Minimum cut bases in undirected networks

Given an undirected, connected network G = ( V , E ) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts such that the sum of the cut weights is minimized. Surprisingly, this problem has not attained as much attention as another graph theoretic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 158; číslo 4; s. 277 - 290
Hlavní autoři: Bunke, Florentine, Hamacher, Horst W., Maffioli, Francesco, Schwahn, Anne M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 28.02.2010
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given an undirected, connected network G = ( V , E ) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts such that the sum of the cut weights is minimized. Surprisingly, this problem has not attained as much attention as another graph theoretic problem closely related to it, namely, the cycle basis problem. We consider two versions of the problem: the unconstrained and the fundamental cut basis problem. For the unconstrained case, where the cuts in the basis can be of an arbitrary kind, the problem can be written as a multiterminal network flow problem, and is thus solvable in strongly polynomial time. In contrast, the fundamental cut basis problem, where all cuts in the basis are obtained by deleting an edge, each from a spanning tree T , is shown to be NP-hard. In this proof, we also show that a tree which induces the minimum fundamental cycle basis is also an optimal solution for the minimum fundamental cut basis problem in unweighted graphs. We present heuristics, integer programming formulations and summarize first experiences with numerical tests.
AbstractList Given an undirected, connected network G = ( V , E ) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts such that the sum of the cut weights is minimized. Surprisingly, this problem has not attained as much attention as another graph theoretic problem closely related to it, namely, the cycle basis problem. We consider two versions of the problem: the unconstrained and the fundamental cut basis problem. For the unconstrained case, where the cuts in the basis can be of an arbitrary kind, the problem can be written as a multiterminal network flow problem, and is thus solvable in strongly polynomial time. In contrast, the fundamental cut basis problem, where all cuts in the basis are obtained by deleting an edge, each from a spanning tree T , is shown to be NP-hard. In this proof, we also show that a tree which induces the minimum fundamental cycle basis is also an optimal solution for the minimum fundamental cut basis problem in unweighted graphs. We present heuristics, integer programming formulations and summarize first experiences with numerical tests.
Author Bunke, Florentine
Schwahn, Anne M.
Maffioli, Francesco
Hamacher, Horst W.
Author_xml – sequence: 1
  givenname: Florentine
  surname: Bunke
  fullname: Bunke, Florentine
  email: flobunke@mathematik.uni-kl.de
  organization: Department of Mathematics, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
– sequence: 2
  givenname: Horst W.
  surname: Hamacher
  fullname: Hamacher, Horst W.
  email: hamacher@mathematik.uni-kl.de
  organization: Department of Mathematics, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
– sequence: 3
  givenname: Francesco
  surname: Maffioli
  fullname: Maffioli, Francesco
  email: maffioli@elet.polimi.it
  organization: Department of Electronics and Information, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
– sequence: 4
  givenname: Anne M.
  surname: Schwahn
  fullname: Schwahn, Anne M.
  email: a.m.schwahn@googlemail.com
  organization: Department of Mathematics, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
BookMark eNp9j01LAzEQhoNUsK3-AG979LLrzG6bbPAkxS-oeFHwFrLJLKR2s5Kkiv_elHry0NMwwzwv7zNjEz96YuwSoUJAfr2prB6qGkBWICrA5QmbYivqkguBEzbNP7yssX0_Y7MYNwCAeZuyq2fn3bAbCrNLRacjxcL5YuetC2QS2cJT-h7DRzxnp73eRrr4m3P2dn_3unos1y8PT6vbdWlqKVJZL6UFYaldyJ4b0fW6MzK3sgtu80XKBjiIRaOx1mQ4Ace2sU2nm7bjHKmZMzzkmjDGGKhXn8ENOvwoBLVXVRuVVdVeVYFQWTUz4h9jXNLJjT4F7bZHyZsDSVnpy1FQ0Tjyhg7-yo7uCP0L-idvbw
CitedBy_id crossref_primary_10_1016_j_tcs_2011_11_003
crossref_primary_10_1111_itor_12009
Cites_doi 10.1016/j.dam.2007.07.001
10.1137/S0097539792224474
10.1002/net.3230090203
10.1007/BF02022039
10.1145/355984.355988
10.1016/0095-8956(86)90063-8
10.1145/290179.290181
10.1016/0020-0190(94)00183-Y
10.1016/0012-365X(91)90317-U
10.1007/s00186-008-0255-4
10.1137/0219009
10.1137/0216026
ContentType Journal Article
Copyright 2009 Elsevier B.V.
Copyright_xml – notice: 2009 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.dam.2009.07.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 290
ExternalDocumentID 10_1016_j_dam_2009_07_015
S0166218X09002972
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
ID FETCH-LOGICAL-c297t-259d07de849f6c7bfabc9009d46d9f6993060743a12aec6e06183d3ba38b661e3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274986900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Tue Nov 18 21:47:05 EST 2025
Sat Nov 29 02:59:29 EST 2025
Sat Apr 29 22:45:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Integer programming
Graph and network algorithms
Cut basis problem
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-259d07de849f6c7bfabc9009d46d9f6993060743a12aec6e06183d3ba38b661e3
OpenAccessLink https://dx.doi.org/10.1016/j.dam.2009.07.015
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_dam_2009_07_015
crossref_citationtrail_10_1016_j_dam_2009_07_015
elsevier_sciencedirect_doi_10_1016_j_dam_2009_07_015
PublicationCentury 2000
PublicationDate 2010-02-28
PublicationDateYYYYMMDD 2010-02-28
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-28
  day: 28
PublicationDecade 2010
PublicationTitle Discrete Applied Mathematics
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Alon, Karp, Peleg, West (b1) 1995; 24
Gomory, Hu (b14) 1961; 9
F. Bunke, H.W. Hamacher, F. Maffioli, A.M. Schwahn, Minimum cut bases in undirected networks, Report in Wirtschaftsmathematik 108, University of Kaiserslautern, 2007.
Hassin, Tamir (b20) 1995; 53
A.M. Schwahn, Minimum fundamental cut basis problem, Diploma Thesis, University of Kaiserslautern, 2005
Hartvigsen, Mardon (b19) 1991; 94
Sysło (b28) 1979; 9
Golynski, Horton (b13) 2002; vol. 2368
Kavitha (b22) 2008; vol. 5124
Gusfield (b17) 1990; 19
Deo, Kumar, Parson (b6) 1995; 107
F. Bunke, Circuit bases problems in binary matroids, Ph.D. Thesis, Department of Mathematics, University of Kaiserslautern, 2006
J.C. de Pina, Applications of shortest path methods, Ph.D. Thesis, University of Amsterdam, Netherlands,1995
Liebchen, Wünsch (b25) 2008; 156
Kavitha, Mehlhorn, Michail, Paluch (b23) 2004; vol. 3142
Goldberg, Rao (b12) 1998; 45
Seshu, Reed (b31) 1961
Amaldi, Liberti, Maffioli, Maculan (b2) 2009; 69
Deo, Prabhu, Krishnamoorty (b7) 1982; 8
C. Liebchen, R.H. Möhring, Information on MIPLIB’s
instances, Tech. Rep. 49, TU Berlin, 2003
Gueret, Prins, Sevaux (b16) 2000
Horton (b21) 1987; 16
MIPLIB - Mixed integer problem library
Grötschel (b15) 1977; vol. 36
Galbiati, Amaldi (b10) 2003; vol. 2909
Sysło (b29) 1981
Barahona, Grötschel (b3) 1986; 40
Liebchen, Wünsch, Köhler, Reich, Rizzi (b26) 2007; vol. 4525
Galbiati (b9) 2001; vol. 2223
G. Galbiati, R. Rizzi, E. Amaldi, On the approximability of the minimum strictly fundamental cycle bases problem, (Submitted for publication)
Hamacher, Queyranne (b18) 1985; 4
Galbiati (10.1016/j.dam.2009.07.015_b10) 2003; vol. 2909
Amaldi (10.1016/j.dam.2009.07.015_b2) 2009; 69
Hartvigsen (10.1016/j.dam.2009.07.015_b19) 1991; 94
Sysło (10.1016/j.dam.2009.07.015_b28) 1979; 9
Hassin (10.1016/j.dam.2009.07.015_b20) 1995; 53
Deo (10.1016/j.dam.2009.07.015_b7) 1982; 8
Golynski (10.1016/j.dam.2009.07.015_b13) 2002; vol. 2368
Gusfield (10.1016/j.dam.2009.07.015_b17) 1990; 19
Barahona (10.1016/j.dam.2009.07.015_b3) 1986; 40
10.1016/j.dam.2009.07.015_b8
10.1016/j.dam.2009.07.015_b5
10.1016/j.dam.2009.07.015_b4
Sysło (10.1016/j.dam.2009.07.015_b29) 1981
10.1016/j.dam.2009.07.015_b24
10.1016/j.dam.2009.07.015_b27
Grötschel (10.1016/j.dam.2009.07.015_b15) 1977; vol. 36
Horton (10.1016/j.dam.2009.07.015_b21) 1987; 16
Kavitha (10.1016/j.dam.2009.07.015_b22) 2008; vol. 5124
Gomory (10.1016/j.dam.2009.07.015_b14) 1961; 9
Hamacher (10.1016/j.dam.2009.07.015_b18) 1985; 4
Gueret (10.1016/j.dam.2009.07.015_b16) 2000
Goldberg (10.1016/j.dam.2009.07.015_b12) 1998; 45
Galbiati (10.1016/j.dam.2009.07.015_b9) 2001; vol. 2223
Kavitha (10.1016/j.dam.2009.07.015_b23) 2004; vol. 3142
10.1016/j.dam.2009.07.015_b30
Liebchen (10.1016/j.dam.2009.07.015_b26) 2007; vol. 4525
Seshu (10.1016/j.dam.2009.07.015_b31) 1961
Liebchen (10.1016/j.dam.2009.07.015_b25) 2008; 156
Deo (10.1016/j.dam.2009.07.015_b6) 1995; 107
10.1016/j.dam.2009.07.015_b11
Alon (10.1016/j.dam.2009.07.015_b1) 1995; 24
References_xml – volume: 19
  start-page: 143
  year: 1990
  end-page: 155
  ident: b17
  article-title: Very simple methods for all pairs network flow analysis
  publication-title: SIAM Journal on Computing
– volume: 94
  start-page: 81
  year: 1991
  end-page: 94
  ident: b19
  article-title: Cycle bases from orderings and coverings
  publication-title: Discrete Mathematics
– reference: A.M. Schwahn, Minimum fundamental cut basis problem, Diploma Thesis, University of Kaiserslautern, 2005,
– volume: vol. 2909
  start-page: 151
  year: 2003
  end-page: 164
  ident: b10
  article-title: On the approximability of the minimum fundamental cycle basis problem
  publication-title: WAOA 2003: 1st International Workshop on Approximation and Online Algorithms
– volume: vol. 2223
  start-page: 116
  year: 2001
  end-page: 123
  ident: b9
  article-title: On min–max cycle bases
  publication-title: ISAAC 2001: 12th International Symposium on Algorithms and Computation
– volume: vol. 4525
  start-page: 365
  year: 2007
  end-page: 378
  ident: b26
  article-title: Benchmarks for strictly fundamental cycle bases
  publication-title: WEA 2007: International Workshop on Experimental Algorithms
– volume: vol. 5124
  start-page: 343
  year: 2008
  end-page: 354
  ident: b22
  article-title: On a special co-cycle basis of graphs
  publication-title: SWAT 2008: 11th Scandinavian Workshop on Algorithm Theory
– reference: MIPLIB - Mixed integer problem library,
– volume: 9
  start-page: 551
  year: 1961
  end-page: 570
  ident: b14
  article-title: Multi-terminal network flows
  publication-title: Journal of SIAM
– volume: 24
  start-page: 78
  year: 1995
  end-page: 100
  ident: b1
  article-title: A graph-theoretic game and its applications to the
  publication-title: SIAM Journal on Computing
– year: 2000
  ident: b16
  article-title: Applications of Optimization with Xpress-MP
– volume: 53
  start-page: 109
  year: 1995
  end-page: 111
  ident: b20
  article-title: On the minimum diameter spanning tree problem
  publication-title: Information Processing Letters
– year: 1961
  ident: b31
  article-title: Linear Graphs and Electrical Networks
– volume: 69
  start-page: 205
  year: 2009
  end-page: 233
  ident: b2
  article-title: Edge-swapping algorithms for the minimum fundamental cycle basis problem
  publication-title: Mathematical Methods of Operations Research
– volume: 45
  start-page: 783
  year: 1998
  end-page: 797
  ident: b12
  article-title: Beyond the flow decomposition barrier
  publication-title: Journal of the ACM
– reference: -instances, Tech. Rep. 49, TU Berlin, 2003
– volume: 156
  start-page: 569
  year: 2008
  end-page: 587
  ident: b25
  article-title: The zoo of tree spanner problems
  publication-title: Discrete Applied Mathematics
– volume: 8
  start-page: 26
  year: 1982
  end-page: 42
  ident: b7
  article-title: Algorithms for generating fundamental cycles in a graph
  publication-title: ACM Transactions on Mathematical Software
– start-page: 577
  year: 1981
  end-page: 588
  ident: b29
  article-title: On some problems related to fundamental cycle sets of a graph
  publication-title: Proceedings of the 4th International Conference on the Theory of Applications of Graphs
– volume: 107
  start-page: 141
  year: 1995
  end-page: 154
  ident: b6
  article-title: Minimum-length fundamental-cycle set problem: New heuristics and an empirical investigation
  publication-title: Congressus Numerantium
– volume: 16
  start-page: 358
  year: 1987
  end-page: 366
  ident: b21
  article-title: A polynomial-time algorithm to find the shortest cycle basis of a graph
  publication-title: SIAM Journal on Computing
– volume: vol. 36
  year: 1977
  ident: b15
  article-title: Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme
  publication-title: Mathematical Systems in Economics
– volume: vol. 3142
  start-page: 846
  year: 2004
  end-page: 857
  ident: b23
  article-title: A faster algorithm for minimum cycle basis of graphs
  publication-title: ICALP 2004: 31st International Colloquium on Automata, Languages and Programming
– volume: 40
  start-page: 40
  year: 1986
  end-page: 62
  ident: b3
  article-title: On the cycle polytope of a binary matroid
  publication-title: Journal of Combinatorial Theory B
– reference: F. Bunke, H.W. Hamacher, F. Maffioli, A.M. Schwahn, Minimum cut bases in undirected networks, Report in Wirtschaftsmathematik 108, University of Kaiserslautern, 2007.
– volume: vol. 2368
  start-page: 200
  year: 2002
  end-page: 209
  ident: b13
  article-title: A polynomial time algorithm to find the minimum cycle basis of a regular matroid
  publication-title: SWAT 2002: 8th Scandinavian Workshop on Algorithm Theory
– reference: C. Liebchen, R.H. Möhring, Information on MIPLIB’s
– volume: 9
  start-page: 123
  year: 1979
  end-page: 132
  ident: b28
  article-title: On cycle bases of a graph
  publication-title: Networks
– reference: F. Bunke, Circuit bases problems in binary matroids, Ph.D. Thesis, Department of Mathematics, University of Kaiserslautern, 2006
– reference: J.C. de Pina, Applications of shortest path methods, Ph.D. Thesis, University of Amsterdam, Netherlands,1995
– reference: G. Galbiati, R. Rizzi, E. Amaldi, On the approximability of the minimum strictly fundamental cycle bases problem, (Submitted for publication)
– volume: 4
  start-page: 123
  year: 1985
  end-page: 143
  ident: b18
  publication-title: Annals of Operations Research
– volume: vol. 3142
  start-page: 846
  year: 2004
  ident: 10.1016/j.dam.2009.07.015_b23
  article-title: A faster algorithm for minimum cycle basis of graphs
– ident: 10.1016/j.dam.2009.07.015_b24
– volume: 156
  start-page: 569
  issue: 5
  year: 2008
  ident: 10.1016/j.dam.2009.07.015_b25
  article-title: The zoo of tree spanner problems
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2007.07.001
– volume: 24
  start-page: 78
  issue: 1
  year: 1995
  ident: 10.1016/j.dam.2009.07.015_b1
  article-title: A graph-theoretic game and its applications to the k-server problem
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539792224474
– year: 1961
  ident: 10.1016/j.dam.2009.07.015_b31
– volume: 9
  start-page: 123
  year: 1979
  ident: 10.1016/j.dam.2009.07.015_b28
  article-title: On cycle bases of a graph
  publication-title: Networks
  doi: 10.1002/net.3230090203
– volume: 4
  start-page: 123
  year: 1985
  ident: 10.1016/j.dam.2009.07.015_b18
  article-title: k best solutions to combinatorial optimization problems
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02022039
– volume: 8
  start-page: 26
  issue: 1
  year: 1982
  ident: 10.1016/j.dam.2009.07.015_b7
  article-title: Algorithms for generating fundamental cycles in a graph
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/355984.355988
– volume: vol. 4525
  start-page: 365
  year: 2007
  ident: 10.1016/j.dam.2009.07.015_b26
  article-title: Benchmarks for strictly fundamental cycle bases
– volume: 40
  start-page: 40
  year: 1986
  ident: 10.1016/j.dam.2009.07.015_b3
  article-title: On the cycle polytope of a binary matroid
  publication-title: Journal of Combinatorial Theory B
  doi: 10.1016/0095-8956(86)90063-8
– volume: 45
  start-page: 783
  issue: 5
  year: 1998
  ident: 10.1016/j.dam.2009.07.015_b12
  article-title: Beyond the flow decomposition barrier
  publication-title: Journal of the ACM
  doi: 10.1145/290179.290181
– volume: vol. 2368
  start-page: 200
  year: 2002
  ident: 10.1016/j.dam.2009.07.015_b13
  article-title: A polynomial time algorithm to find the minimum cycle basis of a regular matroid
– volume: 53
  start-page: 109
  issue: 2
  year: 1995
  ident: 10.1016/j.dam.2009.07.015_b20
  article-title: On the minimum diameter spanning tree problem
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(94)00183-Y
– year: 2000
  ident: 10.1016/j.dam.2009.07.015_b16
– ident: 10.1016/j.dam.2009.07.015_b4
– ident: 10.1016/j.dam.2009.07.015_b8
– volume: vol. 2223
  start-page: 116
  year: 2001
  ident: 10.1016/j.dam.2009.07.015_b9
  article-title: On min–max cycle bases
– volume: vol. 36
  year: 1977
  ident: 10.1016/j.dam.2009.07.015_b15
  article-title: Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme
– volume: 94
  start-page: 81
  year: 1991
  ident: 10.1016/j.dam.2009.07.015_b19
  article-title: Cycle bases from orderings and coverings
  publication-title: Discrete Mathematics
  doi: 10.1016/0012-365X(91)90317-U
– volume: 107
  start-page: 141
  year: 1995
  ident: 10.1016/j.dam.2009.07.015_b6
  article-title: Minimum-length fundamental-cycle set problem: New heuristics and an empirical investigation
  publication-title: Congressus Numerantium
– volume: 9
  start-page: 551
  issue: 4
  year: 1961
  ident: 10.1016/j.dam.2009.07.015_b14
  article-title: Multi-terminal network flows
  publication-title: Journal of SIAM
– ident: 10.1016/j.dam.2009.07.015_b27
– volume: vol. 2909
  start-page: 151
  year: 2003
  ident: 10.1016/j.dam.2009.07.015_b10
  article-title: On the approximability of the minimum fundamental cycle basis problem
– volume: 69
  start-page: 205
  year: 2009
  ident: 10.1016/j.dam.2009.07.015_b2
  article-title: Edge-swapping algorithms for the minimum fundamental cycle basis problem
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1007/s00186-008-0255-4
– volume: 19
  start-page: 143
  year: 1990
  ident: 10.1016/j.dam.2009.07.015_b17
  article-title: Very simple methods for all pairs network flow analysis
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0219009
– ident: 10.1016/j.dam.2009.07.015_b11
– volume: 16
  start-page: 358
  issue: 2
  year: 1987
  ident: 10.1016/j.dam.2009.07.015_b21
  article-title: A polynomial-time algorithm to find the shortest cycle basis of a graph
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0216026
– start-page: 577
  year: 1981
  ident: 10.1016/j.dam.2009.07.015_b29
  article-title: On some problems related to fundamental cycle sets of a graph
– volume: vol. 5124
  start-page: 343
  year: 2008
  ident: 10.1016/j.dam.2009.07.015_b22
  article-title: On a special co-cycle basis of graphs
– ident: 10.1016/j.dam.2009.07.015_b30
– ident: 10.1016/j.dam.2009.07.015_b5
SSID ssj0001218
ssj0000186
ssj0006644
Score 1.886764
Snippet Given an undirected, connected network G = ( V , E ) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 277
SubjectTerms Cut basis problem
Graph and network algorithms
Integer programming
Title Minimum cut bases in undirected networks
URI https://dx.doi.org/10.1016/j.dam.2009.07.015
Volume 158
WOSCitedRecordID wos000274986900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjofxgLiKcVMeeEBUqdI48-Vxgk0FqRMSQ_QtchxHy7Sm09qM8e_5HDsXbYAAiZeosurUPuf0-PO5EvKaG46rbE5DrhgNofCgB0WRh1oKyqiBGBVZ02yCHx-L5VJ-Go2-t7kwV-e8qsT1tbz4r6zGGJhtU2f_gt3dSzGAz2A6nmA7nn_E-EVZlat6NdH1dmLPqCbgta7c2WWd_S7wezOEpe9LaA_A5w6ULrpqrr0Zva5cIM8Rrvg2xqh3yM_VSrXMn6-BJydfp72puyjKtUvCbrp4mI1e9-6f02_q1FcxANxdTIdWCOtA77K6G9PYrfQYZ61kLASGWLrDxmlYweOQcdd3pVPB-2Iga8lQofomL-5sjl1r0Vtq31kgzrC8lS9ByqeRSxO9UU37s12TXVIkm75dOL13Yr4vxZjsHHw4XH4c1B6zhfV2W2td75wCSEt8yXi3u9ZZ3oQN3ljCz-HOAMKc3Cf3_N0jOHAy84CMTPWQ3B2w-hF546UngPQEjfQEZRX00hO00vOYfDk6PHk3D30zjVBjm9sQ19w84rkRiSyY5lmhMg0SyDxhOUYAUyNm4aSaxcpoZoDzBM1ppqjIgOEMfULG1boyT0mg8hlIONMxLYoENw4pdKHxl8erjMHP7JGo3XOqfaV52_DkPG1DCs9SkMl2QJVpxFOQaY-87aZcuDIrv_ty0hIy9TjRUSGFPPx62rN_m_ac7PYC_4KMt5e1eUnu6Kttubl85aXmB6pXhdc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+cut+bases+in+undirected+networks&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Bunke%2C+Florentine&rft.au=Hamacher%2C+Horst+W.&rft.au=Maffioli%2C+Francesco&rft.au=Schwahn%2C+Anne+M.&rft.date=2010-02-28&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=158&rft.issue=4&rft.spage=277&rft.epage=290&rft_id=info:doi/10.1016%2Fj.dam.2009.07.015&rft.externalDocID=S0166218X09002972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon