Eilmer: An open-source multi-physics hypersonic flow solver
This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide ran...
Uložené v:
| Vydané v: | Computer physics communications Ročník 282; s. 108551 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2023
|
| Predmet: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide range of capabilities, which are documented on the project's website, in the accompanying reference manuals, and in an extensive catalogue of example simulations. The first part of this paper describes the formulation of the code: the equations, physical models, and numerical methods that are used in a basic fluid dynamics simulation, as well as a handful of optional multi-physics models that are commonly added on to do calculations of hypersonic flow. The second section describes the processes used to develop and maintain the code, documenting our adherence to good programming practice and endorsing certain techniques that seem to be particularly helpful for scientific codes. The final section describes a half-dozen example simulations that span the range of Eilmer's capabilities, each consisting of some sample results and a short explanation of the problem being solved, which together will hopefully assist new users in beginning to use Eilmer in their own research projects.
Program Title: Eilmer
CPC Library link to program files:https://doi.org/10.17632/gy2ds2fyxm.1
Developer's repository link:https://github.com/gdtk-uq/gdtk
Code Ocean capsule:https://codeocean.com/capsule/7226427
Licensing provisions: GPLv3
Programming language: D, Lua
Supplementary material:https://gdtk.uqcloud.net
Nature of problem: Eilmer solves the compressible Navier-Stokes equations with a particular emphasis on flows at hypersonic speeds. The code includes modelling for high-temperature gas effects such as chemical and vibrational nonequilibrium. Eilmer can be used for the simulation for unsteady and steady flows.
Solution method: The code is implemented in D [1] and built on a finite-volume formulation that is capable of solving the Navier-Stokes equations in 2D and 3D computational domains, discretised with structured or unstructured grids. Grids may be generated using a built-in parametric scripting tool or imported from commercial gridding software. The inviscid fluxes are computed using the reconstruction-evolution approach. In structured-grid mode, reconstruction stencils up to fourth-order spatial accuracy are available. In unstructured-grid mode, least-squares reconstruction provides second-order spatial accuracy. A variety of flux calculators are available in the code. Viscous fluxes are computed with compact stencils with second-order spatial accuracy. For unsteady flows, explicit time-stepping with low-order RK-family schemes are available, along with a point-implicit Backward-Euler update scheme for stiff systems of equations. For steady flows, convergence can be greatly accelerated using a Jacobian-free Newton-Krylov update scheme, which seeks a global minimum in the residuals using a series of large pseudo-timesteps. Domain decomposition is used for parallel execution using both shared memory and distributed memory programming techniques.
Additional comments including restrictions and unusual features: Eilmer provides a programmable interface for pre-processing, post-processing and user run-time customisations. The programmable interface is enabled using a built-in embedded interpreter for the Lua programming language [2]. Run-time customisations include used-defined boundary conditions, source terms and grid motion.
[1]D Programming Language web page: https://dlang.org/.[2]Lua Programming Language web page: https://www.lua.org/. |
|---|---|
| AbstractList | This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research calculations in hypersonics and high-speed aerothermodynamics. Eilmer has a broad userbase in several university research groups and a wide range of capabilities, which are documented on the project's website, in the accompanying reference manuals, and in an extensive catalogue of example simulations. The first part of this paper describes the formulation of the code: the equations, physical models, and numerical methods that are used in a basic fluid dynamics simulation, as well as a handful of optional multi-physics models that are commonly added on to do calculations of hypersonic flow. The second section describes the processes used to develop and maintain the code, documenting our adherence to good programming practice and endorsing certain techniques that seem to be particularly helpful for scientific codes. The final section describes a half-dozen example simulations that span the range of Eilmer's capabilities, each consisting of some sample results and a short explanation of the problem being solved, which together will hopefully assist new users in beginning to use Eilmer in their own research projects.
Program Title: Eilmer
CPC Library link to program files:https://doi.org/10.17632/gy2ds2fyxm.1
Developer's repository link:https://github.com/gdtk-uq/gdtk
Code Ocean capsule:https://codeocean.com/capsule/7226427
Licensing provisions: GPLv3
Programming language: D, Lua
Supplementary material:https://gdtk.uqcloud.net
Nature of problem: Eilmer solves the compressible Navier-Stokes equations with a particular emphasis on flows at hypersonic speeds. The code includes modelling for high-temperature gas effects such as chemical and vibrational nonequilibrium. Eilmer can be used for the simulation for unsteady and steady flows.
Solution method: The code is implemented in D [1] and built on a finite-volume formulation that is capable of solving the Navier-Stokes equations in 2D and 3D computational domains, discretised with structured or unstructured grids. Grids may be generated using a built-in parametric scripting tool or imported from commercial gridding software. The inviscid fluxes are computed using the reconstruction-evolution approach. In structured-grid mode, reconstruction stencils up to fourth-order spatial accuracy are available. In unstructured-grid mode, least-squares reconstruction provides second-order spatial accuracy. A variety of flux calculators are available in the code. Viscous fluxes are computed with compact stencils with second-order spatial accuracy. For unsteady flows, explicit time-stepping with low-order RK-family schemes are available, along with a point-implicit Backward-Euler update scheme for stiff systems of equations. For steady flows, convergence can be greatly accelerated using a Jacobian-free Newton-Krylov update scheme, which seeks a global minimum in the residuals using a series of large pseudo-timesteps. Domain decomposition is used for parallel execution using both shared memory and distributed memory programming techniques.
Additional comments including restrictions and unusual features: Eilmer provides a programmable interface for pre-processing, post-processing and user run-time customisations. The programmable interface is enabled using a built-in embedded interpreter for the Lua programming language [2]. Run-time customisations include used-defined boundary conditions, source terms and grid motion.
[1]D Programming Language web page: https://dlang.org/.[2]Lua Programming Language web page: https://www.lua.org/. |
| ArticleNumber | 108551 |
| Author | Gollan, Rowan J. Gibbons, Nicholas N. Damm, Kyle A. Jacobs, Peter A. |
| Author_xml | – sequence: 1 givenname: Nicholas N. orcidid: 0000-0001-5206-1583 surname: Gibbons fullname: Gibbons, Nicholas N. – sequence: 2 givenname: Kyle A. surname: Damm fullname: Damm, Kyle A. – sequence: 3 givenname: Peter A. surname: Jacobs fullname: Jacobs, Peter A. – sequence: 4 givenname: Rowan J. surname: Gollan fullname: Gollan, Rowan J. email: r.gollan@uq.edu.au |
| BookMark | eNp9kEFuwjAQRa2KSgXaA3SXC4SOkxjHZYUQpZWQumnXljOeCKMQR3ag4vYNoqsuWI3-4n39eRM2an1LjD1zmHHg85f9DDucZZBlQy6F4HdszEup0kwVxYiNATikxVyIBzaJcQ8AUqp8zBZr1xwovCbLNvEdtWn0x4CUHI5N79Jud44OY7I7dxSibx0mdeN_kuibE4VHdl-bJtLT352y77f11-o93X5uPlbLbYqZkv2wQKkSayWBSHKLUlphUZWVhbzIwBSlKSwYmQuO1RyrEnhRW5lVXBBhDfmUyWsvBh9joFqj603vfNsH4xrNQV8c6L0eHOiLA311MJD8H9kFdzDhfJNZXBkaXjo5CjqioxbJukDYa-vdDfoXbIF2lA |
| CitedBy_id | crossref_primary_10_1016_j_ast_2024_109621 crossref_primary_10_1063_5_0268296 crossref_primary_10_2514_1_J064061 crossref_primary_10_3390_aerospace11090742 crossref_primary_10_1007_s00348_024_03761_9 crossref_primary_10_1017_jfm_2024_489 crossref_primary_10_1016_j_ast_2024_109879 crossref_primary_10_2118_215817_PA crossref_primary_10_1016_j_actaastro_2024_07_008 crossref_primary_10_1016_j_compfluid_2025_106637 crossref_primary_10_1007_s00348_025_03967_5 crossref_primary_10_1063_5_0288861 crossref_primary_10_2514_1_J064217 crossref_primary_10_1007_s00466_023_02373_0 crossref_primary_10_1016_j_ast_2025_110680 crossref_primary_10_2514_1_A35636 crossref_primary_10_3390_math10193431 crossref_primary_10_1016_j_ast_2025_110422 crossref_primary_10_1017_jfm_2022_838 crossref_primary_10_1016_j_jcp_2025_114257 crossref_primary_10_1063_5_0220606 crossref_primary_10_1063_5_0271076 |
| Cites_doi | 10.2514/1.14404 10.1137/S1064827595287997 10.1063/1.1734182 10.2514/1.J058913 10.1016/j.cpc.2020.107262 10.1016/j.cpc.2022.108408 10.2514/1.J053813 10.2514/3.649 10.2514/2.871 10.1007/s00193-005-0258-5 10.2514/1.A34863 10.2514/1.T5172 10.2514/1.T5255 10.2514/1.J059033 10.1016/j.cpc.2021.107906 10.1016/0045-7930(94)90028-0 10.1371/journal.pbio.1001745 10.1002/fld.3790 10.3390/aerospace3040045 10.2514/2.461 10.1007/s00193-017-0786-9 10.1016/j.cpc.2020.107169 10.1016/j.ijheatfluidflow.2008.07.001 10.2514/2.6512 10.1016/j.jcp.2015.12.004 10.1016/0021-9991(89)90095-8 10.1007/s00193-013-0488-x 10.1017/jfm.2021.203 10.1006/jcph.1995.1084 10.1006/jcph.2000.6605 10.2514/1.J054270 10.3390/aerospace8070193 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2022.108551 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| ExternalDocumentID | 10_1016_j_cpc_2022_108551 S0010465522002703 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-29998cf970ee71dc77d5dc98bd03420a48a4d0a7351cb6cb8014fd72b15eecf03 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866490500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Sat Nov 29 07:32:37 EST 2025 Tue Nov 18 21:16:35 EST 2025 Fri Feb 23 02:42:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hypersonics Parallel computing Scientific computing Computational fluid dynamics |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-29998cf970ee71dc77d5dc98bd03420a48a4d0a7351cb6cb8014fd72b15eecf03 |
| ORCID | 0000-0001-5206-1583 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cpc_2022_108551 crossref_primary_10_1016_j_cpc_2022_108551 elsevier_sciencedirect_doi_10_1016_j_cpc_2022_108551 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Allmaras, Johnson, Spalart (br0130) 2012 Wada, Liou (br0230) 1994 Park, Gai, Neely (br0380) 2016; 54 Jacobs (br0320) 1994; 23 Knab, Fruhauf, Messerschmid (br0180) 1995; 9 Romero, Crabill, Watkins, Witherden, Jameson (br0030) 2020; 250 Fahy, Buttsworth, Gollan, Jacobs, Morgan, James (br0460) 2021; 58 Liu, James, Morgan, Jacobs, Gollan, McIntyre (br0510) 2022; 60 Park (br0530) 1993; 7 Anderson (br0120) 2000 Hash, Olejniczak, Wright, Prabhu, Pulsonetti, Hollis, Gnoffo, Barnhardt, Nompelis, Candler (br0550) 2007 Candler (br0400) 2015 Aeschliman, Oberkampf (br0590) 1998; 36 Economon, Palacios, Copeland, Lucaczyk, Alonso (br0100) 2016; 54 Millikan, White (br0160) 1963; 39 Liechty, Johnston, Lewis (br0540) 2011 Casseau, Espinoza, Scanlon, Brown (br0080) 2016; 3 Veeraragavan, Beri, Gollan (br0310) 2016; 307 Macrossan (br0210) 1989; 80 MacLean, Holden (br0360) 2004 Ray, Kieweg, Dinzl, Weirs, Freno, Howard, Smith, Nompelis, Candler (br0410) 2020; 58 Lobb (br0420) 1962; vol. 68 Jewell, Huffman, Juliano (br0330) 2017 Gollan, Jacobs (br0440) 2012 Hoste, Fosati, Taylor, Gollan (br0390) 2019; 123 Haselbacher, Blazek (br0240) 2000; 38 Haenel, Schwane, Seider (br0220) 1987 Lani, Villedie, Bensassi, Koloszar, Vymazal, Yalim, Panesi (br0060) 2013 Mott, Oran, van Leer (br0250) 2000; 164 Gu, Morgan, McIntyre, Brandis (br0500) 2022; 60 Damm, Gollan, Jacobs, Smart, Lee, Kim, Kim (br0570) 2020; 58 Gollan (br0260) 2008 Zander, Gollan, Jacobs, Morgan (br0450) 2014; 24 Powers, Aslam (br0290) 2006; 44 Kleb, Wood (br0010) 2004 Karypis, Kumar (br0520) 1999; 20 Vandenhoeck, Lani, Steelant (br0070) 2022; 278 Potter, Eichmann, Brandis, Morgan, Jacobs, McIntyre (br0480) 2008 Gildfind, Jacobs, Morgan, Chan, Gollan (br0340) 2018; 28 Lusher, Jammy, Sandham (br0040) 2021 Di Renzo, Fu, Urzay (br0050) 2020; 255 Hornung, Gollan, Jacobs (br0580) 2021; 916 Banerji, Leyland, Fahy, Morgan (br0470) 2018; 32 Shur, Spalart, Strelets, Travin (br0150) 2008; 29 Wilcox (br0140) 2002 Maier, Needels, Garbacz, Morgado, Alonso, Fossati (br0090) 2021; 8 McBride, Zehe, Gordon (br0110) 2002 Damm (br0270) 2020 Sun, Saito, Jacobs, Timofeev, Ohtani, Takayama (br0370) 2005; 15 van Albada, van Leer, Roberts (br0190) 1982; 108 Gollan, Jacobs (br0300) 2013; 73 Holden, Wadhams (br0350) 2003 Adams, Bauman, Bohnhoff, Dalbey, Ebeida, Eddy, Eldred, Hough, Hu, Jakeman (br0560) 2015 Gnoffo, Gupta, Shinn (br0170) 1989 Nonaka, Mizuno, Takayama, Park (br0430) 2000; 14 Venkatakrishnan (br0200) 1995; 118 Bernardini, Modesti, Salvadore, Pirozzoli (br0020) 2021; 263 Wilson, Aruliah, Brown, Hong, Davis, Guy, Haddock, Huff, Mitchell, Plumbley, Waugh, White, Wilson (br0280) 2014; 12 Banerji, Leyland, Fahy, Morgan (br0490) 2018; 32 Haenel (10.1016/j.cpc.2022.108551_br0220) 1987 Potter (10.1016/j.cpc.2022.108551_br0480) 2008 Fahy (10.1016/j.cpc.2022.108551_br0460) 2021; 58 Macrossan (10.1016/j.cpc.2022.108551_br0210) 1989; 80 Allmaras (10.1016/j.cpc.2022.108551_br0130) 2012 Jacobs (10.1016/j.cpc.2022.108551_br0320) 1994; 23 Holden (10.1016/j.cpc.2022.108551_br0350) 2003 Liechty (10.1016/j.cpc.2022.108551_br0540) 2011 Jewell (10.1016/j.cpc.2022.108551_br0330) 2017 Wada (10.1016/j.cpc.2022.108551_br0230) 1994 Gu (10.1016/j.cpc.2022.108551_br0500) 2022; 60 Park (10.1016/j.cpc.2022.108551_br0530) 1993; 7 Karypis (10.1016/j.cpc.2022.108551_br0520) 1999; 20 Di Renzo (10.1016/j.cpc.2022.108551_br0050) 2020; 255 Casseau (10.1016/j.cpc.2022.108551_br0080) 2016; 3 Wilson (10.1016/j.cpc.2022.108551_br0280) 2014; 12 Gildfind (10.1016/j.cpc.2022.108551_br0340) 2018; 28 Lani (10.1016/j.cpc.2022.108551_br0060) 2013 Hoste (10.1016/j.cpc.2022.108551_br0390) 2019; 123 Gnoffo (10.1016/j.cpc.2022.108551_br0170) 1989 Vandenhoeck (10.1016/j.cpc.2022.108551_br0070) 2022; 278 Bernardini (10.1016/j.cpc.2022.108551_br0020) 2021; 263 Haselbacher (10.1016/j.cpc.2022.108551_br0240) 2000; 38 Powers (10.1016/j.cpc.2022.108551_br0290) 2006; 44 Maier (10.1016/j.cpc.2022.108551_br0090) 2021; 8 Nonaka (10.1016/j.cpc.2022.108551_br0430) 2000; 14 Damm (10.1016/j.cpc.2022.108551_br0270) 2020 Wilcox (10.1016/j.cpc.2022.108551_br0140) 2002 Veeraragavan (10.1016/j.cpc.2022.108551_br0310) 2016; 307 MacLean (10.1016/j.cpc.2022.108551_br0360) 2004 Park (10.1016/j.cpc.2022.108551_br0380) 2016; 54 Banerji (10.1016/j.cpc.2022.108551_br0470) 2018; 32 Zander (10.1016/j.cpc.2022.108551_br0450) 2014; 24 Hornung (10.1016/j.cpc.2022.108551_br0580) 2021; 916 Gollan (10.1016/j.cpc.2022.108551_br0300) 2013; 73 Damm (10.1016/j.cpc.2022.108551_br0570) 2020; 58 Lobb (10.1016/j.cpc.2022.108551_br0420) 1962; vol. 68 Aeschliman (10.1016/j.cpc.2022.108551_br0590) 1998; 36 McBride (10.1016/j.cpc.2022.108551_br0110) 2002 Venkatakrishnan (10.1016/j.cpc.2022.108551_br0200) 1995; 118 Millikan (10.1016/j.cpc.2022.108551_br0160) 1963; 39 Gollan (10.1016/j.cpc.2022.108551_br0440) 2012 Banerji (10.1016/j.cpc.2022.108551_br0490) 2018; 32 Anderson (10.1016/j.cpc.2022.108551_br0120) 2000 Mott (10.1016/j.cpc.2022.108551_br0250) 2000; 164 Shur (10.1016/j.cpc.2022.108551_br0150) 2008; 29 Kleb (10.1016/j.cpc.2022.108551_br0010) 2004 Romero (10.1016/j.cpc.2022.108551_br0030) 2020; 250 Sun (10.1016/j.cpc.2022.108551_br0370) 2005; 15 Economon (10.1016/j.cpc.2022.108551_br0100) 2016; 54 Gollan (10.1016/j.cpc.2022.108551_br0260) 2008 Hash (10.1016/j.cpc.2022.108551_br0550) 2007 Adams (10.1016/j.cpc.2022.108551_br0560) 2015 Liu (10.1016/j.cpc.2022.108551_br0510) 2022; 60 Lusher (10.1016/j.cpc.2022.108551_br0040) 2021 Knab (10.1016/j.cpc.2022.108551_br0180) 1995; 9 van Albada (10.1016/j.cpc.2022.108551_br0190) 1982; 108 Candler (10.1016/j.cpc.2022.108551_br0400) 2015 Ray (10.1016/j.cpc.2022.108551_br0410) 2020; 58 |
| References_xml | – volume: 3 start-page: 45 year: 2016 ident: br0080 publication-title: Aerospace – volume: 123 start-page: 1 year: 2019 end-page: 30 ident: br0390 publication-title: Aeronaut. J. New Ser. – volume: 28 start-page: 899 year: 2018 end-page: 918 ident: br0340 publication-title: Shock Waves – volume: 9 year: 1995 ident: br0180 publication-title: J. Thermophys. Heat Transf. – year: 2003 ident: br0350 publication-title: 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2003-1137 – year: 2015 ident: br0560 article-title: Dakota: A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Etc: Version 6 User's Manual – year: 2007 ident: br0550 publication-title: 45th Aerospace Sciences Meeting and Exhibit, AIAA-2007-605 – year: 2011 ident: br0540 publication-title: 42nd AIAA Thermophysics Conference, AIAA-2011-3494 – year: 2008 ident: br0480 publication-title: 40th AIAA Thermophysics Conference, AIAA-2008-3933 – year: 2004 ident: br0360 publication-title: 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2004-529 – year: 1994 ident: br0230 publication-title: 32nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-94-0083 – volume: 39 start-page: 3209 year: 1963 end-page: 3213 ident: br0160 publication-title: J. Chem. Phys. – volume: 278 year: 2022 ident: br0070 publication-title: Comput. Phys. Commun. – year: 2002 ident: br0140 article-title: Turbulence Modelling for CFD – volume: 20 start-page: 359 year: 1999 end-page: 392 ident: br0520 publication-title: SIAM J. Sci. Comput. – volume: 12 start-page: 1 year: 2014 end-page: 7 ident: br0280 publication-title: PLoS Biol. – year: 2015 ident: br0400 publication-title: 22nd AIAA Computational Fluid Dynamics Conference, AIAA-2015-3048 – start-page: 1105 year: 1987 ident: br0220 publication-title: 8th Computational Fluid Dynamics Conference – volume: 80 start-page: 204 year: 1989 end-page: 231 ident: br0210 publication-title: J. Comput. Phys. – volume: 32 start-page: 292 year: 2018 end-page: 302 ident: br0470 publication-title: J. Thermophys. Heat Transf. – volume: 307 start-page: 308 year: 2016 end-page: 320 ident: br0310 publication-title: J. Comput. Phys. – volume: 29 start-page: 1638 year: 2008 end-page: 1649 ident: br0150 publication-title: Int. J. Heat Fluid Flow – year: 2012 ident: br0440 publication-title: 18th Australasian Fluid Mechanics Conference – volume: 8 start-page: 193 year: 2021 ident: br0090 publication-title: Aerospace – volume: 58 start-page: 1 year: 2021 end-page: 14 ident: br0460 publication-title: J. Spacecr. Rockets – volume: 36 start-page: 733 year: 1998 end-page: 741 ident: br0590 publication-title: AIAA J. – volume: 60 year: 2022 ident: br0500 publication-title: AIAA J. – year: 2017 ident: br0330 publication-title: 55th AIAA Aerospace Sciences Meeting, AIAA-2017-0743 – year: 2012 ident: br0130 publication-title: Seventh International Conference on Computational Fluid Dynamics – volume: 44 year: 2006 ident: br0290 publication-title: AIAA J. – volume: 73 start-page: 19 year: 2013 end-page: 57 ident: br0300 publication-title: Int. J. Numer. Methods Fluids – volume: 38 start-page: 2094 year: 2000 end-page: 2102 ident: br0240 publication-title: AIAA J. – volume: 54 year: 2016 ident: br0380 publication-title: AIAA J. – year: 2000 ident: br0120 article-title: Hypersonic and High-Temperature Gas Dynamics – volume: 23 start-page: 77 year: 1994 end-page: 101 ident: br0320 publication-title: Comput. Fluids – year: 2013 ident: br0060 publication-title: 21st AIAA Computational Fluid Dynamics Conference, AIAA-2013-2589 – volume: 164 start-page: 407 year: 2000 end-page: 428 ident: br0250 publication-title: J. Comput. Phys. – volume: 263 year: 2021 ident: br0020 publication-title: Comput. Phys. Commun. – volume: 32 start-page: 414 year: 2018 end-page: 428 ident: br0490 publication-title: J. Thermophys. Heat Transf. – volume: 58 year: 2020 ident: br0410 publication-title: AIAA J. – year: 2008 ident: br0260 article-title: The Computational Modelling of High-Temperature Gas Effects with Application to Hypersonic Flows – year: 2004 ident: br0010 publication-title: 34th AIAA Fluid Dynamics Conference and Exhibit, AIAA-2004-2627 – volume: 255 year: 2020 ident: br0050 publication-title: Comput. Phys. Commun. – year: 2020 ident: br0270 article-title: Adjoint-Based Aerodynamic Design Optimisation in Hypersonic Flow – volume: 14 start-page: 225 year: 2000 end-page: 229 ident: br0430 publication-title: J. Thermophys. Heat Transf. – volume: vol. 68 start-page: 519 year: 1962 end-page: 527 ident: br0420 publication-title: The High Temperature Aspects of Hypersonic Flow – volume: 118 start-page: 120 year: 1995 end-page: 130 ident: br0200 publication-title: J. Comput. Phys. – year: 1989 ident: br0170 article-title: Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibirum – volume: 250 year: 2020 ident: br0030 publication-title: Comput. Phys. Commun. – volume: 916 start-page: 1 year: 2021 end-page: 23 ident: br0580 publication-title: J. Fluid Mech. – volume: 15 start-page: 313 year: 2005 end-page: 331 ident: br0370 publication-title: Shock Waves – volume: 54 start-page: 828 year: 2016 end-page: 846 ident: br0100 publication-title: AIAA J. – volume: 60 year: 2022 ident: br0510 publication-title: AIAA J. – volume: 7 year: 1993 ident: br0530 publication-title: J. Thermophys. Heat Transf. – year: 2021 ident: br0040 publication-title: Comput. Phys. Commun. – volume: 58 year: 2020 ident: br0570 publication-title: AIAA J. – volume: 108 start-page: 76 year: 1982 end-page: 84 ident: br0190 publication-title: Astron. Astrophys. – year: 2002 ident: br0110 article-title: NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species – volume: 24 start-page: 171 year: 2014 end-page: 178 ident: br0450 publication-title: Shock Waves – volume: 44 year: 2006 ident: 10.1016/j.cpc.2022.108551_br0290 publication-title: AIAA J. doi: 10.2514/1.14404 – volume: 20 start-page: 359 year: 1999 ident: 10.1016/j.cpc.2022.108551_br0520 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595287997 – year: 2015 ident: 10.1016/j.cpc.2022.108551_br0400 – year: 2002 ident: 10.1016/j.cpc.2022.108551_br0140 – volume: 39 start-page: 3209 year: 1963 ident: 10.1016/j.cpc.2022.108551_br0160 publication-title: J. Chem. Phys. doi: 10.1063/1.1734182 – volume: 58 year: 2020 ident: 10.1016/j.cpc.2022.108551_br0570 publication-title: AIAA J. doi: 10.2514/1.J058913 – volume: 255 year: 2020 ident: 10.1016/j.cpc.2022.108551_br0050 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107262 – volume: 278 year: 2022 ident: 10.1016/j.cpc.2022.108551_br0070 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2022.108408 – year: 2012 ident: 10.1016/j.cpc.2022.108551_br0130 – volume: 54 start-page: 828 year: 2016 ident: 10.1016/j.cpc.2022.108551_br0100 publication-title: AIAA J. doi: 10.2514/1.J053813 – start-page: 1105 year: 1987 ident: 10.1016/j.cpc.2022.108551_br0220 – year: 2021 ident: 10.1016/j.cpc.2022.108551_br0040 publication-title: Comput. Phys. Commun. – volume: 9 year: 1995 ident: 10.1016/j.cpc.2022.108551_br0180 publication-title: J. Thermophys. Heat Transf. doi: 10.2514/3.649 – year: 2011 ident: 10.1016/j.cpc.2022.108551_br0540 – volume: 38 start-page: 2094 year: 2000 ident: 10.1016/j.cpc.2022.108551_br0240 publication-title: AIAA J. doi: 10.2514/2.871 – volume: 15 start-page: 313 year: 2005 ident: 10.1016/j.cpc.2022.108551_br0370 publication-title: Shock Waves doi: 10.1007/s00193-005-0258-5 – year: 2004 ident: 10.1016/j.cpc.2022.108551_br0010 – year: 2008 ident: 10.1016/j.cpc.2022.108551_br0480 – year: 1994 ident: 10.1016/j.cpc.2022.108551_br0230 – volume: 58 start-page: 1 year: 2021 ident: 10.1016/j.cpc.2022.108551_br0460 publication-title: J. Spacecr. Rockets doi: 10.2514/1.A34863 – volume: 32 start-page: 292 year: 2018 ident: 10.1016/j.cpc.2022.108551_br0470 publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.T5172 – volume: 32 start-page: 414 year: 2018 ident: 10.1016/j.cpc.2022.108551_br0490 publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.T5255 – volume: 60 year: 2022 ident: 10.1016/j.cpc.2022.108551_br0500 publication-title: AIAA J. – year: 2020 ident: 10.1016/j.cpc.2022.108551_br0270 – volume: 58 year: 2020 ident: 10.1016/j.cpc.2022.108551_br0410 publication-title: AIAA J. doi: 10.2514/1.J059033 – volume: 263 year: 2021 ident: 10.1016/j.cpc.2022.108551_br0020 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.107906 – volume: 23 start-page: 77 year: 1994 ident: 10.1016/j.cpc.2022.108551_br0320 publication-title: Comput. Fluids doi: 10.1016/0045-7930(94)90028-0 – year: 2004 ident: 10.1016/j.cpc.2022.108551_br0360 – volume: 12 start-page: 1 year: 2014 ident: 10.1016/j.cpc.2022.108551_br0280 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001745 – volume: 73 start-page: 19 year: 2013 ident: 10.1016/j.cpc.2022.108551_br0300 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3790 – volume: 7 year: 1993 ident: 10.1016/j.cpc.2022.108551_br0530 publication-title: J. Thermophys. Heat Transf. – volume: 108 start-page: 76 year: 1982 ident: 10.1016/j.cpc.2022.108551_br0190 publication-title: Astron. Astrophys. – year: 1989 ident: 10.1016/j.cpc.2022.108551_br0170 – volume: 3 start-page: 45 year: 2016 ident: 10.1016/j.cpc.2022.108551_br0080 publication-title: Aerospace doi: 10.3390/aerospace3040045 – volume: vol. 68 start-page: 519 year: 1962 ident: 10.1016/j.cpc.2022.108551_br0420 – year: 2003 ident: 10.1016/j.cpc.2022.108551_br0350 – volume: 36 start-page: 733 year: 1998 ident: 10.1016/j.cpc.2022.108551_br0590 publication-title: AIAA J. doi: 10.2514/2.461 – year: 2017 ident: 10.1016/j.cpc.2022.108551_br0330 – year: 2000 ident: 10.1016/j.cpc.2022.108551_br0120 – volume: 28 start-page: 899 year: 2018 ident: 10.1016/j.cpc.2022.108551_br0340 publication-title: Shock Waves doi: 10.1007/s00193-017-0786-9 – year: 2012 ident: 10.1016/j.cpc.2022.108551_br0440 – year: 2015 ident: 10.1016/j.cpc.2022.108551_br0560 – volume: 250 year: 2020 ident: 10.1016/j.cpc.2022.108551_br0030 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107169 – year: 2007 ident: 10.1016/j.cpc.2022.108551_br0550 – volume: 29 start-page: 1638 year: 2008 ident: 10.1016/j.cpc.2022.108551_br0150 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2008.07.001 – volume: 14 start-page: 225 year: 2000 ident: 10.1016/j.cpc.2022.108551_br0430 publication-title: J. Thermophys. Heat Transf. doi: 10.2514/2.6512 – volume: 123 start-page: 1 year: 2019 ident: 10.1016/j.cpc.2022.108551_br0390 publication-title: Aeronaut. J. New Ser. – year: 2008 ident: 10.1016/j.cpc.2022.108551_br0260 – volume: 307 start-page: 308 year: 2016 ident: 10.1016/j.cpc.2022.108551_br0310 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.004 – volume: 80 start-page: 204 year: 1989 ident: 10.1016/j.cpc.2022.108551_br0210 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90095-8 – volume: 24 start-page: 171 year: 2014 ident: 10.1016/j.cpc.2022.108551_br0450 publication-title: Shock Waves doi: 10.1007/s00193-013-0488-x – volume: 916 start-page: 1 year: 2021 ident: 10.1016/j.cpc.2022.108551_br0580 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.203 – volume: 118 start-page: 120 year: 1995 ident: 10.1016/j.cpc.2022.108551_br0200 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1084 – volume: 164 start-page: 407 year: 2000 ident: 10.1016/j.cpc.2022.108551_br0250 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6605 – year: 2002 ident: 10.1016/j.cpc.2022.108551_br0110 – volume: 60 year: 2022 ident: 10.1016/j.cpc.2022.108551_br0510 publication-title: AIAA J. – volume: 54 year: 2016 ident: 10.1016/j.cpc.2022.108551_br0380 publication-title: AIAA J. doi: 10.2514/1.J054270 – year: 2013 ident: 10.1016/j.cpc.2022.108551_br0060 – volume: 8 start-page: 193 year: 2021 ident: 10.1016/j.cpc.2022.108551_br0090 publication-title: Aerospace doi: 10.3390/aerospace8070193 |
| SSID | ssj0007793 |
| Score | 2.5671337 |
| Snippet | This paper introduces Eilmer, a general-purpose open-source compressible flow solver developed at the University of Queensland, designed to support research... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108551 |
| SubjectTerms | Computational fluid dynamics Hypersonics Parallel computing Scientific computing |
| Title | Eilmer: An open-source multi-physics hypersonic flow solver |
| URI | https://dx.doi.org/10.1016/j.cpc.2022.108551 |
| Volume | 282 |
| WOSCitedRecordID | wos000866490500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWggMQFsYpdOXAicpU6CY7hVKGyC3EA1FsULxGtSlrRsv0949hJwyo4cIkq155YnqfJeDx-g9COBKeYMclxw6cSB2FIcEJUgH3hwWaAcKJyJqbbC3p5GbXb7Mqe4A_zcgI0y6KXFzb4V1VDGyhbX539g7pLodAAv0Hp8AS1w_NXim918oooJuCni2NhE6A3uYPYhDKG7h1sQLWz3RFu2us_uzCpJ5upWxAX2IIPbjFEVC-TlL74cYfzvvHGAVZ6qwymsz6OgN_niDt_7Sm3WTafgSHmwzJBuPLPsQamCQz0n_Xdqno1MEH8SmDCGlsw8ZqerWpsiSk1ZM2lvvpg-GY_WXITVOjWxUATTRJSH_d9z5r94WtW5hgW6WvdGETEWkRsREyiKUJDFtXQVPO01T4rP9yUWo5mO-_iEDxPB_wwj6_dmIprcj2P5uyewmkaLCygCZUtopkro7UldGAQse80M6eCB-cdHpwxHhyNB8fgYRndHLWuD0-wrZmBBWF0hMG7YJFIGfWUog0pKJWhFCziUnM9ekkQJYH0EuqHDcH3BNfkQamkhDdCpUTq-SuolvUztYocFSjoHyahr4ua6QNqWJg0EipIuA9C15BXLEEsLKG8rmvSi79d-jW0Ww4ZGDaVnzoHxbrG1h00bl4MGPl-2Ppf3rGBZsfQ3US10cOj2kLT4mnUGT5sW4C8Adn3fJU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eilmer%3A+An+open-source+multi-physics+hypersonic+flow+solver&rft.jtitle=Computer+physics+communications&rft.au=Gibbons%2C+Nicholas+N.&rft.au=Damm%2C+Kyle+A.&rft.au=Jacobs%2C+Peter+A.&rft.au=Gollan%2C+Rowan+J.&rft.date=2023-01-01&rft.issn=0010-4655&rft.volume=282&rft.spage=108551&rft_id=info:doi/10.1016%2Fj.cpc.2022.108551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2022_108551 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |