Conditional variational autoencoder with Gaussian process regression recognition for parametric models

In this article, we present a data-driven method for parametric models with noisy observation data. Gaussian process regression based reduced order modeling (GPR-based ROM) can realize fast online predictions without using equations in the offline stage. However, GPR-based ROM does not perform well...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 438; p. 115532
Main Authors: Zhang, Xuehan, Jiang, Lijian
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2024
Subjects:
ISSN:0377-0427, 1879-1778
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we present a data-driven method for parametric models with noisy observation data. Gaussian process regression based reduced order modeling (GPR-based ROM) can realize fast online predictions without using equations in the offline stage. However, GPR-based ROM does not perform well for complex systems since POD projection are naturally linear. Conditional variational autoencoder (CVAE) can address this issue via nonlinear neural networks but it has more model complexity, which poses challenges for training and tuning hyperparameters. To this end, we propose a framework of CVAE with Gaussian process regression recognition (CVAE-GPRR). The proposed method consists of a recognition model and a likelihood model. In the recognition model, we first extract low-dimensional features from data by POD to filter the redundant information with high frequency. And then a non-parametric model GPR is used to learn the map from parameters to POD latent variables, which can also alleviate the impact of noise. CVAE-GPRR can achieve the similar accuracy to CVAE but with fewer parameters. In the likelihood model, neural networks are used to reconstruct data. Besides the samples of POD latent variables and input parameters, physical variables are also added as the inputs to make predictions in the whole physical space. This cannot be achieved by either GPR-based ROM or CVAE. Moreover, the numerical results show that CVAE-GPRR may alleviate the overfitting issue in CVAE.
AbstractList In this article, we present a data-driven method for parametric models with noisy observation data. Gaussian process regression based reduced order modeling (GPR-based ROM) can realize fast online predictions without using equations in the offline stage. However, GPR-based ROM does not perform well for complex systems since POD projection are naturally linear. Conditional variational autoencoder (CVAE) can address this issue via nonlinear neural networks but it has more model complexity, which poses challenges for training and tuning hyperparameters. To this end, we propose a framework of CVAE with Gaussian process regression recognition (CVAE-GPRR). The proposed method consists of a recognition model and a likelihood model. In the recognition model, we first extract low-dimensional features from data by POD to filter the redundant information with high frequency. And then a non-parametric model GPR is used to learn the map from parameters to POD latent variables, which can also alleviate the impact of noise. CVAE-GPRR can achieve the similar accuracy to CVAE but with fewer parameters. In the likelihood model, neural networks are used to reconstruct data. Besides the samples of POD latent variables and input parameters, physical variables are also added as the inputs to make predictions in the whole physical space. This cannot be achieved by either GPR-based ROM or CVAE. Moreover, the numerical results show that CVAE-GPRR may alleviate the overfitting issue in CVAE.
ArticleNumber 115532
Author Jiang, Lijian
Zhang, Xuehan
Author_xml – sequence: 1
  givenname: Xuehan
  surname: Zhang
  fullname: Zhang, Xuehan
  email: xhzhang@tongji.edu.cn
– sequence: 2
  givenname: Lijian
  orcidid: 0000-0002-3410-1219
  surname: Jiang
  fullname: Jiang, Lijian
  email: ljjiang@tongji.edu.cn
BookMark eNp9kMtOwzAQRS1UJNrCB7DzDyT4kdipWKEKClIlNrC2HHtcXCVxZadF_D3uY8WC1Vxp5lxpzgxNhjAAQveUlJRQ8bAtje5LRhgvKa1rzq7QlDZyUVApmwmaEi5lQSomb9AspS0hRCxoNUVuGQbrRx8G3eGDjl5fst6PAQYTLET87ccvvNL7lLwe8C4GAynhCJuYZz7P0YTNcKrBLkS801H3MEZvcJ8bunSLrp3uEtxd5hx9vjx_LF-L9fvqbfm0LgxbyLFgHBZt25JKWCp4U1eWWUe5EK4lpuKNA26ryrpGapANZdyCgVrQmoiW5xWfI3nuNTGkFMEp48fTS2PUvlOUqKMutVVZlzrqUmddmaR_yF30vY4__zKPZyZ_CAcPUSXjszSwPhsZlQ3-H_oX2aOHjg
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120651
crossref_primary_10_1177_14727978251337992
crossref_primary_10_1007_s11276_024_03800_7
crossref_primary_10_1016_j_apt_2025_104901
crossref_primary_10_1016_j_jcp_2024_113526
crossref_primary_10_1016_j_chaos_2024_115604
crossref_primary_10_1063_5_0200406
crossref_primary_10_1016_j_jcp_2024_113710
Cites_doi 10.1007/s00211-020-01141-z
10.1186/s13321-018-0286-7
10.1016/j.jcp.2018.02.037
10.1007/s10444-019-09710-z
10.1016/j.cma.2018.07.017
10.1016/j.jneumeth.2019.108377
10.1007/s11081-016-9313-6
10.1016/j.jcp.2019.01.031
10.1002/nme.4552
10.1016/j.jcp.2018.12.037
10.1146/annurev.fl.25.010193.002543
10.1016/j.cma.2020.113244
10.1016/j.crma.2004.08.006
10.1016/j.neuroimage.2019.05.048
10.1016/j.imavis.2017.01.005
10.5802/smai-jcm.74
10.1016/j.jcp.2022.111799
10.1561/2200000056
10.1109/TII.2019.2941747
10.1016/j.camwa.2021.11.001
10.1016/j.physd.2020.132797
10.1017/S0001924000007491
10.1016/j.jcp.2018.04.018
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2023.115532
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2023_115532
S0377042723004764
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-23e9bbb046d163854d2df1366fb0c438fe3d44df87ae78123dece561506b33d43
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300578000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 07:20:32 EST 2025
Tue Nov 18 22:33:51 EST 2025
Fri Feb 23 02:35:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conditional variational autoencoder
Gaussian process regression
Proper orthogonal decomposition
Parametric models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-23e9bbb046d163854d2df1366fb0c438fe3d44df87ae78123dece561506b33d43
ORCID 0000-0002-3410-1219
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2023_115532
crossref_primary_10_1016_j_cam_2023_115532
elsevier_sciencedirect_doi_10_1016_j_cam_2023_115532
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Jiang (b10) 2023; 474
Wang, Hesthaven, Ray (b13) 2019; 384
R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding Deep Neural Networks with Rectified Linear Units, in: Proceedings of the 6rd International Conference on Learning Representations, (ICLR), 2018.
Yano (b5) 2019; 45
Berziņš, Helmig, Key, Elgeti (b37) 2020
Zimmermann, Görtz (b6) 2012; 116
Loisel (b36) 2020; 146
Jiang, Ma (b2) 2020; 370
Lindqvist (b35) 2019
Salvador, Dedè, Manzoni (b14) 2021; 104
Liu, Li, Hu, Lucu, Widanage (b25) 2019; 16
Benedikt, Girg, Kotrla, Takac (b34) 2018; 2018
Kingma, Welling (b23) 2019; 12
Atkinson, Zabaras (b1) 2019; 383
Chaturantabut, Sorensen (b9) 2009
C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight uncertainty in neural networks, in: Proceedings of the International Conference on Machine Learning, 2015, pp. 1613–1622.
Barzegaran, Bosse, Norcia (b31) 2019; 328
Hesthaven, Ubbiali (b12) 2018; 363
Maulik, Botsas, Ramachandra, Mason, Pan (b16) 2021; 416
Cinelli, Marins, Silva, Netto (b24) 2021
Sohn, Lee, Yan (b21) 2015
Zhu, Zabaras (b29) 2018; 366
Berkooz, Holmes, Lumley (b11) 1993; 25
Cohen (b30) 2019; 199
Sankaran, Vatsa, Singh, Majumdar (b19) 2017; 60
Lim, Ryu, Kim, Kim (b3) 2018; 10
Lee, Chen (b17) 2013; 96
D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proceedings of the 3rd International Conference on Learning Representations, (ICLR), 2015.
Barrault, Maday, Nguyen, Patera (b8) 2004; 339
D. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: Proceedings of the 2rd International Conference on Learning Representations, (ICLR), 2014.
Jansen, Louis (b7) 2017; 18
Quarteroni, Rozza (b4) 2014
Hesthaven, Ubbiali (b38) 2018; 363
Kroese, Botev, Taimre, Vaisman (b22) 2019
Santo, Deparis, Pegolotti (b32) 2020; 416
Guo, Hesthaven (b15) 2018; 341
Rumelhart, Hinton, Williams (b18) 1987
Bhattacharya, Hosseini, Kovachki, Stuart (b33) 2020; 7
Atkinson (10.1016/j.cam.2023.115532_b1) 2019; 383
Jiang (10.1016/j.cam.2023.115532_b2) 2020; 370
Lindqvist (10.1016/j.cam.2023.115532_b35) 2019
Berkooz (10.1016/j.cam.2023.115532_b11) 1993; 25
Barzegaran (10.1016/j.cam.2023.115532_b31) 2019; 328
10.1016/j.cam.2023.115532_b28
Wang (10.1016/j.cam.2023.115532_b13) 2019; 384
Quarteroni (10.1016/j.cam.2023.115532_b4) 2014
Hesthaven (10.1016/j.cam.2023.115532_b38) 2018; 363
10.1016/j.cam.2023.115532_b20
Sankaran (10.1016/j.cam.2023.115532_b19) 2017; 60
10.1016/j.cam.2023.115532_b27
10.1016/j.cam.2023.115532_b26
Benedikt (10.1016/j.cam.2023.115532_b34) 2018; 2018
Bhattacharya (10.1016/j.cam.2023.115532_b33) 2020; 7
Lim (10.1016/j.cam.2023.115532_b3) 2018; 10
Kroese (10.1016/j.cam.2023.115532_b22) 2019
Berziņš (10.1016/j.cam.2023.115532_b37) 2020
Barrault (10.1016/j.cam.2023.115532_b8) 2004; 339
Hesthaven (10.1016/j.cam.2023.115532_b12) 2018; 363
Zhu (10.1016/j.cam.2023.115532_b29) 2018; 366
Cohen (10.1016/j.cam.2023.115532_b30) 2019; 199
Loisel (10.1016/j.cam.2023.115532_b36) 2020; 146
Chaturantabut (10.1016/j.cam.2023.115532_b9) 2009
Lee (10.1016/j.cam.2023.115532_b17) 2013; 96
Santo (10.1016/j.cam.2023.115532_b32) 2020; 416
Guo (10.1016/j.cam.2023.115532_b15) 2018; 341
Maulik (10.1016/j.cam.2023.115532_b16) 2021; 416
Liu (10.1016/j.cam.2023.115532_b25) 2019; 16
Rumelhart (10.1016/j.cam.2023.115532_b18) 1987
Yano (10.1016/j.cam.2023.115532_b5) 2019; 45
Salvador (10.1016/j.cam.2023.115532_b14) 2021; 104
Jansen (10.1016/j.cam.2023.115532_b7) 2017; 18
Sohn (10.1016/j.cam.2023.115532_b21) 2015
Zimmermann (10.1016/j.cam.2023.115532_b6) 2012; 116
Kingma (10.1016/j.cam.2023.115532_b23) 2019; 12
Cinelli (10.1016/j.cam.2023.115532_b24) 2021
Li (10.1016/j.cam.2023.115532_b10) 2023; 474
References_xml – volume: 328
  year: 2019
  ident: b31
  article-title: EEGSourceSim: A framework for realistic simulation of EEG scalp data using MRI-based forward models and biologically plausible signals and noise
  publication-title: J. Neurosci. Methods
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: b11
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 384
  start-page: 289
  year: 2019
  end-page: 307
  ident: b13
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J. Comput. Phys.
– reference: R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding Deep Neural Networks with Rectified Linear Units, in: Proceedings of the 6rd International Conference on Learning Representations, (ICLR), 2018.
– start-page: 20
  year: 2019
  end-page: 21
  ident: b22
  article-title: Data Science and Machine Learning: Mathematical and Statistical Methods
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: b23
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
– volume: 146
  start-page: 369
  year: 2020
  end-page: 400
  ident: b36
  article-title: Efficient algorithms for solving the p-Laplacian in polynomial time
  publication-title: Numer. Math.
– volume: 370
  year: 2020
  ident: b2
  article-title: A hybrid model reduction method for stochastic parabolic optimal control problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b29
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: b38
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
– volume: 474
  year: 2023
  ident: b10
  article-title: Data-driven reduced-order modeling for nonautonomous dynamical systems in multiscale media
  publication-title: J. Comput. Phys.
– volume: 96
  start-page: 599
  year: 2013
  end-page: 627
  ident: b17
  article-title: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems
  publication-title: Int. J. Numer. Methods Eng.
– year: 2014
  ident: b4
  article-title: Reduced Order Methods for Modeling and Computational Reduction
– volume: 16
  start-page: 3767
  year: 2019
  end-page: 3777
  ident: b25
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 1
  year: 2019
  end-page: 3
  ident: b35
  article-title: Notes on the Stationary P-Laplace Equation
– volume: 60
  start-page: 64
  year: 2017
  end-page: 74
  ident: b19
  article-title: Group sparse autoencoder
  publication-title: Image Vis. Comput.
– volume: 18
  start-page: 105
  year: 2017
  end-page: 132
  ident: b7
  article-title: Use of reduced-order models in well control optimization
  publication-title: Optim. Eng.
– reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proceedings of the 3rd International Conference on Learning Representations, (ICLR), 2015.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 17
  ident: b34
  article-title: Origin of the p-Laplacian and A. Missbach
  publication-title: Electron. J. Differential Equations
– start-page: 4316
  year: 2009
  end-page: 4321
  ident: b9
  article-title: Discrete empirical interpolation for nonlinear model reduction
  publication-title: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: b12
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
– start-page: 120
  year: 2021
  end-page: 121
  ident: b24
  article-title: Variational Methods for Machine Learning with Applications to Deep Networks
– volume: 416
  year: 2020
  ident: b32
  article-title: Data driven approximation of parametric PDEs by reduced basis and neural networks
  publication-title: J. Comput. Phys.
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: b21
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Advances in Neural Information Processing Systems
– volume: 339
  start-page: 667
  year: 2004
  end-page: 672
  ident: b8
  article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: C. R. Math.
– volume: 341
  start-page: 807
  year: 2018
  end-page: 826
  ident: b15
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 199
  start-page: 81
  year: 2019
  end-page: 86
  ident: b30
  article-title: A better way to define and describe morlet wavelets for time-frequency analysis
  publication-title: NeuroImage
– volume: 10
  start-page: 1
  year: 2018
  end-page: 9
  ident: b3
  article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design
  publication-title: J. Cheminform.
– volume: 45
  start-page: 2287
  year: 2019
  end-page: 2320
  ident: b5
  article-title: Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws
  publication-title: Adv. Comput. Math.
– volume: 416
  year: 2021
  ident: b16
  article-title: Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
  publication-title: Physica D: Nonlinear Phenom.
– reference: C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight uncertainty in neural networks, in: Proceedings of the International Conference on Machine Learning, 2015, pp. 1613–1622.
– volume: 383
  start-page: 166
  year: 2019
  end-page: 195
  ident: b1
  article-title: Structured Bayesian Gaussian process latent variable model: Applications to data-driven dimensionality reduction and high-dimensional inversion
  publication-title: J. Comput. Phys.
– volume: 116
  start-page: 1079
  year: 2012
  end-page: 1100
  ident: b6
  article-title: Improved extrapolation of steady turbulent aerodynamics using a non-linear POD-based reduced order model
  publication-title: Aeronaut. J.
– start-page: 318
  year: 1987
  end-page: 362
  ident: b18
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations
– volume: 104
  start-page: 1
  year: 2021
  end-page: 13
  ident: b14
  article-title: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks
  publication-title: Comput. Math. Appl.
– reference: D. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: Proceedings of the 2rd International Conference on Learning Representations, (ICLR), 2014.
– volume: 7
  start-page: 121
  year: 2020
  end-page: 157
  ident: b33
  article-title: Model reduction and neural networks for parametric PDEs
  publication-title: SMAI J. Comput. Math.
– year: 2020
  ident: b37
  article-title: Standardized non-intrusive reduced order modeling using different regression models with application to complex flow problems
– volume: 146
  start-page: 369
  year: 2020
  ident: 10.1016/j.cam.2023.115532_b36
  article-title: Efficient algorithms for solving the p-Laplacian in polynomial time
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01141-z
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.cam.2023.115532_b3
  article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-018-0286-7
– volume: 363
  start-page: 55
  year: 2018
  ident: 10.1016/j.cam.2023.115532_b12
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.037
– volume: 45
  start-page: 2287
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b5
  article-title: Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-019-09710-z
– volume: 363
  start-page: 55
  year: 2018
  ident: 10.1016/j.cam.2023.115532_b38
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.037
– volume: 341
  start-page: 807
  year: 2018
  ident: 10.1016/j.cam.2023.115532_b15
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.07.017
– year: 2014
  ident: 10.1016/j.cam.2023.115532_b4
– year: 2020
  ident: 10.1016/j.cam.2023.115532_b37
– start-page: 120
  year: 2021
  ident: 10.1016/j.cam.2023.115532_b24
– volume: 328
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b31
  article-title: EEGSourceSim: A framework for realistic simulation of EEG scalp data using MRI-based forward models and biologically plausible signals and noise
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108377
– volume: 18
  start-page: 105
  year: 2017
  ident: 10.1016/j.cam.2023.115532_b7
  article-title: Use of reduced-order models in well control optimization
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-016-9313-6
– volume: 384
  start-page: 289
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b13
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.031
– volume: 96
  start-page: 599
  year: 2013
  ident: 10.1016/j.cam.2023.115532_b17
  article-title: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4552
– start-page: 318
  year: 1987
  ident: 10.1016/j.cam.2023.115532_b18
  article-title: Learning internal representations by error propagation
– start-page: 20
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b22
– volume: 383
  start-page: 166
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b1
  article-title: Structured Bayesian Gaussian process latent variable model: Applications to data-driven dimensionality reduction and high-dimensional inversion
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.12.037
– volume: 25
  start-page: 539
  year: 1993
  ident: 10.1016/j.cam.2023.115532_b11
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– start-page: 1
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b35
– volume: 370
  year: 2020
  ident: 10.1016/j.cam.2023.115532_b2
  article-title: A hybrid model reduction method for stochastic parabolic optimal control problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113244
– volume: 339
  start-page: 667
  year: 2004
  ident: 10.1016/j.cam.2023.115532_b8
  article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2004.08.006
– volume: 199
  start-page: 81
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b30
  article-title: A better way to define and describe morlet wavelets for time-frequency analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.05.048
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.cam.2023.115532_b34
  article-title: Origin of the p-Laplacian and A. Missbach
  publication-title: Electron. J. Differential Equations
– ident: 10.1016/j.cam.2023.115532_b27
– volume: 60
  start-page: 64
  year: 2017
  ident: 10.1016/j.cam.2023.115532_b19
  article-title: Group sparse autoencoder
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.005
– volume: 7
  start-page: 121
  year: 2020
  ident: 10.1016/j.cam.2023.115532_b33
  article-title: Model reduction and neural networks for parametric PDEs
  publication-title: SMAI J. Comput. Math.
  doi: 10.5802/smai-jcm.74
– volume: 474
  year: 2023
  ident: 10.1016/j.cam.2023.115532_b10
  article-title: Data-driven reduced-order modeling for nonautonomous dynamical systems in multiscale media
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111799
– start-page: 3483
  year: 2015
  ident: 10.1016/j.cam.2023.115532_b21
  article-title: Learning structured output representation using deep conditional generative models
– volume: 416
  year: 2020
  ident: 10.1016/j.cam.2023.115532_b32
  article-title: Data driven approximation of parametric PDEs by reduced basis and neural networks
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 307
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b23
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– ident: 10.1016/j.cam.2023.115532_b20
– volume: 16
  start-page: 3767
  year: 2019
  ident: 10.1016/j.cam.2023.115532_b25
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2941747
– volume: 104
  start-page: 1
  year: 2021
  ident: 10.1016/j.cam.2023.115532_b14
  article-title: Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2021.11.001
– volume: 416
  year: 2021
  ident: 10.1016/j.cam.2023.115532_b16
  article-title: Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
  publication-title: Physica D: Nonlinear Phenom.
  doi: 10.1016/j.physd.2020.132797
– start-page: 4316
  year: 2009
  ident: 10.1016/j.cam.2023.115532_b9
  article-title: Discrete empirical interpolation for nonlinear model reduction
– ident: 10.1016/j.cam.2023.115532_b26
– volume: 116
  start-page: 1079
  year: 2012
  ident: 10.1016/j.cam.2023.115532_b6
  article-title: Improved extrapolation of steady turbulent aerodynamics using a non-linear POD-based reduced order model
  publication-title: Aeronaut. J.
  doi: 10.1017/S0001924000007491
– ident: 10.1016/j.cam.2023.115532_b28
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.cam.2023.115532_b29
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
SSID ssj0006914
Score 2.4687278
Snippet In this article, we present a data-driven method for parametric models with noisy observation data. Gaussian process regression based reduced order modeling...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115532
SubjectTerms Conditional variational autoencoder
Gaussian process regression
Parametric models
Proper orthogonal decomposition
Title Conditional variational autoencoder with Gaussian process regression recognition for parametric models
URI https://dx.doi.org/10.1016/j.cam.2023.115532
Volume 438
WOSCitedRecordID wos001300578000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVF6iQJEPnECW0tiJnWNVFdoKKiSKtLcosR3YFc2u9lH15zOTsZNAKQIkLtHKu15HM5_G4_HMN4y9stLCoaJKRaUSJVQltagS3QjjrHGmhj3Xma7ZhD47M5NJ8TFctK-6dgK6bc3VVbH4r6qGMVA2ls7-hbr7P4UB-AxKhyeoHZ5_pPjDOd5CU4TvEk7CMdpXbdZzZK1E8ogu-vqu2qy6EsoFFQu8WfovlBWLJS4hrygkIiJD-AU237LUO2d1g1NruyYR_ZJIBBvc3IueH7b34vtg9WTjvw4oPZ2G4ffTWQRviEukakjMomDZtYIZKtLSWmB7D9p-yOYaXYh9TZ18olFWxPlyzcBTrGEGh3ekEUglmPwsCxHSH3mzP-FauFSKpGI6V7fZdqqzAkzf9sHJ0eS037Dzgijg47vFy-8uDfCnhX7tvoxckvMddj-InR8QBh6wW759yO59GAT9iDUjNPARGvgIDRzRwCMaeEADH9DAR2jggAY-oIETGh6zz2-Pzg-PRWitIWxa6LVIpS_quk5U7tAhz5RLXbMv87ypEwuyb7x0SrnG6Mpr8AGl89Zn2DwgryV8JZ-wrXbe-qeYGweyVdYWiUXyfmPgDKEyK1WTm6p2fpclUWKlDbzz2P7kWxkTDGclCLlEIZck5F32up-yINKV3_1YRTWUwWskb7AEzNw87dm_TXvO7g5gf8G21suN32N37OV6ulq-DMj6DjFelRg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+variational+autoencoder+with+Gaussian+process+regression+recognition+for+parametric+models&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Zhang%2C+Xuehan&rft.au=Jiang%2C+Lijian&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=438&rft_id=info:doi/10.1016%2Fj.cam.2023.115532&rft.externalDocID=S0377042723004764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon