. 500–507. – volume: 248 start-page: 191 year: 2013 end-page: 213 ident: b0170 article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm publication-title: Information Sciences – volume: 2439 start-page: 298 year: 2002 end-page: 307 ident: b0120 article-title: Bayesian optimization algorithms for multi-objective optimization publication-title: Lecture Notes in Computer Science – start-page: 1 year: 2012 end-page: 8 ident: b0020 article-title: A multiobjective evolutionary algorithm based on decomposition and probability model publication-title: 2012 IEEE Congress on Evolutionary Computation – volume: 49 start-page: 4237 year: 2019 end-page: 4257 ident: b0180 article-title: Feature selection for intrusion detection using new multi-objective estimation of distribution algorithms publication-title: Applied Intelligence – volume: 20 start-page: 792 issue: 5 year: 2016 ident: 10.1016/j.ins.2021.04.011_b0055 article-title: A self-organizing multiobjective evolutionary algorithm publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2521868 – ident: 10.1016/j.ins.2021.04.011_b0215 doi: 10.1016/j.asoc.2020.106078 – volume: 31 start-page: 259 issue: 3 year: 2002 ident: 10.1016/j.ins.2021.04.011_b0150 article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms publication-title: International Journal of Approximate Reasoning doi: 10.1016/S0888-613X(02)00090-7 – ident: 10.1016/j.ins.2021.04.011_b0165 doi: 10.1145/1830483.1830549 – ident: 10.1016/j.ins.2021.04.011_b0175 doi: 10.1109/ICCKE.2016.7802115 – start-page: 145 year: 2004 ident: 10.1016/j.ins.2021.04.011_b0155 article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack problem – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.ins.2021.04.011_b0015 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.894202 – volume: 23 start-page: 541 issue: 4 year: 2019 ident: 10.1016/j.ins.2021.04.011_b0050 article-title: Learning from a stream of nonstationary and dependent data in multiobjective evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2865495 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.04.011_b0190 article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (gans) publication-title: IEEE Transactions on Cybernetics – volume: 339 start-page: 77 year: 2019 ident: 10.1016/j.ins.2021.04.011_b0195 article-title: MOEA/D with the online agglomerative clustering based self-adaptive mating restriction strategy publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.002 – start-page: 357 year: 2016 ident: 10.1016/j.ins.2021.04.011_b0135 article-title: HMOBEDA: Hybrid multi-objective Bayesian Estimation of distribution algorithm – volume: 1 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.ins.2021.04.011_b0230 article-title: On algorithmic descriptions and software implementations for multi-objective optimisation: A comparative study publication-title: SN Computer Science doi: 10.1007/s42979-020-00265-1 – volume: 24 start-page: 439 issue: 3 year: 2020 ident: 10.1016/j.ins.2021.04.011_b0045 article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts publication-title: IEEE Transactions on Evolutionary Computation – volume: 23 start-page: 313 issue: 4 year: 2016 ident: 10.1016/j.ins.2021.04.011_b0220 article-title: Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-160529 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2021.04.011_b0110 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – volume: 173 start-page: 1868 year: 2016 ident: 10.1016/j.ins.2021.04.011_b0030 article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.092 – ident: 10.1016/j.ins.2021.04.011_b0075 doi: 10.1145/1228716.1228751 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ins.2021.04.011_b0080 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 10.1016/j.ins.2021.04.011_b0115 doi: 10.1109/ISME.2010.274 – volume: 2439 start-page: 298 year: 2002 ident: 10.1016/j.ins.2021.04.011_b0120 article-title: Bayesian optimization algorithms for multi-objective optimization publication-title: Lecture Notes in Computer Science doi: 10.1007/3-540-45712-7_29 – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 10.1016/j.ins.2021.04.011_b0095 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.008 – volume: 146 start-page: 65 year: 2014 ident: 10.1016/j.ins.2021.04.011_b0070 article-title: A general framework for evolutionary multiobjective optimization via manifold learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.070 – volume: 61 year: 2021 ident: 10.1016/j.ins.2021.04.011_b0060 article-title: A novel adaptive greedy strategy based on gaussian mixture clustering for multiobjective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100815 – start-page: 505 year: 2012 ident: 10.1016/j.ins.2021.04.011_b0105 article-title: A new multi-objective evolutionary algorithm based on a performance assessment indicator – volume: 34 start-page: 50 year: 2017 ident: 10.1016/j.ins.2021.04.011_b0225 article-title: A fast hypervolume driven selection mechanism for many-objective optimisation problems publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2016.12.002 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 10.1016/j.ins.2021.04.011_b0210 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.861417 – ident: 10.1016/j.ins.2021.04.011_b0145 doi: 10.1016/j.neucom.2019.06.025 – volume: 23 start-page: 376 issue: 3 year: 2019 ident: 10.1016/j.ins.2021.04.011_b0010 article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2865931 – volume: 497 start-page: 129 year: 2019 ident: 10.1016/j.ins.2021.04.011_b0040 article-title: Balancing exploration and exploitation in multiobjective evolutionary optimization publication-title: Information Sciences doi: 10.1016/j.ins.2019.05.046 – ident: 10.1016/j.ins.2021.04.011_b0125 doi: 10.1145/1068009.1068122 – ident: 10.1016/j.ins.2021.04.011_b0140 doi: 10.1109/BRACIS.2017.32 – ident: 10.1016/j.ins.2021.04.011_b0160 doi: 10.1145/1276958.1277067 – volume: 248 start-page: 191 year: 2013 ident: 10.1016/j.ins.2021.04.011_b0170 article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2013.06.037 – volume: vol. 10 year: 2008 ident: 10.1016/j.ins.2021.04.011_b0200 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.ins.2021.04.011_b0235 article-title: Platemo: A matlab platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2017.2742868 – ident: 10.1016/j.ins.2021.04.011_b0130 doi: 10.1145/1276958.1277079 – start-page: 283 year: 2001 ident: 10.1016/j.ins.2021.04.011_b0085 article-title: PESA-II: region-based selection in evolutionary multiobjective optimization – volume: 19 start-page: 838 issue: 6 year: 2015 ident: 10.1016/j.ins.2021.04.011_b0065 article-title: A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2395073 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ins.2021.04.011_b0090 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 24 start-page: 315 issue: 4 year: 2017 ident: 10.1016/j.ins.2021.04.011_b0005 article-title: Progressive preference articulation for decision making in multi-objective optimisation problems publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-170547 – volume: 49 start-page: 4237 issue: 12 year: 2019 ident: 10.1016/j.ins.2021.04.011_b0180 article-title: Feature selection for intrusion detection using new multi-objective estimation of distribution algorithms publication-title: Applied Intelligence doi: 10.1007/s10489-019-01503-7 – volume: 26 start-page: 30 issue: 1 year: 1996 ident: 10.1016/j.ins.2021.04.011_b0240 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Computer Science and Informatics – start-page: 1 year: 2012 ident: 10.1016/j.ins.2021.04.011_b0020 article-title: A multiobjective evolutionary algorithm based on decomposition and probability model – ident: 10.1016/j.ins.2021.04.011_b0100 doi: 10.1109/CEC.2013.6557783 – ident: 10.1016/j.ins.2021.04.011_b0205 – volume: 145 start-page: 336 year: 2014 ident: 10.1016/j.ins.2021.04.011_b0025 article-title: MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.025 – volume: 33 start-page: 293 issue: 2 year: 2017 ident: 10.1016/j.ins.2021.04.011_b0185 article-title: A novel multi-objective evolutionary algorithm based on LLE manifold learning publication-title: Engineering with Computers doi: 10.1007/s00366-016-0473-y – volume: 43 start-page: 31 year: 2018 ident: 10.1016/j.ins.2021.04.011_b0035 article-title: A self-adaptive mating restriction strategy based on survival length for evolutionary multiobjective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.009 |
| SSID | ssj0004766 |
| Score | 2.4499676 |
| Snippet | Knowledge obtained from the properties of a Pareto-optimal set can guide an evolutionary search. Learning models for multiobjective estimation of distributions... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 430 |
| SubjectTerms | Estimation of distribution Evolutionary algorithm Gaussian mixture model Incremental learning Multiobjective optimization |
| Title | An incremental-learning model-based multiobjective estimation of distribution algorithm |
| URI | https://dx.doi.org/10.1016/j.ins.2021.04.011 |
| Volume | 569 |
| WOSCitedRecordID | wos000660041200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBcj3WE7jK7bWNt16DB2WBE4shTJxzBa2jHKYIHlZqKv1CGxS5qM_vl9suSPdu1YD7uY8JAVJ-_n96X3gdAnoKuUOU5AVUkC9r8i0lFHhqNM1faJEq4eNiEuLuR0mv2IJ6bX9TgBUZby5ia7-q-sBhow25fOPoHd7aZAgM_AdLgC2-H6T4wf-9xFHcJ-syVZNrGPeuYN8VrLhDTCSi2CtDv2nTZWre1ofC_dOAbreLacV-tic7nqW7GxhqleEFVoa5p_L7YBA-V8vS06qidOiy7tN9Y8FPNt1UZ5Ynrwz0tbruLSGJCgwzYdrisQSIh3VfpCloeBLFFMsngWEzQuC01L_xDmIa6wAA_E91Wnw7onbRTNdxpn31NobZphk8G2yGGL3G-RJyxPfCn4DhU8kwO0Mz4_mX7rKmlFON1ufkJzDl5nBN57joctmZ51MtlFr6JbgccBDq_RM1vuoZe9ZpN76CiWqODPuMc_HIX7G_RrXOKHgIN7wMF3gYM74ODK4T5wcAuct2hyejL5ekbi2A2iaSY2hCowEakWNtVOKzqyjjKnqUyMMkxawR04mVQZZbmeSa3ZyHFrpJGUa-ls-g4Nyqq07xFmqTbOavBAlGQuSyU3iVTcgk0ujVViHyXNP5jr2JLeT0ZZ5o9ybh99aW-5Cv1Y_raYNWzJ49sQDMUcIPb4bQdP-Y5D9KJ7CT6gwWa9tUfouf69Ka7XHyO-bgFaLpqo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+incremental-learning+model-based+multiobjective+estimation+of+distribution+algorithm&rft.jtitle=Information+sciences&rft.au=Liu%2C+Tingrui&rft.au=Li%2C+Xin&rft.au=Tan%2C+Liguo&rft.au=Song%2C+Shenmin&rft.date=2021-08-01&rft.issn=0020-0255&rft.volume=569&rft.spage=430&rft.epage=449&rft_id=info:doi/10.1016%2Fj.ins.2021.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_04_011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |