Biocompatibility of a quad-shank neural probe

•Demonstrated fabrication of flexible neural probes using standard CMOS techniques.•The probe comprised gold pyramidal electrodes sandwiched between polyimide layers.•The electrode test impedance values at 1kHz are on average 135kΩ.•MWCNTs were deposited on electrodes resulting in impedance at 1kHz...

Full description

Saved in:
Bibliographic Details
Published in:Solid-state electronics Vol. 136; pp. 113 - 119
Main Authors: Tyson, Joel, Tran, Minhquan, Slaughter, Gymama
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2017
Subjects:
ISSN:0038-1101, 1879-2405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Demonstrated fabrication of flexible neural probes using standard CMOS techniques.•The probe comprised gold pyramidal electrodes sandwiched between polyimide layers.•The electrode test impedance values at 1kHz are on average 135kΩ.•MWCNTs were deposited on electrodes resulting in impedance at 1kHz to 6.89kΩ.•Cells proliferated on probe surface and exhibited very good morphology and viability. Multichannel, flexible neural probes have been fabricated using standard CMOS techniques. The neural probe consists of four shanks with 16 recording sites each of approximately 290μm2. The recording sites are created using gold rectangular pyramidal electrodes sandwiched between two polyimide dielectric layers. Windows in the first polyimide layer expose the electrode sites and bonding pads. The bonding pads and interconnect wires at the topmost section of the probe are soldered to tungsten wire followed by encapsulation with epoxy to protect the interconnections from contact with phosphate buffered saline solution. The electrode test impedance values at 1kHz are on average 135kΩ. Multi-walled carbon nanotubes (MWCNTs) were deposited on electrode sites resulting in a reduction of impedance at 1kHz to 6.89kΩ on average. Moreover, the cell viability and proliferation of the PC12 cells on the surface of the probe was investigated by trypan blue exclusion assay to evaluate biocompatibility of the probe material. The PC12 cells attached and grew on the surfaces of the probe with no significant effect on the cells’ morphology and viability. The polyimide probe displayed a good cell viability and proliferation, making the polyimide attractive for potential candidate as probe materials in the fabrication of neural probes.
AbstractList •Demonstrated fabrication of flexible neural probes using standard CMOS techniques.•The probe comprised gold pyramidal electrodes sandwiched between polyimide layers.•The electrode test impedance values at 1kHz are on average 135kΩ.•MWCNTs were deposited on electrodes resulting in impedance at 1kHz to 6.89kΩ.•Cells proliferated on probe surface and exhibited very good morphology and viability. Multichannel, flexible neural probes have been fabricated using standard CMOS techniques. The neural probe consists of four shanks with 16 recording sites each of approximately 290μm2. The recording sites are created using gold rectangular pyramidal electrodes sandwiched between two polyimide dielectric layers. Windows in the first polyimide layer expose the electrode sites and bonding pads. The bonding pads and interconnect wires at the topmost section of the probe are soldered to tungsten wire followed by encapsulation with epoxy to protect the interconnections from contact with phosphate buffered saline solution. The electrode test impedance values at 1kHz are on average 135kΩ. Multi-walled carbon nanotubes (MWCNTs) were deposited on electrode sites resulting in a reduction of impedance at 1kHz to 6.89kΩ on average. Moreover, the cell viability and proliferation of the PC12 cells on the surface of the probe was investigated by trypan blue exclusion assay to evaluate biocompatibility of the probe material. The PC12 cells attached and grew on the surfaces of the probe with no significant effect on the cells’ morphology and viability. The polyimide probe displayed a good cell viability and proliferation, making the polyimide attractive for potential candidate as probe materials in the fabrication of neural probes.
Author Slaughter, Gymama
Tyson, Joel
Tran, Minhquan
Author_xml – sequence: 1
  givenname: Joel
  surname: Tyson
  fullname: Tyson, Joel
– sequence: 2
  givenname: Minhquan
  surname: Tran
  fullname: Tran, Minhquan
– sequence: 3
  givenname: Gymama
  surname: Slaughter
  fullname: Slaughter, Gymama
  email: gslaught@umbc.edu
BookMark eNp9j0FOwzAQRS1UJNrCAdjlAg4zTmMnYgUVFKRKbGBtOc5EuKRxsVOk3h5XZcWifzOb_0b_zdhk8AMxdouQI6C82-QxUi4AVQ4yB6wv2BQrVXOxgHLCpgBFxTFVr9gsxg0ACIkwZfzReeu3OzO6xvVuPGS-y0z2vTctj59m-MoG2gfTZ7vgG7pml53pI9383Tn7eH56X77w9dvqdfmw5lbUauRCdk2zIECrVIMp1AAVCymMMGmUsnVbIlaVUF1ddViXFgsoTVcaQ6W0TTFn6vTXBh9joE5bN6aJfhiDcb1G0EdrvdHJWh-tNUidrBOJ_8hdcFsTDmeZ-xNDSenHUdDROhostS6QHXXr3Rn6F1TwcS8
CitedBy_id crossref_primary_10_3390_bios10080101
crossref_primary_10_3390_s20143953
crossref_primary_10_1038_s41528_022_00219_y
crossref_primary_10_1016_j_jelechem_2021_115977
crossref_primary_10_1002_adfm_202105568
Cites_doi 10.1109/TBME.2007.912430
10.1088/0960-1317/24/6/065015
10.1016/j.jneumeth.2005.08.015
10.1016/j.conb.2014.10.007
10.1021/acsami.7b02975
10.1016/j.biomaterials.2007.03.024
10.1126/science.1260318
10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I
10.1109/IEMBS.2007.4352251
10.1109/MEMSYS.2016.7421639
10.3390/s8106704
10.1109/ICSENS.2011.6127022
10.1021/la049192s
10.1016/j.snb.2016.09.127
10.1039/B807563H
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.sse.2017.06.019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2405
EndPage 119
ExternalDocumentID 10_1016_j_sse_2017_06_019
S0038110117304471
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TAE
TN5
WH7
WUQ
XFK
XSW
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-26fbb4e01c77b1111eb0e3462a2a1877c9d5118827f98f195c1305af5aae56cb3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408041200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-1101
IngestDate Sat Nov 29 07:27:28 EST 2025
Tue Nov 18 21:03:44 EST 2025
Fri Feb 23 02:31:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural probe
MEMS
High density electrode array
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-26fbb4e01c77b1111eb0e3462a2a1877c9d5118827f98f195c1305af5aae56cb3
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_sse_2017_06_019
crossref_primary_10_1016_j_sse_2017_06_019
elsevier_sciencedirect_doi_10_1016_j_sse_2017_06_019
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle Solid-state electronics
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahuja, Behrend, Whalen, Humayun, Weiland (b0055) 2008; 55
HajjHassan, Chodavarapu, Musallam (b0005) 2008; 8
Das, Freudenrich, Mundy (b0060) 2004
Ruther, Paul (b0025) 2015; 32
Lee S, Yen SC, Liao LD, Gammad GGL, Thakor NV, Lee C. Flexible sling electrode for bidirectional neural signal recording and selective stimulation. In: Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference of the IEEE; 2016. p. 375–378.
Polikov, Tresco, Reichert (b0030) 2005; 148
Cui, Lee, Raphael, Wiler, Hetke, Anderson (b0045) 2001; 56
Mahmood A, Chen PS, Akingba AG. Nanoelectrode arrays for measuring sympathetic nervous activity. In: Sensors, 2011 IEEE; 2011, October. p. 1241–44.
Huffman, Venton (b0065) 2009; 134
Xiang, Yen, Lee (b0070) 2014; 24
Kisban S, Herwik S, Seidl K, Rubehn B, Paul O, Ruther P, et al. Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE; 2007. pp. 175–178.
Giovangrandi, Gilchrist, Whittington, Kovacs (b0085) 2006
Minev, Musienko, Hirsch (b0075) 2015; 347
Seymour, Kipke (b0040) 2007; 28
Slaughter, Bieberich, Wnek, Wynne, Guiseppi-Elie (b0050) 2004; 20
Ryu, Yang, Ahn, Sim, Lee, Kim (b0020) 2017; 9
Lee, Sheshadri, Xiang, Delgado-Martinez, Xue, Sun (b0015) 2017; 242
HajjHassan (10.1016/j.sse.2017.06.019_b0005) 2008; 8
Minev (10.1016/j.sse.2017.06.019_b0075) 2015; 347
Seymour (10.1016/j.sse.2017.06.019_b0040) 2007; 28
10.1016/j.sse.2017.06.019_b0010
Lee (10.1016/j.sse.2017.06.019_b0015) 2017; 242
Huffman (10.1016/j.sse.2017.06.019_b0065) 2009; 134
10.1016/j.sse.2017.06.019_b0035
Ryu (10.1016/j.sse.2017.06.019_b0020) 2017; 9
Cui (10.1016/j.sse.2017.06.019_b0045) 2001; 56
Giovangrandi (10.1016/j.sse.2017.06.019_b0085) 2006
Ruther (10.1016/j.sse.2017.06.019_b0025) 2015; 32
10.1016/j.sse.2017.06.019_b0080
Slaughter (10.1016/j.sse.2017.06.019_b0050) 2004; 20
Polikov (10.1016/j.sse.2017.06.019_b0030) 2005; 148
Das (10.1016/j.sse.2017.06.019_b0060) 2004
Ahuja (10.1016/j.sse.2017.06.019_b0055) 2008; 55
Xiang (10.1016/j.sse.2017.06.019_b0070) 2014; 24
References_xml – reference: Lee S, Yen SC, Liao LD, Gammad GGL, Thakor NV, Lee C. Flexible sling electrode for bidirectional neural signal recording and selective stimulation. In: Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference of the IEEE; 2016. p. 375–378.
– volume: 8
  start-page: 6704
  year: 2008
  end-page: 6726
  ident: b0005
  article-title: NeuroMEMS: neural probe microtechnologies
  publication-title: Sensors
– start-page: 26397
  year: 2004
  end-page: 26406
  ident: b0060
  article-title: Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures
  publication-title: Neurotoxicol Teratol
– volume: 9
  start-page: 10577
  year: 2017
  end-page: 10586
  ident: b0020
  article-title: Enhancement of interface characteristics of neural probe based on graphene, ZnO nanowires, and conducting polymer PEDOT
  publication-title: ACS Appl Mater Interfaces
– volume: 20
  start-page: 7189
  year: 2004
  end-page: 7200
  ident: b0050
  article-title: Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study
  publication-title: Langmuir
– volume: 55
  start-page: 1457
  year: 2008
  end-page: 1460
  ident: b0055
  article-title: The dependence of spectral impedance on disc microelectrode radius
  publication-title: IEEE Trans Biomed Eng
– volume: 28
  start-page: 3594
  year: 2007
  end-page: 3607
  ident: b0040
  article-title: Neural probe design for reduced tissue encapsulation in CNS
  publication-title: Biomaterials
– volume: 32
  start-page: 31
  year: 2015
  end-page: 37
  ident: b0025
  article-title: New approaches for CMOS-based devices for large-scale neural recording
  publication-title: Curr Opin Neurobiol
– volume: 24
  start-page: 065015
  year: 2014
  ident: b0070
  article-title: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle
  publication-title: J Micromech Microeng
– reference: Kisban S, Herwik S, Seidl K, Rubehn B, Paul O, Ruther P, et al. Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE; 2007. pp. 175–178.
– start-page: 113545
  year: 2006
  end-page: 113554
  ident: b0085
  article-title: Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology
  publication-title: Sens. Actuators: B. Chem.
– reference: Mahmood A, Chen PS, Akingba AG. Nanoelectrode arrays for measuring sympathetic nervous activity. In: Sensors, 2011 IEEE; 2011, October. p. 1241–44.
– volume: 56
  start-page: 261
  year: 2001
  end-page: 272
  ident: b0045
  article-title: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends
  publication-title: J Biomed Mater Res
– volume: 242
  start-page: 1165
  year: 2017
  end-page: 1170
  ident: b0015
  article-title: Selective stimulation and neural recording on peripheral nerves using flexible split ring electrodes
  publication-title: Sens. Actuators B: Chem.
– volume: 347
  start-page: 159
  year: 2015
  end-page: 163
  ident: b0075
  article-title: Electronic dura mater for long-term multimodal neural interfaces
  publication-title: Science
– volume: 134
  start-page: 18
  year: 2009
  end-page: 24
  ident: b0065
  article-title: Carbon-fiber microelectrodes for in vivo applications
  publication-title: The Analyst
– volume: 148
  start-page: 1
  year: 2005
  end-page: 18
  ident: b0030
  article-title: Response of brain tissue to chronically implanted neural electrodes
  publication-title: J Neurosci Methods
– volume: 55
  start-page: 1457
  issue: 4
  year: 2008
  ident: 10.1016/j.sse.2017.06.019_b0055
  article-title: The dependence of spectral impedance on disc microelectrode radius
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.912430
– volume: 24
  start-page: 065015
  issue: 6
  year: 2014
  ident: 10.1016/j.sse.2017.06.019_b0070
  article-title: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/24/6/065015
– volume: 148
  start-page: 1
  year: 2005
  ident: 10.1016/j.sse.2017.06.019_b0030
  article-title: Response of brain tissue to chronically implanted neural electrodes
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2005.08.015
– volume: 32
  start-page: 31
  year: 2015
  ident: 10.1016/j.sse.2017.06.019_b0025
  article-title: New approaches for CMOS-based devices for large-scale neural recording
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2014.10.007
– volume: 9
  start-page: 10577
  issue: 12
  year: 2017
  ident: 10.1016/j.sse.2017.06.019_b0020
  article-title: Enhancement of interface characteristics of neural probe based on graphene, ZnO nanowires, and conducting polymer PEDOT
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b02975
– volume: 28
  start-page: 3594
  issue: 25
  year: 2007
  ident: 10.1016/j.sse.2017.06.019_b0040
  article-title: Neural probe design for reduced tissue encapsulation in CNS
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.03.024
– volume: 347
  start-page: 159
  year: 2015
  ident: 10.1016/j.sse.2017.06.019_b0075
  article-title: Electronic dura mater for long-term multimodal neural interfaces
  publication-title: Science
  doi: 10.1126/science.1260318
– volume: 56
  start-page: 261
  year: 2001
  ident: 10.1016/j.sse.2017.06.019_b0045
  article-title: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I
– ident: 10.1016/j.sse.2017.06.019_b0035
  doi: 10.1109/IEMBS.2007.4352251
– ident: 10.1016/j.sse.2017.06.019_b0010
  doi: 10.1109/MEMSYS.2016.7421639
– volume: 8
  start-page: 6704
  issue: 10
  year: 2008
  ident: 10.1016/j.sse.2017.06.019_b0005
  article-title: NeuroMEMS: neural probe microtechnologies
  publication-title: Sensors
  doi: 10.3390/s8106704
– ident: 10.1016/j.sse.2017.06.019_b0080
  doi: 10.1109/ICSENS.2011.6127022
– volume: 20
  start-page: 7189
  issue: 17
  year: 2004
  ident: 10.1016/j.sse.2017.06.019_b0050
  article-title: Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study
  publication-title: Langmuir
  doi: 10.1021/la049192s
– start-page: 26397
  year: 2004
  ident: 10.1016/j.sse.2017.06.019_b0060
  article-title: Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures
  publication-title: Neurotoxicol Teratol
– volume: 242
  start-page: 1165
  year: 2017
  ident: 10.1016/j.sse.2017.06.019_b0015
  article-title: Selective stimulation and neural recording on peripheral nerves using flexible split ring electrodes
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2016.09.127
– volume: 134
  start-page: 18
  issue: 1
  year: 2009
  ident: 10.1016/j.sse.2017.06.019_b0065
  article-title: Carbon-fiber microelectrodes for in vivo applications
  publication-title: The Analyst
  doi: 10.1039/B807563H
– start-page: 113545
  year: 2006
  ident: 10.1016/j.sse.2017.06.019_b0085
  article-title: Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology
  publication-title: Sens. Actuators: B. Chem.
SSID ssj0002610
Score 2.2095547
Snippet •Demonstrated fabrication of flexible neural probes using standard CMOS techniques.•The probe comprised gold pyramidal electrodes sandwiched between polyimide...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms High density electrode array
MEMS
Neural probe
Title Biocompatibility of a quad-shank neural probe
URI https://dx.doi.org/10.1016/j.sse.2017.06.019
Volume 136
WOSCitedRecordID wos000408041200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002610
  issn: 0038-1101
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4NAEN4Y9aAH4zO-w8GTBgPbhWWPanweGpPWpDeyC0taraClNfbfO8su9KE19uCFEALL45vMfLvMfIPQicDY4QkwN_C_nk1iX9jM59SWShmGOLFwCC-aTdB6PWi12KPp1Z4X7QRomgafn-ztX6GGYwC2Kp2dA-5qUDgA-wA6bAF22P4J-MtOViSW93Xe61BXQL4PeGznbZ6-nCkJS1V_pQqBxrlpI-t24BzFPs9G3XEqzt0cmuKsh0yO0jJ63GTfp224RWVpjS4fwKxf28Pt8JUb92_WFyBmlZlqlc8ElwgkwZ3wmbVxr-fqclITQF3tA7_5Zr1M8Hye50qe1KWFbqrxlxM62FPxqcoaLBPSnkMYIlRDhCopT4m-LmHqMXBqSxf3162HKhTD9NDocupXKH9rFwl-U8_xMzEZIxvNdbRmZgnWhUZ3Ay3IdBOtjmlHbiF7GmcrSyxujXC2NM5WgfM2erq5bl7d2ab3hR1hRvs29hMhiHTciFKhwpoUjqwRH3PM3YDSiMVqbhhgmrAgcZkXARnxeOJxLj0_ErUdtJhmqdxFFmVq7T-AcBJgErOEu4RyPyBMeLFfw_EecsoXDyMjDK_6k3TDmR98D51Wl7xpVZTfTibl1wwNrdN0LQTLmH3Z_jz3OEArI9s9RIv93kAeoeXoo9_Je8fGLL4A0lBqmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocompatibility+of+a+quad-shank+neural+probe&rft.jtitle=Solid-state+electronics&rft.au=Tyson%2C+Joel&rft.au=Tran%2C+Minhquan&rft.au=Slaughter%2C+Gymama&rft.date=2017-10-01&rft.issn=0038-1101&rft.volume=136&rft.spage=113&rft.epage=119&rft_id=info:doi/10.1016%2Fj.sse.2017.06.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sse_2017_06_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1101&client=summon