A Selberg trace formula for hypercomplex analytic cusp forms

A breakthrough in developing a theory of hypercomplex analytic modular forms over Clifford algebras has been the proof of the existence of non-trivial cusp forms for important discrete arithmetic subgroups of the Ahlfors–Vahlen group. Hypercomplex analytic modular forms in turn also include Maaß for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of number theory Ročník 148; s. 398 - 428
Hlavní autoři: Grob, D., Kraußhar, R.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2015
Témata:
ISSN:0022-314X, 1096-1658
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A breakthrough in developing a theory of hypercomplex analytic modular forms over Clifford algebras has been the proof of the existence of non-trivial cusp forms for important discrete arithmetic subgroups of the Ahlfors–Vahlen group. Hypercomplex analytic modular forms in turn also include Maaß forms associated to particular eigenvalues as special cases. In this paper we establish a Selberg trace formula for this new class of automorphic forms. In particular, we show that the dimension of the space of hypercomplex-analytic cusp forms is finite. Finally, we describe the space of Eisenstein series and give a dimension formula for the complete space of k-holomorphic Cliffordian modular forms.
ISSN:0022-314X
1096-1658
DOI:10.1016/j.jnt.2014.09.002