Eilmer: An open-source multi-physics hypersonic flow solver

This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide ran...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer physics communications Ročník 282; s. 108551
Hlavní autori: Gibbons, Nicholas N., Damm, Kyle A., Jacobs, Peter A., Gollan, Rowan J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2023
Predmet:
ISSN:0010-4655, 1879-2944
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide range of capabilities, which are documented on the project's website, in the accompanying reference manuals, and in an extensive catalogue of example simulations. The first part of this paper describes the formulation of the code: the equations, physical models, and numerical methods that are used in a basic fluid dynamics simulation, as well as a handful of optional multi-physics models that are commonly added on to do calculations of hypersonic flow. The second section describes the processes used to develop and maintain the code, documenting our adherence to good programming practice and endorsing certain techniques that seem to be particularly helpful for scientific codes. The final section describes a half-dozen example simulations that span the range of Eilmer's capabilities, each consisting of some sample results and a short explanation of the problem being solved, which together will hopefully assist new users in beginning to use Eilmer in their own research projects. Program Title: Eilmer CPC Library link to program files:https://doi.org/10.17632/gy2ds2fyxm.1 Developer's repository link:https://github.com/gdtk-uq/gdtk Code Ocean capsule:https://codeocean.com/capsule/7226427 Licensing provisions: GPLv3 Programming language: D, Lua Supplementary material:https://gdtk.uqcloud.net Nature of problem: Eilmer solves the compressible Navier-Stokes equations with a particular emphasis on flows at hypersonic speeds. The code includes modelling for high-temperature gas effects such as chemical and vibrational nonequilibrium. Eilmer can be used for the simulation for unsteady and steady flows. Solution method: The code is implemented in D [1] and built on a finite-volume formulation that is capable of solving the Navier-Stokes equations in 2D and 3D computational domains, discretised with structured or unstructured grids. Grids may be generated using a built-in parametric scripting tool or imported from commercial gridding software. The inviscid fluxes are computed using the reconstruction-evolution approach. In structured-grid mode, reconstruction stencils up to fourth-order spatial accuracy are available. In unstructured-grid mode, least-squares reconstruction provides second-order spatial accuracy. A variety of flux calculators are available in the code. Viscous fluxes are computed with compact stencils with second-order spatial accuracy. For unsteady flows, explicit time-stepping with low-order RK-family schemes are available, along with a point-implicit Backward-Euler update scheme for stiff systems of equations. For steady flows, convergence can be greatly accelerated using a Jacobian-free Newton-Krylov update scheme, which seeks a global minimum in the residuals using a series of large pseudo-timesteps. Domain decomposition is used for parallel execution using both shared memory and distributed memory programming techniques. Additional comments including restrictions and unusual features: Eilmer provides a programmable interface for pre-processing, post-processing and user run-time customisations. The programmable interface is enabled using a built-in embedded interpreter for the Lua programming language [2]. Run-time customisations include used-defined boundary conditions, source terms and grid motion. [1]D Programming Language web page: https://dlang.org/.[2]Lua Programming Language web page: https://www.lua.org/.
AbstractList This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide range of capabilities, which are documented on the project's website, in the accompanying reference manuals, and in an extensive catalogue of example simulations. The first part of this paper describes the formulation of the code: the equations, physical models, and numerical methods that are used in a basic fluid dynamics simulation, as well as a handful of optional multi-physics models that are commonly added on to do calculations of hypersonic flow. The second section describes the processes used to develop and maintain the code, documenting our adherence to good programming practice and endorsing certain techniques that seem to be particularly helpful for scientific codes. The final section describes a half-dozen example simulations that span the range of Eilmer's capabilities, each consisting of some sample results and a short explanation of the problem being solved, which together will hopefully assist new users in beginning to use Eilmer in their own research projects. Program Title: Eilmer CPC Library link to program files:https://doi.org/10.17632/gy2ds2fyxm.1 Developer's repository link:https://github.com/gdtk-uq/gdtk Code Ocean capsule:https://codeocean.com/capsule/7226427 Licensing provisions: GPLv3 Programming language: D, Lua Supplementary material:https://gdtk.uqcloud.net Nature of problem: Eilmer solves the compressible Navier-Stokes equations with a particular emphasis on flows at hypersonic speeds. The code includes modelling for high-temperature gas effects such as chemical and vibrational nonequilibrium. Eilmer can be used for the simulation for unsteady and steady flows. Solution method: The code is implemented in D [1] and built on a finite-volume formulation that is capable of solving the Navier-Stokes equations in 2D and 3D computational domains, discretised with structured or unstructured grids. Grids may be generated using a built-in parametric scripting tool or imported from commercial gridding software. The inviscid fluxes are computed using the reconstruction-evolution approach. In structured-grid mode, reconstruction stencils up to fourth-order spatial accuracy are available. In unstructured-grid mode, least-squares reconstruction provides second-order spatial accuracy. A variety of flux calculators are available in the code. Viscous fluxes are computed with compact stencils with second-order spatial accuracy. For unsteady flows, explicit time-stepping with low-order RK-family schemes are available, along with a point-implicit Backward-Euler update scheme for stiff systems of equations. For steady flows, convergence can be greatly accelerated using a Jacobian-free Newton-Krylov update scheme, which seeks a global minimum in the residuals using a series of large pseudo-timesteps. Domain decomposition is used for parallel execution using both shared memory and distributed memory programming techniques. Additional comments including restrictions and unusual features: Eilmer provides a programmable interface for pre-processing, post-processing and user run-time customisations. The programmable interface is enabled using a built-in embedded interpreter for the Lua programming language [2]. Run-time customisations include used-defined boundary conditions, source terms and grid motion. [1]D Programming Language web page: https://dlang.org/.[2]Lua Programming Language web page: https://www.lua.org/.
ArticleNumber 108551
Author Gollan, Rowan J.
Gibbons, Nicholas N.
Damm, Kyle A.
Jacobs, Peter A.
Author_xml – sequence: 1
  givenname: Nicholas N.
  orcidid: 0000-0001-5206-1583
  surname: Gibbons
  fullname: Gibbons, Nicholas N.
– sequence: 2
  givenname: Kyle A.
  surname: Damm
  fullname: Damm, Kyle A.
– sequence: 3
  givenname: Peter A.
  surname: Jacobs
  fullname: Jacobs, Peter A.
– sequence: 4
  givenname: Rowan J.
  surname: Gollan
  fullname: Gollan, Rowan J.
  email: r.gollan@uq.edu.au
BookMark eNp9kEFuwjAQRa2KSgXaA3SXC4SOkxjHZYUQpZWQumnXljOeCKMQR3ag4vYNoqsuWI3-4n39eRM2an1LjD1zmHHg85f9DDucZZBlQy6F4HdszEup0kwVxYiNATikxVyIBzaJcQ8AUqp8zBZr1xwovCbLNvEdtWn0x4CUHI5N79Jud44OY7I7dxSibx0mdeN_kuibE4VHdl-bJtLT352y77f11-o93X5uPlbLbYqZkv2wQKkSayWBSHKLUlphUZWVhbzIwBSlKSwYmQuO1RyrEnhRW5lVXBBhDfmUyWsvBh9joFqj603vfNsH4xrNQV8c6L0eHOiLA311MJD8H9kFdzDhfJNZXBkaXjo5CjqioxbJukDYa-vdDfoXbIF2lA
CitedBy_id crossref_primary_10_1016_j_ast_2024_109621
crossref_primary_10_1063_5_0268296
crossref_primary_10_2514_1_J064061
crossref_primary_10_3390_aerospace11090742
crossref_primary_10_1007_s00348_024_03761_9
crossref_primary_10_1017_jfm_2024_489
crossref_primary_10_1016_j_ast_2024_109879
crossref_primary_10_2118_215817_PA
crossref_primary_10_1016_j_actaastro_2024_07_008
crossref_primary_10_1016_j_compfluid_2025_106637
crossref_primary_10_1007_s00348_025_03967_5
crossref_primary_10_1063_5_0288861
crossref_primary_10_2514_1_J064217
crossref_primary_10_1007_s00466_023_02373_0
crossref_primary_10_1016_j_ast_2025_110680
crossref_primary_10_2514_1_A35636
crossref_primary_10_3390_math10193431
crossref_primary_10_1016_j_ast_2025_110422
crossref_primary_10_1017_jfm_2022_838
crossref_primary_10_1016_j_jcp_2025_114257
crossref_primary_10_1063_5_0220606
crossref_primary_10_1063_5_0271076
Cites_doi 10.2514/1.14404
10.1137/S1064827595287997
10.1063/1.1734182
10.2514/1.J058913
10.1016/j.cpc.2020.107262
10.1016/j.cpc.2022.108408
10.2514/1.J053813
10.2514/3.649
10.2514/2.871
10.1007/s00193-005-0258-5
10.2514/1.A34863
10.2514/1.T5172
10.2514/1.T5255
10.2514/1.J059033
10.1016/j.cpc.2021.107906
10.1016/0045-7930(94)90028-0
10.1371/journal.pbio.1001745
10.1002/fld.3790
10.3390/aerospace3040045
10.2514/2.461
10.1007/s00193-017-0786-9
10.1016/j.cpc.2020.107169
10.1016/j.ijheatfluidflow.2008.07.001
10.2514/2.6512
10.1016/j.jcp.2015.12.004
10.1016/0021-9991(89)90095-8
10.1007/s00193-013-0488-x
10.1017/jfm.2021.203
10.1006/jcph.1995.1084
10.1006/jcph.2000.6605
10.2514/1.J054270
10.3390/aerospace8070193
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2022.108551
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2022_108551
S0010465522002703
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-29998cf970ee71dc77d5dc98bd03420a48a4d0a7351cb6cb8014fd72b15eecf03
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866490500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Sat Nov 29 07:32:37 EST 2025
Tue Nov 18 21:16:35 EST 2025
Fri Feb 23 02:42:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypersonics
Parallel computing
Scientific computing
Computational fluid dynamics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-29998cf970ee71dc77d5dc98bd03420a48a4d0a7351cb6cb8014fd72b15eecf03
ORCID 0000-0001-5206-1583
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2022_108551
crossref_primary_10_1016_j_cpc_2022_108551
elsevier_sciencedirect_doi_10_1016_j_cpc_2022_108551
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Allmaras, Johnson, Spalart (br0130) 2012
Wada, Liou (br0230) 1994
Park, Gai, Neely (br0380) 2016; 54
Jacobs (br0320) 1994; 23
Knab, Fruhauf, Messerschmid (br0180) 1995; 9
Romero, Crabill, Watkins, Witherden, Jameson (br0030) 2020; 250
Fahy, Buttsworth, Gollan, Jacobs, Morgan, James (br0460) 2021; 58
Liu, James, Morgan, Jacobs, Gollan, McIntyre (br0510) 2022; 60
Park (br0530) 1993; 7
Anderson (br0120) 2000
Hash, Olejniczak, Wright, Prabhu, Pulsonetti, Hollis, Gnoffo, Barnhardt, Nompelis, Candler (br0550) 2007
Candler (br0400) 2015
Aeschliman, Oberkampf (br0590) 1998; 36
Economon, Palacios, Copeland, Lucaczyk, Alonso (br0100) 2016; 54
Millikan, White (br0160) 1963; 39
Liechty, Johnston, Lewis (br0540) 2011
Casseau, Espinoza, Scanlon, Brown (br0080) 2016; 3
Veeraragavan, Beri, Gollan (br0310) 2016; 307
Macrossan (br0210) 1989; 80
MacLean, Holden (br0360) 2004
Ray, Kieweg, Dinzl, Weirs, Freno, Howard, Smith, Nompelis, Candler (br0410) 2020; 58
Lobb (br0420) 1962; vol. 68
Jewell, Huffman, Juliano (br0330) 2017
Gollan, Jacobs (br0440) 2012
Hoste, Fosati, Taylor, Gollan (br0390) 2019; 123
Haselbacher, Blazek (br0240) 2000; 38
Haenel, Schwane, Seider (br0220) 1987
Lani, Villedie, Bensassi, Koloszar, Vymazal, Yalim, Panesi (br0060) 2013
Mott, Oran, van Leer (br0250) 2000; 164
Gu, Morgan, McIntyre, Brandis (br0500) 2022; 60
Damm, Gollan, Jacobs, Smart, Lee, Kim, Kim (br0570) 2020; 58
Gollan (br0260) 2008
Zander, Gollan, Jacobs, Morgan (br0450) 2014; 24
Powers, Aslam (br0290) 2006; 44
Kleb, Wood (br0010) 2004
Karypis, Kumar (br0520) 1999; 20
Vandenhoeck, Lani, Steelant (br0070) 2022; 278
Potter, Eichmann, Brandis, Morgan, Jacobs, McIntyre (br0480) 2008
Gildfind, Jacobs, Morgan, Chan, Gollan (br0340) 2018; 28
Lusher, Jammy, Sandham (br0040) 2021
Di Renzo, Fu, Urzay (br0050) 2020; 255
Hornung, Gollan, Jacobs (br0580) 2021; 916
Banerji, Leyland, Fahy, Morgan (br0470) 2018; 32
Shur, Spalart, Strelets, Travin (br0150) 2008; 29
Wilcox (br0140) 2002
Maier, Needels, Garbacz, Morgado, Alonso, Fossati (br0090) 2021; 8
McBride, Zehe, Gordon (br0110) 2002
Damm (br0270) 2020
Sun, Saito, Jacobs, Timofeev, Ohtani, Takayama (br0370) 2005; 15
van Albada, van Leer, Roberts (br0190) 1982; 108
Gollan, Jacobs (br0300) 2013; 73
Holden, Wadhams (br0350) 2003
Adams, Bauman, Bohnhoff, Dalbey, Ebeida, Eddy, Eldred, Hough, Hu, Jakeman (br0560) 2015
Gnoffo, Gupta, Shinn (br0170) 1989
Nonaka, Mizuno, Takayama, Park (br0430) 2000; 14
Venkatakrishnan (br0200) 1995; 118
Bernardini, Modesti, Salvadore, Pirozzoli (br0020) 2021; 263
Wilson, Aruliah, Brown, Hong, Davis, Guy, Haddock, Huff, Mitchell, Plumbley, Waugh, White, Wilson (br0280) 2014; 12
Banerji, Leyland, Fahy, Morgan (br0490) 2018; 32
Haenel (10.1016/j.cpc.2022.108551_br0220) 1987
Potter (10.1016/j.cpc.2022.108551_br0480) 2008
Fahy (10.1016/j.cpc.2022.108551_br0460) 2021; 58
Macrossan (10.1016/j.cpc.2022.108551_br0210) 1989; 80
Allmaras (10.1016/j.cpc.2022.108551_br0130) 2012
Jacobs (10.1016/j.cpc.2022.108551_br0320) 1994; 23
Holden (10.1016/j.cpc.2022.108551_br0350) 2003
Liechty (10.1016/j.cpc.2022.108551_br0540) 2011
Jewell (10.1016/j.cpc.2022.108551_br0330) 2017
Wada (10.1016/j.cpc.2022.108551_br0230) 1994
Gu (10.1016/j.cpc.2022.108551_br0500) 2022; 60
Park (10.1016/j.cpc.2022.108551_br0530) 1993; 7
Karypis (10.1016/j.cpc.2022.108551_br0520) 1999; 20
Di Renzo (10.1016/j.cpc.2022.108551_br0050) 2020; 255
Casseau (10.1016/j.cpc.2022.108551_br0080) 2016; 3
Wilson (10.1016/j.cpc.2022.108551_br0280) 2014; 12
Gildfind (10.1016/j.cpc.2022.108551_br0340) 2018; 28
Lani (10.1016/j.cpc.2022.108551_br0060) 2013
Hoste (10.1016/j.cpc.2022.108551_br0390) 2019; 123
Gnoffo (10.1016/j.cpc.2022.108551_br0170) 1989
Vandenhoeck (10.1016/j.cpc.2022.108551_br0070) 2022; 278
Bernardini (10.1016/j.cpc.2022.108551_br0020) 2021; 263
Haselbacher (10.1016/j.cpc.2022.108551_br0240) 2000; 38
Powers (10.1016/j.cpc.2022.108551_br0290) 2006; 44
Maier (10.1016/j.cpc.2022.108551_br0090) 2021; 8
Nonaka (10.1016/j.cpc.2022.108551_br0430) 2000; 14
Damm (10.1016/j.cpc.2022.108551_br0270) 2020
Wilcox (10.1016/j.cpc.2022.108551_br0140) 2002
Veeraragavan (10.1016/j.cpc.2022.108551_br0310) 2016; 307
MacLean (10.1016/j.cpc.2022.108551_br0360) 2004
Park (10.1016/j.cpc.2022.108551_br0380) 2016; 54
Banerji (10.1016/j.cpc.2022.108551_br0470) 2018; 32
Zander (10.1016/j.cpc.2022.108551_br0450) 2014; 24
Hornung (10.1016/j.cpc.2022.108551_br0580) 2021; 916
Gollan (10.1016/j.cpc.2022.108551_br0300) 2013; 73
Damm (10.1016/j.cpc.2022.108551_br0570) 2020; 58
Lobb (10.1016/j.cpc.2022.108551_br0420) 1962; vol. 68
Aeschliman (10.1016/j.cpc.2022.108551_br0590) 1998; 36
McBride (10.1016/j.cpc.2022.108551_br0110) 2002
Venkatakrishnan (10.1016/j.cpc.2022.108551_br0200) 1995; 118
Millikan (10.1016/j.cpc.2022.108551_br0160) 1963; 39
Gollan (10.1016/j.cpc.2022.108551_br0440) 2012
Banerji (10.1016/j.cpc.2022.108551_br0490) 2018; 32
Anderson (10.1016/j.cpc.2022.108551_br0120) 2000
Mott (10.1016/j.cpc.2022.108551_br0250) 2000; 164
Shur (10.1016/j.cpc.2022.108551_br0150) 2008; 29
Kleb (10.1016/j.cpc.2022.108551_br0010) 2004
Romero (10.1016/j.cpc.2022.108551_br0030) 2020; 250
Sun (10.1016/j.cpc.2022.108551_br0370) 2005; 15
Economon (10.1016/j.cpc.2022.108551_br0100) 2016; 54
Gollan (10.1016/j.cpc.2022.108551_br0260) 2008
Hash (10.1016/j.cpc.2022.108551_br0550) 2007
Adams (10.1016/j.cpc.2022.108551_br0560) 2015
Liu (10.1016/j.cpc.2022.108551_br0510) 2022; 60
Lusher (10.1016/j.cpc.2022.108551_br0040) 2021
Knab (10.1016/j.cpc.2022.108551_br0180) 1995; 9
van Albada (10.1016/j.cpc.2022.108551_br0190) 1982; 108
Candler (10.1016/j.cpc.2022.108551_br0400) 2015
Ray (10.1016/j.cpc.2022.108551_br0410) 2020; 58
References_xml – volume: 3
  start-page: 45
  year: 2016
  ident: br0080
  publication-title: Aerospace
– volume: 123
  start-page: 1
  year: 2019
  end-page: 30
  ident: br0390
  publication-title: Aeronaut. J. New Ser.
– volume: 28
  start-page: 899
  year: 2018
  end-page: 918
  ident: br0340
  publication-title: Shock Waves
– volume: 9
  year: 1995
  ident: br0180
  publication-title: J. Thermophys. Heat Transf.
– year: 2003
  ident: br0350
  publication-title: 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2003-1137
– year: 2015
  ident: br0560
  article-title: Dakota: A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Etc: Version 6 User's Manual
– year: 2007
  ident: br0550
  publication-title: 45th Aerospace Sciences Meeting and Exhibit, AIAA-2007-605
– year: 2011
  ident: br0540
  publication-title: 42nd AIAA Thermophysics Conference, AIAA-2011-3494
– year: 2008
  ident: br0480
  publication-title: 40th AIAA Thermophysics Conference, AIAA-2008-3933
– year: 2004
  ident: br0360
  publication-title: 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2004-529
– year: 1994
  ident: br0230
  publication-title: 32nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-94-0083
– volume: 39
  start-page: 3209
  year: 1963
  end-page: 3213
  ident: br0160
  publication-title: J. Chem. Phys.
– volume: 278
  year: 2022
  ident: br0070
  publication-title: Comput. Phys. Commun.
– year: 2002
  ident: br0140
  article-title: Turbulence Modelling for CFD
– volume: 20
  start-page: 359
  year: 1999
  end-page: 392
  ident: br0520
  publication-title: SIAM J. Sci. Comput.
– volume: 12
  start-page: 1
  year: 2014
  end-page: 7
  ident: br0280
  publication-title: PLoS Biol.
– year: 2015
  ident: br0400
  publication-title: 22nd AIAA Computational Fluid Dynamics Conference, AIAA-2015-3048
– start-page: 1105
  year: 1987
  ident: br0220
  publication-title: 8th Computational Fluid Dynamics Conference
– volume: 80
  start-page: 204
  year: 1989
  end-page: 231
  ident: br0210
  publication-title: J. Comput. Phys.
– volume: 32
  start-page: 292
  year: 2018
  end-page: 302
  ident: br0470
  publication-title: J. Thermophys. Heat Transf.
– volume: 307
  start-page: 308
  year: 2016
  end-page: 320
  ident: br0310
  publication-title: J. Comput. Phys.
– volume: 29
  start-page: 1638
  year: 2008
  end-page: 1649
  ident: br0150
  publication-title: Int. J. Heat Fluid Flow
– year: 2012
  ident: br0440
  publication-title: 18th Australasian Fluid Mechanics Conference
– volume: 8
  start-page: 193
  year: 2021
  ident: br0090
  publication-title: Aerospace
– volume: 58
  start-page: 1
  year: 2021
  end-page: 14
  ident: br0460
  publication-title: J. Spacecr. Rockets
– volume: 36
  start-page: 733
  year: 1998
  end-page: 741
  ident: br0590
  publication-title: AIAA J.
– volume: 60
  year: 2022
  ident: br0500
  publication-title: AIAA J.
– year: 2017
  ident: br0330
  publication-title: 55th AIAA Aerospace Sciences Meeting, AIAA-2017-0743
– year: 2012
  ident: br0130
  publication-title: Seventh International Conference on Computational Fluid Dynamics
– volume: 44
  year: 2006
  ident: br0290
  publication-title: AIAA J.
– volume: 73
  start-page: 19
  year: 2013
  end-page: 57
  ident: br0300
  publication-title: Int. J. Numer. Methods Fluids
– volume: 38
  start-page: 2094
  year: 2000
  end-page: 2102
  ident: br0240
  publication-title: AIAA J.
– volume: 54
  year: 2016
  ident: br0380
  publication-title: AIAA J.
– year: 2000
  ident: br0120
  article-title: Hypersonic and High-Temperature Gas Dynamics
– volume: 23
  start-page: 77
  year: 1994
  end-page: 101
  ident: br0320
  publication-title: Comput. Fluids
– year: 2013
  ident: br0060
  publication-title: 21st AIAA Computational Fluid Dynamics Conference, AIAA-2013-2589
– volume: 164
  start-page: 407
  year: 2000
  end-page: 428
  ident: br0250
  publication-title: J. Comput. Phys.
– volume: 263
  year: 2021
  ident: br0020
  publication-title: Comput. Phys. Commun.
– volume: 32
  start-page: 414
  year: 2018
  end-page: 428
  ident: br0490
  publication-title: J. Thermophys. Heat Transf.
– volume: 58
  year: 2020
  ident: br0410
  publication-title: AIAA J.
– year: 2008
  ident: br0260
  article-title: The Computational Modelling of High-Temperature Gas Effects with Application to Hypersonic Flows
– year: 2004
  ident: br0010
  publication-title: 34th AIAA Fluid Dynamics Conference and Exhibit, AIAA-2004-2627
– volume: 255
  year: 2020
  ident: br0050
  publication-title: Comput. Phys. Commun.
– year: 2020
  ident: br0270
  article-title: Adjoint-Based Aerodynamic Design Optimisation in Hypersonic Flow
– volume: 14
  start-page: 225
  year: 2000
  end-page: 229
  ident: br0430
  publication-title: J. Thermophys. Heat Transf.
– volume: vol. 68
  start-page: 519
  year: 1962
  end-page: 527
  ident: br0420
  publication-title: The High Temperature Aspects of Hypersonic Flow
– volume: 118
  start-page: 120
  year: 1995
  end-page: 130
  ident: br0200
  publication-title: J. Comput. Phys.
– year: 1989
  ident: br0170
  article-title: Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibirum
– volume: 250
  year: 2020
  ident: br0030
  publication-title: Comput. Phys. Commun.
– volume: 916
  start-page: 1
  year: 2021
  end-page: 23
  ident: br0580
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 313
  year: 2005
  end-page: 331
  ident: br0370
  publication-title: Shock Waves
– volume: 54
  start-page: 828
  year: 2016
  end-page: 846
  ident: br0100
  publication-title: AIAA J.
– volume: 60
  year: 2022
  ident: br0510
  publication-title: AIAA J.
– volume: 7
  year: 1993
  ident: br0530
  publication-title: J. Thermophys. Heat Transf.
– year: 2021
  ident: br0040
  publication-title: Comput. Phys. Commun.
– volume: 58
  year: 2020
  ident: br0570
  publication-title: AIAA J.
– volume: 108
  start-page: 76
  year: 1982
  end-page: 84
  ident: br0190
  publication-title: Astron. Astrophys.
– year: 2002
  ident: br0110
  article-title: NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
– volume: 24
  start-page: 171
  year: 2014
  end-page: 178
  ident: br0450
  publication-title: Shock Waves
– volume: 44
  year: 2006
  ident: 10.1016/j.cpc.2022.108551_br0290
  publication-title: AIAA J.
  doi: 10.2514/1.14404
– volume: 20
  start-page: 359
  year: 1999
  ident: 10.1016/j.cpc.2022.108551_br0520
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595287997
– year: 2015
  ident: 10.1016/j.cpc.2022.108551_br0400
– year: 2002
  ident: 10.1016/j.cpc.2022.108551_br0140
– volume: 39
  start-page: 3209
  year: 1963
  ident: 10.1016/j.cpc.2022.108551_br0160
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1734182
– volume: 58
  year: 2020
  ident: 10.1016/j.cpc.2022.108551_br0570
  publication-title: AIAA J.
  doi: 10.2514/1.J058913
– volume: 255
  year: 2020
  ident: 10.1016/j.cpc.2022.108551_br0050
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107262
– volume: 278
  year: 2022
  ident: 10.1016/j.cpc.2022.108551_br0070
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2022.108408
– year: 2012
  ident: 10.1016/j.cpc.2022.108551_br0130
– volume: 54
  start-page: 828
  year: 2016
  ident: 10.1016/j.cpc.2022.108551_br0100
  publication-title: AIAA J.
  doi: 10.2514/1.J053813
– start-page: 1105
  year: 1987
  ident: 10.1016/j.cpc.2022.108551_br0220
– year: 2021
  ident: 10.1016/j.cpc.2022.108551_br0040
  publication-title: Comput. Phys. Commun.
– volume: 9
  year: 1995
  ident: 10.1016/j.cpc.2022.108551_br0180
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/3.649
– year: 2011
  ident: 10.1016/j.cpc.2022.108551_br0540
– volume: 38
  start-page: 2094
  year: 2000
  ident: 10.1016/j.cpc.2022.108551_br0240
  publication-title: AIAA J.
  doi: 10.2514/2.871
– volume: 15
  start-page: 313
  year: 2005
  ident: 10.1016/j.cpc.2022.108551_br0370
  publication-title: Shock Waves
  doi: 10.1007/s00193-005-0258-5
– year: 2004
  ident: 10.1016/j.cpc.2022.108551_br0010
– year: 2008
  ident: 10.1016/j.cpc.2022.108551_br0480
– year: 1994
  ident: 10.1016/j.cpc.2022.108551_br0230
– volume: 58
  start-page: 1
  year: 2021
  ident: 10.1016/j.cpc.2022.108551_br0460
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.A34863
– volume: 32
  start-page: 292
  year: 2018
  ident: 10.1016/j.cpc.2022.108551_br0470
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T5172
– volume: 32
  start-page: 414
  year: 2018
  ident: 10.1016/j.cpc.2022.108551_br0490
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T5255
– volume: 60
  year: 2022
  ident: 10.1016/j.cpc.2022.108551_br0500
  publication-title: AIAA J.
– year: 2020
  ident: 10.1016/j.cpc.2022.108551_br0270
– volume: 58
  year: 2020
  ident: 10.1016/j.cpc.2022.108551_br0410
  publication-title: AIAA J.
  doi: 10.2514/1.J059033
– volume: 263
  year: 2021
  ident: 10.1016/j.cpc.2022.108551_br0020
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.107906
– volume: 23
  start-page: 77
  year: 1994
  ident: 10.1016/j.cpc.2022.108551_br0320
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)90028-0
– year: 2004
  ident: 10.1016/j.cpc.2022.108551_br0360
– volume: 12
  start-page: 1
  year: 2014
  ident: 10.1016/j.cpc.2022.108551_br0280
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001745
– volume: 73
  start-page: 19
  year: 2013
  ident: 10.1016/j.cpc.2022.108551_br0300
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3790
– volume: 7
  year: 1993
  ident: 10.1016/j.cpc.2022.108551_br0530
  publication-title: J. Thermophys. Heat Transf.
– volume: 108
  start-page: 76
  year: 1982
  ident: 10.1016/j.cpc.2022.108551_br0190
  publication-title: Astron. Astrophys.
– year: 1989
  ident: 10.1016/j.cpc.2022.108551_br0170
– volume: 3
  start-page: 45
  year: 2016
  ident: 10.1016/j.cpc.2022.108551_br0080
  publication-title: Aerospace
  doi: 10.3390/aerospace3040045
– volume: vol. 68
  start-page: 519
  year: 1962
  ident: 10.1016/j.cpc.2022.108551_br0420
– year: 2003
  ident: 10.1016/j.cpc.2022.108551_br0350
– volume: 36
  start-page: 733
  year: 1998
  ident: 10.1016/j.cpc.2022.108551_br0590
  publication-title: AIAA J.
  doi: 10.2514/2.461
– year: 2017
  ident: 10.1016/j.cpc.2022.108551_br0330
– year: 2000
  ident: 10.1016/j.cpc.2022.108551_br0120
– volume: 28
  start-page: 899
  year: 2018
  ident: 10.1016/j.cpc.2022.108551_br0340
  publication-title: Shock Waves
  doi: 10.1007/s00193-017-0786-9
– year: 2012
  ident: 10.1016/j.cpc.2022.108551_br0440
– year: 2015
  ident: 10.1016/j.cpc.2022.108551_br0560
– volume: 250
  year: 2020
  ident: 10.1016/j.cpc.2022.108551_br0030
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107169
– year: 2007
  ident: 10.1016/j.cpc.2022.108551_br0550
– volume: 29
  start-page: 1638
  year: 2008
  ident: 10.1016/j.cpc.2022.108551_br0150
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.07.001
– volume: 14
  start-page: 225
  year: 2000
  ident: 10.1016/j.cpc.2022.108551_br0430
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/2.6512
– volume: 123
  start-page: 1
  year: 2019
  ident: 10.1016/j.cpc.2022.108551_br0390
  publication-title: Aeronaut. J. New Ser.
– year: 2008
  ident: 10.1016/j.cpc.2022.108551_br0260
– volume: 307
  start-page: 308
  year: 2016
  ident: 10.1016/j.cpc.2022.108551_br0310
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.004
– volume: 80
  start-page: 204
  year: 1989
  ident: 10.1016/j.cpc.2022.108551_br0210
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90095-8
– volume: 24
  start-page: 171
  year: 2014
  ident: 10.1016/j.cpc.2022.108551_br0450
  publication-title: Shock Waves
  doi: 10.1007/s00193-013-0488-x
– volume: 916
  start-page: 1
  year: 2021
  ident: 10.1016/j.cpc.2022.108551_br0580
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.203
– volume: 118
  start-page: 120
  year: 1995
  ident: 10.1016/j.cpc.2022.108551_br0200
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1084
– volume: 164
  start-page: 407
  year: 2000
  ident: 10.1016/j.cpc.2022.108551_br0250
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6605
– year: 2002
  ident: 10.1016/j.cpc.2022.108551_br0110
– volume: 60
  year: 2022
  ident: 10.1016/j.cpc.2022.108551_br0510
  publication-title: AIAA J.
– volume: 54
  year: 2016
  ident: 10.1016/j.cpc.2022.108551_br0380
  publication-title: AIAA J.
  doi: 10.2514/1.J054270
– year: 2013
  ident: 10.1016/j.cpc.2022.108551_br0060
– volume: 8
  start-page: 193
  year: 2021
  ident: 10.1016/j.cpc.2022.108551_br0090
  publication-title: Aerospace
  doi: 10.3390/aerospace8070193
SSID ssj0007793
Score 2.5671337
Snippet This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108551
SubjectTerms Computational fluid dynamics
Hypersonics
Parallel computing
Scientific computing
Title Eilmer: An open-source multi-physics hypersonic flow solver
URI https://dx.doi.org/10.1016/j.cpc.2022.108551
Volume 282
WOSCitedRecordID wos000866490500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWggMQFsYpdOXAicpU6CY7hVKGyC3EA1FsULxGtSlrRsv0949hJwyo4cIkq155YnqfJeDx-g9COBKeYMclxw6cSB2FIcEJUgH3hwWaAcKJyJqbbC3p5GbXb7Mqe4A_zcgI0y6KXFzb4V1VDGyhbX539g7pLodAAv0Hp8AS1w_NXim918oooJuCni2NhE6A3uYPYhDKG7h1sQLWz3RFu2us_uzCpJ5upWxAX2IIPbjFEVC-TlL74cYfzvvHGAVZ6qwymsz6OgN_niDt_7Sm3WTafgSHmwzJBuPLPsQamCQz0n_Xdqno1MEH8SmDCGlsw8ZqerWpsiSk1ZM2lvvpg-GY_WXITVOjWxUATTRJSH_d9z5r94WtW5hgW6WvdGETEWkRsREyiKUJDFtXQVPO01T4rP9yUWo5mO-_iEDxPB_wwj6_dmIprcj2P5uyewmkaLCygCZUtopkro7UldGAQse80M6eCB-cdHpwxHhyNB8fgYRndHLWuD0-wrZmBBWF0hMG7YJFIGfWUog0pKJWhFCziUnM9ekkQJYH0EuqHDcH3BNfkQamkhDdCpUTq-SuolvUztYocFSjoHyahr4ua6QNqWJg0EipIuA9C15BXLEEsLKG8rmvSi79d-jW0Ww4ZGDaVnzoHxbrG1h00bl4MGPl-2Ppf3rGBZsfQ3US10cOj2kLT4mnUGT5sW4C8Adn3fJU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eilmer%3A+An+open-source+multi-physics+hypersonic+flow+solver&rft.jtitle=Computer+physics+communications&rft.au=Gibbons%2C+Nicholas+N.&rft.au=Damm%2C+Kyle+A.&rft.au=Jacobs%2C+Peter+A.&rft.au=Gollan%2C+Rowan+J.&rft.date=2023-01-01&rft.issn=0010-4655&rft.volume=282&rft.spage=108551&rft_id=info:doi/10.1016%2Fj.cpc.2022.108551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2022_108551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon