Reputation-Aware Federated Learning Client Selection Based on Stochastic Integer Programming

Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy. However, due to the distributive nature of FL, it is vulnerable to misbehavior from participating worker nodes. Thus, it is important to sel...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on big data Vol. 10; no. 6; pp. 953 - 964
Main Authors: Tan, Xavier, Ng, Wei Chong, Lim, Wei Yang Bryan, Xiong, Zehui, Niyato, Dusit, Yu, Han
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2332-7790, 2372-2096
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy. However, due to the distributive nature of FL, it is vulnerable to misbehavior from participating worker nodes. Thus, it is important to select clients to participate in FL. Recent studies on FL client selection focus on the perspective of improving model training efficiency and performance, without holistically considering potential misbehavior and the cost of hiring. To bridge this gap, we propose a first-of-its-kind reputation-aware S tochastic integer programming-based FL C lient S election method (SCS). It can optimally select and compensate clients with different reputation profiles. Extensive experiments show that SCS achieves the most advantageous performance-cost trade-off compared to other existing state-of-the-art approaches.
AbstractList Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy. However, due to the distributive nature of FL, it is vulnerable to misbehavior from participating worker nodes. Thus, it is important to select clients to participate in FL. Recent studies on FL client selection focus on the perspective of improving model training efficiency and performance, without holistically considering potential misbehavior and the cost of hiring. To bridge this gap, we propose a first-of-its-kind reputation-aware S tochastic integer programming-based FL C lient S election method (SCS). It can optimally select and compensate clients with different reputation profiles. Extensive experiments show that SCS achieves the most advantageous performance-cost trade-off compared to other existing state-of-the-art approaches.
Author Yu, Han
Xiong, Zehui
Ng, Wei Chong
Lim, Wei Yang Bryan
Tan, Xavier
Niyato, Dusit
Author_xml – sequence: 1
  givenname: Xavier
  orcidid: 0000-0001-9873-0463
  surname: Tan
  fullname: Tan, Xavier
  email: XAVIER002@e.ntu.edu.sg
  organization: Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Wei Chong
  orcidid: 0000-0002-8906-5825
  surname: Ng
  fullname: Ng, Wei Chong
  email: weichong001@e.ntu.edu.sg
  organization: Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Wei Yang Bryan
  orcidid: 0000-0003-2150-5561
  surname: Lim
  fullname: Lim, Wei Yang Bryan
  email: limw0201@e.ntu.edu.sg
  organization: Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Zehui
  orcidid: 0000-0002-4440-941X
  surname: Xiong
  fullname: Xiong, Zehui
  email: ZXIONG002@e.ntu.edu.sg
  organization: Singapore University of Technology and Design, Singapore
– sequence: 5
  givenname: Dusit
  orcidid: 0000-0002-7442-7416
  surname: Niyato
  fullname: Niyato, Dusit
  email: dniyato@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 6
  givenname: Han
  orcidid: 0000-0001-6893-8650
  surname: Yu
  fullname: Yu, Han
  email: han.yu@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNqFkVFLwzAQx4NMcM59gr0UfO5MLmlqHrvpdDBQ3HwTSppeZseWzjRD_Pa2VHzwxac7uP_vDn53SQaudkjIhNEpY1TdbGZ32SabAgWYcqYY53BGhsBTiIEqOeh6DnGaKnpBxk2zo5QySSlXMCRvL3g8BR2q2sXZp_YYLbBErwOW0Qq1d5XbRvN9hS5Ea9yj6ZLRTDftvG3WoTbvugmViZYu4BZ99OzrrdeHQwtekXOr9w2Of-qIvC7uN_PHePX0sJxnq9iASkMMqRRClMoIbplVoIS0rACNgIlkZcFoqSwHsFInQksUujBaFYYqsNomko_Idb_36OuPEzYh39Un79qTOWeQplJRwdoU71PG103j0eZHXx20_8oZzTuTeW8y70zmPyZbSv2hTNX7Cl5X-3_YSc9WiPh7Td1ySNqXfANV2IOs
CODEN ITBDAX
CitedBy_id crossref_primary_10_1007_s11831_023_10011_4
crossref_primary_10_1109_JIOT_2023_3265564
crossref_primary_10_3390_s23167235
Cites_doi 10.1561/9781680837896
10.1007/978-3-030-63076-8_9
10.1109/tnet.2023.3312208
10.1109/INFOCOM.2019.8737464
10.1109/tpds.2023.3240767
10.1109/5.726791
10.1145/3298981
10.1145/3375627.3375840
10.1109/MWC.001.1900119
10.1109/CAMAD50429.2020.9209263
10.1109/TNNLS.2019.2919699
10.1109/MIS.2020.2987774
10.1109/WCNC.2018.8377035
10.1109/APSCC.2009.5394134
10.1109/jiot.2022.3161943
10.1109/JIOT.2019.2956615
10.1109/JSAC.2020.3041404
10.1002/9780470400531.eorms0092
10.1109/ICC.2019.8761315
10.1109/MILCOM52596.2021.9653139
10.23919/WiOpt52861.2021.9589776
10.1109/tnnls.2022.3216981
10.1109/MSP.2020.2975749
10.1109/AIEEE.2018.8592253
10.1145/3442381.3449888
10.1038/s41598-016-0011-6
10.1007/s11081-019-09471-0
10.9781/ijimai.2016.415
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TBDATA.2022.3191332
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-2096
EndPage 964
ExternalDocumentID 10_1109_TBDATA_2022_3191332
9832523
Genre orig-research
GrantInformation_xml – fundername: Nanyang Technological University; Nanyang Technological University, Singapore
  funderid: 10.13039/501100001475
– fundername: RIE 2020 Advanced Manufacturing and Engineering
  grantid: A20G8b0102
– fundername: Nanyang Assistant Professorship
– fundername: Alibaba Group
– fundername: Joint NTU-WeBank Research Centre on Fintech
– fundername: Future Communications Research & Development Programme
  grantid: FCP-NTU-RG-2021-014
– fundername: National Research Foundation Singapore; National Research Foundation, Singapore
  funderid: 10.13039/501100001381
– fundername: AI Singapore Programme AISG
  grantid: AISG2-RP-2020-019
– fundername: Alibaba Innovative Research
– fundername: Alibaba-NTU Singapore Joint Research Institute
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c297t-276444d9c43f1f92946f1b2ae2e561db10d9f322f6a54a6e4abca9bc092faf563
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354646300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2332-7790
IngestDate Mon Jun 30 12:59:15 EDT 2025
Sat Nov 29 05:31:05 EST 2025
Tue Nov 18 22:38:30 EST 2025
Wed Aug 27 03:06:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-276444d9c43f1f92946f1b2ae2e561db10d9f322f6a54a6e4abca9bc092faf563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6893-8650
0000-0002-4440-941X
0000-0001-9873-0463
0000-0002-8906-5825
0000-0003-2150-5561
0000-0002-7442-7416
PQID 3127769041
PQPubID 4437220
PageCount 12
ParticipantIDs ieee_primary_9832523
crossref_primary_10_1109_TBDATA_2022_3191332
proquest_journals_3127769041
crossref_citationtrail_10_1109_TBDATA_2022_3191332
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on big data
PublicationTitleAbbrev TBData
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref16
Fung (ref25)
Xu (ref10) 2020
Nguyen (ref26) 2021
ref23
McMahan (ref24)
Wang (ref18) 2014
ref20
O’Shea (ref34) 2015
ref22
ref21
Sun (ref3) 2019
ref28
ref27
ref29
ref8
ref7
Xiao (ref36) 2017
ref9
ref4
ref6
ref5
Gul (ref19) 2012
References_xml – ident: ref2
  doi: 10.1561/9781680837896
– ident: ref16
  doi: 10.1007/978-3-030-63076-8_9
– start-page: 301
  volume-title: Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses
  ident: ref25
  article-title: The limitations of federated learning in sybil settings
– volume-title: Stochastic Integer Program.: DeComp. Methods Ind. Appl.
  year: 2014
  ident: ref18
– ident: ref28
  doi: 10.1109/tnet.2023.3312208
– ident: ref32
  doi: 10.1109/INFOCOM.2019.8737464
– ident: ref13
  doi: 10.1109/tpds.2023.3240767
– year: 2019
  ident: ref3
  article-title: Can you really backdoor federated learning?
– ident: ref33
  doi: 10.1109/5.726791
– ident: ref1
  doi: 10.1145/3298981
– ident: ref5
  doi: 10.1145/3375627.3375840
– ident: ref8
  doi: 10.1109/MWC.001.1900119
– ident: ref17
  doi: 10.1109/CAMAD50429.2020.9209263
– ident: ref23
  doi: 10.1109/TNNLS.2019.2919699
– ident: ref6
  doi: 10.1109/MIS.2020.2987774
– ident: ref20
  doi: 10.1109/WCNC.2018.8377035
– ident: ref35
  doi: 10.1109/APSCC.2009.5394134
– ident: ref12
  doi: 10.1109/jiot.2022.3161943
– year: 2017
  ident: ref36
  article-title: Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms
– ident: ref31
  doi: 10.1109/JIOT.2019.2956615
– ident: ref29
  doi: 10.1109/JSAC.2020.3041404
– ident: ref22
  doi: 10.1002/9780470400531.eorms0092
– year: 2012
  ident: ref19
  article-title: A multi-stage stochastic integer programming model for surgery planning
  publication-title: Michigan Eng.
– year: 2015
  ident: ref34
  article-title: An introduction to convolutional neural networks
– ident: ref4
  doi: 10.1109/ICC.2019.8761315
– ident: ref30
  doi: 10.1109/MILCOM52596.2021.9653139
– ident: ref14
  doi: 10.23919/WiOpt52861.2021.9589776
– year: 2020
  ident: ref10
  article-title: A reputation mechanism is all you need: Collaborative fairness and adversarial robustness in federated learning
– ident: ref27
  doi: 10.1109/tnnls.2022.3216981
– ident: ref7
  doi: 10.1109/MSP.2020.2975749
– ident: ref15
  doi: 10.1109/AIEEE.2018.8592253
– year: 2021
  ident: ref26
  article-title: FLGUARD: Secure and private federated learning
– ident: ref9
  doi: 10.1145/3442381.3449888
– ident: ref11
  doi: 10.1038/s41598-016-0011-6
– ident: ref21
  doi: 10.1007/s11081-019-09471-0
– ident: ref37
  doi: 10.9781/ijimai.2016.415
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref24
  article-title: Communication-efficient learning of deep networks from decentralized data
SSID ssj0001600392
Score 2.3648648
Snippet Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy....
Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users’ data privacy....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 953
SubjectTerms Biological system modeling
client selection
Clients
Computational modeling
Costs
Data models
Federated learning
Integer programming
Machine learning
reputation
stochastic integer programming
Stochastic processes
Training
Uncertainty
Title Reputation-Aware Federated Learning Client Selection Based on Stochastic Integer Programming
URI https://ieeexplore.ieee.org/document/9832523
https://www.proquest.com/docview/3127769041
Volume 10
WOSCitedRecordID wos001354646300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2096
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001600392
  issn: 2332-7790
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60ePBifWK1Sg4eXc1ms9nNsVWLp1JoBQ_Cks1DBW2lD_37TnbTiiiCtxwyYdlvknyTZL4BONM6caXX03ZS84gzmkVKpDpKtc41l9zgwlwVm8j6_fz-Xg7W4HyVC2OtrR6f2QvfrO7yzUQv_FHZpUT3w8BpHdazTNS5Wl_nKcKnmbIgLBRTeTnqXndGHQwBGcPIVGIwxr5tPlU1lR9LcLWv9Jr_-6Jt2Ar8kXRqwHdgzY53obmszUDCVN2DB2TWi_qaPep8qKklPS8bgczSkKCp-kiuXnw2JBlWtXCwJ-ninmYINobziX5SXsOZ-DPDRxx6UL_kekXDfbjr3YyubqNQSSHSTGbziGVIe7hBOBIXO2REXLi4ZMoyi_zJlDE10uHUdkKlXAnLVamVLDWVzCmXiuQAGuPJ2B4CMTpBziFzSWnJpXF5nqo8F05oa5xLaQvY8hcXOsiM-2oXL0UVblBZ1LgUHpci4NKC85XRW62y8Xf3PQ_FqmtAoQXtJZZFmIkzNGHoLJLy-Oh3q2PYxLF5_USlDY35dGFPYEO_z59n09PKyT4BOefRFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oFfTiLtY1B4-OZtJMZnKsS1HUIljBgzBksqigrXTRv-_LTFoRRfCWQ14yzJfle0ne9wD2tW64wutpO6l5xBlNIyUSHSVaZ5pLbnBhLpNNpO12dn8vb6bgYBILY60tH5_ZQ18s7_JNT4_8UdmRxOGHjtM0zCQcm62itb5OVIQPNGVBWiim8qhzfNrsNNEJZAx9U4nuGPu2_ZT5VH4swuXO0lr83zctwUJgkKRZQb4MU7a7Aovj7AwkTNZVeEBuPaou2qPmh-pb0vLCEcgtDQmqqo_k5MXHQ5LbMhsO1iTHuKsZgoXbYU8_Ka_iTPyp4SM2fVO95XpFwzW4a511Ts6jkEsh0kymw4ilSHy4QUAaLnbIibhwccGUZRYZlCliaqTDye2ESrgSlqtCK1loKplTLhGNdah1e127AcToBrIOmUlKCy6Ny7JEZZlwQlvjXELrwMa_ONdBaNznu3jJS4eDyrzCJfe45AGXOhxMjN4qnY2_q696KCZVAwp12B5jmYe5OEATlqZCUh5v_m61B3Pnneur_OqifbkF89gPrx6sbENt2B_ZHZjV78PnQX-3HHCfQanUWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reputation-Aware+Federated+Learning+Client+Selection+Based+on+Stochastic+Integer+Programming&rft.jtitle=IEEE+transactions+on+big+data&rft.au=Tan%2C+Xavier&rft.au=Ng%2C+Wei+Chong&rft.au=Lim%2C+Wei+Yang+Bryan&rft.au=Xiong%2C+Zehui&rft.date=2024-12-01&rft.pub=IEEE&rft.eissn=2372-2096&rft.volume=10&rft.issue=6&rft.spage=953&rft.epage=964&rft_id=info:doi/10.1109%2FTBDATA.2022.3191332&rft.externalDocID=9832523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7790&client=summon