Reputation-Aware Federated Learning Client Selection Based on Stochastic Integer Programming
Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy. However, due to the distributive nature of FL, it is vulnerable to misbehavior from participating worker nodes. Thus, it is important to sel...
Saved in:
| Published in: | IEEE transactions on big data Vol. 10; no. 6; pp. 953 - 964 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2332-7790, 2372-2096 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy. However, due to the distributive nature of FL, it is vulnerable to misbehavior from participating worker nodes. Thus, it is important to select clients to participate in FL. Recent studies on FL client selection focus on the perspective of improving model training efficiency and performance, without holistically considering potential misbehavior and the cost of hiring. To bridge this gap, we propose a first-of-its-kind reputation-aware S tochastic integer programming-based FL C lient S election method (SCS). It can optimally select and compensate clients with different reputation profiles. Extensive experiments show that SCS achieves the most advantageous performance-cost trade-off compared to other existing state-of-the-art approaches. |
|---|---|
| AbstractList | Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy. However, due to the distributive nature of FL, it is vulnerable to misbehavior from participating worker nodes. Thus, it is important to select clients to participate in FL. Recent studies on FL client selection focus on the perspective of improving model training efficiency and performance, without holistically considering potential misbehavior and the cost of hiring. To bridge this gap, we propose a first-of-its-kind reputation-aware S tochastic integer programming-based FL C lient S election method (SCS). It can optimally select and compensate clients with different reputation profiles. Extensive experiments show that SCS achieves the most advantageous performance-cost trade-off compared to other existing state-of-the-art approaches. |
| Author | Yu, Han Xiong, Zehui Ng, Wei Chong Lim, Wei Yang Bryan Tan, Xavier Niyato, Dusit |
| Author_xml | – sequence: 1 givenname: Xavier orcidid: 0000-0001-9873-0463 surname: Tan fullname: Tan, Xavier email: XAVIER002@e.ntu.edu.sg organization: Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore – sequence: 2 givenname: Wei Chong orcidid: 0000-0002-8906-5825 surname: Ng fullname: Ng, Wei Chong email: weichong001@e.ntu.edu.sg organization: Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore – sequence: 3 givenname: Wei Yang Bryan orcidid: 0000-0003-2150-5561 surname: Lim fullname: Lim, Wei Yang Bryan email: limw0201@e.ntu.edu.sg organization: Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore – sequence: 4 givenname: Zehui orcidid: 0000-0002-4440-941X surname: Xiong fullname: Xiong, Zehui email: ZXIONG002@e.ntu.edu.sg organization: Singapore University of Technology and Design, Singapore – sequence: 5 givenname: Dusit orcidid: 0000-0002-7442-7416 surname: Niyato fullname: Niyato, Dusit email: dniyato@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 6 givenname: Han orcidid: 0000-0001-6893-8650 surname: Yu fullname: Yu, Han email: han.yu@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
| BookMark | eNqFkVFLwzAQx4NMcM59gr0UfO5MLmlqHrvpdDBQ3HwTSppeZseWzjRD_Pa2VHzwxac7uP_vDn53SQaudkjIhNEpY1TdbGZ32SabAgWYcqYY53BGhsBTiIEqOeh6DnGaKnpBxk2zo5QySSlXMCRvL3g8BR2q2sXZp_YYLbBErwOW0Qq1d5XbRvN9hS5Ea9yj6ZLRTDftvG3WoTbvugmViZYu4BZ99OzrrdeHQwtekXOr9w2Of-qIvC7uN_PHePX0sJxnq9iASkMMqRRClMoIbplVoIS0rACNgIlkZcFoqSwHsFInQksUujBaFYYqsNomko_Idb_36OuPEzYh39Un79qTOWeQplJRwdoU71PG103j0eZHXx20_8oZzTuTeW8y70zmPyZbSv2hTNX7Cl5X-3_YSc9WiPh7Td1ySNqXfANV2IOs |
| CODEN | ITBDAX |
| CitedBy_id | crossref_primary_10_1007_s11831_023_10011_4 crossref_primary_10_1109_JIOT_2023_3265564 crossref_primary_10_3390_s23167235 |
| Cites_doi | 10.1561/9781680837896 10.1007/978-3-030-63076-8_9 10.1109/tnet.2023.3312208 10.1109/INFOCOM.2019.8737464 10.1109/tpds.2023.3240767 10.1109/5.726791 10.1145/3298981 10.1145/3375627.3375840 10.1109/MWC.001.1900119 10.1109/CAMAD50429.2020.9209263 10.1109/TNNLS.2019.2919699 10.1109/MIS.2020.2987774 10.1109/WCNC.2018.8377035 10.1109/APSCC.2009.5394134 10.1109/jiot.2022.3161943 10.1109/JIOT.2019.2956615 10.1109/JSAC.2020.3041404 10.1002/9780470400531.eorms0092 10.1109/ICC.2019.8761315 10.1109/MILCOM52596.2021.9653139 10.23919/WiOpt52861.2021.9589776 10.1109/tnnls.2022.3216981 10.1109/MSP.2020.2975749 10.1109/AIEEE.2018.8592253 10.1145/3442381.3449888 10.1038/s41598-016-0011-6 10.1007/s11081-019-09471-0 10.9781/ijimai.2016.415 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TBDATA.2022.3191332 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2372-2096 |
| EndPage | 964 |
| ExternalDocumentID | 10_1109_TBDATA_2022_3191332 9832523 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Nanyang Technological University; Nanyang Technological University, Singapore funderid: 10.13039/501100001475 – fundername: RIE 2020 Advanced Manufacturing and Engineering grantid: A20G8b0102 – fundername: Nanyang Assistant Professorship – fundername: Alibaba Group – fundername: Joint NTU-WeBank Research Centre on Fintech – fundername: Future Communications Research & Development Programme grantid: FCP-NTU-RG-2021-014 – fundername: National Research Foundation Singapore; National Research Foundation, Singapore funderid: 10.13039/501100001381 – fundername: AI Singapore Programme AISG grantid: AISG2-RP-2020-019 – fundername: Alibaba Innovative Research – fundername: Alibaba-NTU Singapore Joint Research Institute |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c297t-276444d9c43f1f92946f1b2ae2e561db10d9f322f6a54a6e4abca9bc092faf563 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354646300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2332-7790 |
| IngestDate | Mon Jun 30 12:59:15 EDT 2025 Sat Nov 29 05:31:05 EST 2025 Tue Nov 18 22:38:30 EST 2025 Wed Aug 27 03:06:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-276444d9c43f1f92946f1b2ae2e561db10d9f322f6a54a6e4abca9bc092faf563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6893-8650 0000-0002-4440-941X 0000-0001-9873-0463 0000-0002-8906-5825 0000-0003-2150-5561 0000-0002-7442-7416 |
| PQID | 3127769041 |
| PQPubID | 4437220 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9832523 crossref_primary_10_1109_TBDATA_2022_3191332 proquest_journals_3127769041 crossref_citationtrail_10_1109_TBDATA_2022_3191332 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on big data |
| PublicationTitleAbbrev | TBData |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref17 ref16 Fung (ref25) Xu (ref10) 2020 Nguyen (ref26) 2021 ref23 McMahan (ref24) Wang (ref18) 2014 ref20 O’Shea (ref34) 2015 ref22 ref21 Sun (ref3) 2019 ref28 ref27 ref29 ref8 ref7 Xiao (ref36) 2017 ref9 ref4 ref6 ref5 Gul (ref19) 2012 |
| References_xml | – ident: ref2 doi: 10.1561/9781680837896 – ident: ref16 doi: 10.1007/978-3-030-63076-8_9 – start-page: 301 volume-title: Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses ident: ref25 article-title: The limitations of federated learning in sybil settings – volume-title: Stochastic Integer Program.: DeComp. Methods Ind. Appl. year: 2014 ident: ref18 – ident: ref28 doi: 10.1109/tnet.2023.3312208 – ident: ref32 doi: 10.1109/INFOCOM.2019.8737464 – ident: ref13 doi: 10.1109/tpds.2023.3240767 – year: 2019 ident: ref3 article-title: Can you really backdoor federated learning? – ident: ref33 doi: 10.1109/5.726791 – ident: ref1 doi: 10.1145/3298981 – ident: ref5 doi: 10.1145/3375627.3375840 – ident: ref8 doi: 10.1109/MWC.001.1900119 – ident: ref17 doi: 10.1109/CAMAD50429.2020.9209263 – ident: ref23 doi: 10.1109/TNNLS.2019.2919699 – ident: ref6 doi: 10.1109/MIS.2020.2987774 – ident: ref20 doi: 10.1109/WCNC.2018.8377035 – ident: ref35 doi: 10.1109/APSCC.2009.5394134 – ident: ref12 doi: 10.1109/jiot.2022.3161943 – year: 2017 ident: ref36 article-title: Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms – ident: ref31 doi: 10.1109/JIOT.2019.2956615 – ident: ref29 doi: 10.1109/JSAC.2020.3041404 – ident: ref22 doi: 10.1002/9780470400531.eorms0092 – year: 2012 ident: ref19 article-title: A multi-stage stochastic integer programming model for surgery planning publication-title: Michigan Eng. – year: 2015 ident: ref34 article-title: An introduction to convolutional neural networks – ident: ref4 doi: 10.1109/ICC.2019.8761315 – ident: ref30 doi: 10.1109/MILCOM52596.2021.9653139 – ident: ref14 doi: 10.23919/WiOpt52861.2021.9589776 – year: 2020 ident: ref10 article-title: A reputation mechanism is all you need: Collaborative fairness and adversarial robustness in federated learning – ident: ref27 doi: 10.1109/tnnls.2022.3216981 – ident: ref7 doi: 10.1109/MSP.2020.2975749 – ident: ref15 doi: 10.1109/AIEEE.2018.8592253 – year: 2021 ident: ref26 article-title: FLGUARD: Secure and private federated learning – ident: ref9 doi: 10.1145/3442381.3449888 – ident: ref11 doi: 10.1038/s41598-016-0011-6 – ident: ref21 doi: 10.1007/s11081-019-09471-0 – ident: ref37 doi: 10.9781/ijimai.2016.415 – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref24 article-title: Communication-efficient learning of deep networks from decentralized data |
| SSID | ssj0001600392 |
| Score | 2.3648648 |
| Snippet | Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users' data privacy.... Federated Learning(FL) has attracted wide research interest due to its potential in building machine learning models while preserving users’ data privacy.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 953 |
| SubjectTerms | Biological system modeling client selection Clients Computational modeling Costs Data models Federated learning Integer programming Machine learning reputation stochastic integer programming Stochastic processes Training Uncertainty |
| Title | Reputation-Aware Federated Learning Client Selection Based on Stochastic Integer Programming |
| URI | https://ieeexplore.ieee.org/document/9832523 https://www.proquest.com/docview/3127769041 |
| Volume | 10 |
| WOSCitedRecordID | wos001354646300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-2096 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001600392 issn: 2332-7790 databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60ePBifWK1Sg4eXc1ms9nNsVWLp1JoBQ_Cks1DBW2lD_37TnbTiiiCtxwyYdlvknyTZL4BONM6caXX03ZS84gzmkVKpDpKtc41l9zgwlwVm8j6_fz-Xg7W4HyVC2OtrR6f2QvfrO7yzUQv_FHZpUT3w8BpHdazTNS5Wl_nKcKnmbIgLBRTeTnqXndGHQwBGcPIVGIwxr5tPlU1lR9LcLWv9Jr_-6Jt2Ar8kXRqwHdgzY53obmszUDCVN2DB2TWi_qaPep8qKklPS8bgczSkKCp-kiuXnw2JBlWtXCwJ-ninmYINobziX5SXsOZ-DPDRxx6UL_kekXDfbjr3YyubqNQSSHSTGbziGVIe7hBOBIXO2REXLi4ZMoyi_zJlDE10uHUdkKlXAnLVamVLDWVzCmXiuQAGuPJ2B4CMTpBziFzSWnJpXF5nqo8F05oa5xLaQvY8hcXOsiM-2oXL0UVblBZ1LgUHpci4NKC85XRW62y8Xf3PQ_FqmtAoQXtJZZFmIkzNGHoLJLy-Oh3q2PYxLF5_USlDY35dGFPYEO_z59n09PKyT4BOefRFA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oFfTiLtY1B4-OZtJMZnKsS1HUIljBgzBksqigrXTRv-_LTFoRRfCWQ14yzJfle0ne9wD2tW64wutpO6l5xBlNIyUSHSVaZ5pLbnBhLpNNpO12dn8vb6bgYBILY60tH5_ZQ18s7_JNT4_8UdmRxOGHjtM0zCQcm62itb5OVIQPNGVBWiim8qhzfNrsNNEJZAx9U4nuGPu2_ZT5VH4swuXO0lr83zctwUJgkKRZQb4MU7a7Aovj7AwkTNZVeEBuPaou2qPmh-pb0vLCEcgtDQmqqo_k5MXHQ5LbMhsO1iTHuKsZgoXbYU8_Ka_iTPyp4SM2fVO95XpFwzW4a511Ts6jkEsh0kymw4ilSHy4QUAaLnbIibhwccGUZRYZlCliaqTDye2ESrgSlqtCK1loKplTLhGNdah1e127AcToBrIOmUlKCy6Ny7JEZZlwQlvjXELrwMa_ONdBaNznu3jJS4eDyrzCJfe45AGXOhxMjN4qnY2_q696KCZVAwp12B5jmYe5OEATlqZCUh5v_m61B3Pnneur_OqifbkF89gPrx6sbENt2B_ZHZjV78PnQX-3HHCfQanUWw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reputation-Aware+Federated+Learning+Client+Selection+Based+on+Stochastic+Integer+Programming&rft.jtitle=IEEE+transactions+on+big+data&rft.au=Tan%2C+Xavier&rft.au=Ng%2C+Wei+Chong&rft.au=Lim%2C+Wei+Yang+Bryan&rft.au=Xiong%2C+Zehui&rft.date=2024-12-01&rft.pub=IEEE&rft.eissn=2372-2096&rft.volume=10&rft.issue=6&rft.spage=953&rft.epage=964&rft_id=info:doi/10.1109%2FTBDATA.2022.3191332&rft.externalDocID=9832523 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7790&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7790&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7790&client=summon |