SHREC 2022: Protein–ligand binding site recognition

This paper presents the methods that have participated in the SHREC 2022 contest on protein–ligand binding site recognition. The prediction of protein- ligand binding regions is an active research domain in computational biophysics and structural biology and plays a relevant role for molecular docki...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & graphics Ročník 107; s. 20 - 31
Hlavní autori: Gagliardi, Luca, Raffo, Andrea, Fugacci, Ulderico, Biasotti, Silvia, Rocchia, Walter, Huang, Hao, Amor, Boulbaba Ben, Fang, Yi, Zhang, Yuanyuan, Wang, Xiao, Christoffer, Charles, Kihara, Daisuke, Axenopoulos, Apostolos, Mylonas, Stelios, Daras, Petros
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2022
Predmet:
ISSN:0097-8493, 1873-7684
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents the methods that have participated in the SHREC 2022 contest on protein–ligand binding site recognition. The prediction of protein- ligand binding regions is an active research domain in computational biophysics and structural biology and plays a relevant role for molecular docking and drug design. The goal of the contest is to assess the effectiveness of computational methods in recognizing ligand binding sites in a protein based on its geometrical structure. Performances of the segmentation algorithms are analyzed according to two evaluation scores describing the capacity of a putative pocket to contact a ligand and to pinpoint the correct binding region. Despite some methods perform remarkably, we show that simple non-machine-learning approaches remain very competitive against data-driven algorithms. In general, the task of pocket detection remains a challenging learning problem which suffers of intrinsic difficulties due to the lack of negative examples (data imbalance problem). [Display omitted] •A new contest for binding site detection in a protein.•Proteins are provided both as molecular surfaces and in anonymized PQR format.•Analysis of computational methods for recognizing ligand binding sites in a protein.•Analysis of the performances of the methods that participated in SHREC 2022.
AbstractList This paper presents the methods that have participated in the SHREC 2022 contest on protein–ligand binding site recognition. The prediction of protein- ligand binding regions is an active research domain in computational biophysics and structural biology and plays a relevant role for molecular docking and drug design. The goal of the contest is to assess the effectiveness of computational methods in recognizing ligand binding sites in a protein based on its geometrical structure. Performances of the segmentation algorithms are analyzed according to two evaluation scores describing the capacity of a putative pocket to contact a ligand and to pinpoint the correct binding region. Despite some methods perform remarkably, we show that simple non-machine-learning approaches remain very competitive against data-driven algorithms. In general, the task of pocket detection remains a challenging learning problem which suffers of intrinsic difficulties due to the lack of negative examples (data imbalance problem). [Display omitted] •A new contest for binding site detection in a protein.•Proteins are provided both as molecular surfaces and in anonymized PQR format.•Analysis of computational methods for recognizing ligand binding sites in a protein.•Analysis of the performances of the methods that participated in SHREC 2022.
Author Axenopoulos, Apostolos
Zhang, Yuanyuan
Kihara, Daisuke
Biasotti, Silvia
Raffo, Andrea
Mylonas, Stelios
Gagliardi, Luca
Rocchia, Walter
Amor, Boulbaba Ben
Huang, Hao
Daras, Petros
Fugacci, Ulderico
Fang, Yi
Christoffer, Charles
Wang, Xiao
Author_xml – sequence: 1
  givenname: Luca
  surname: Gagliardi
  fullname: Gagliardi, Luca
  email: luca.gagliardi@iit.it
  organization: CONCEPT Lab, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
– sequence: 2
  givenname: Andrea
  surname: Raffo
  fullname: Raffo, Andrea
  email: andrea.raffo@ge.imati.cnr.it
  organization: Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova, Italy
– sequence: 3
  givenname: Ulderico
  orcidid: 0000-0003-3062-997X
  surname: Fugacci
  fullname: Fugacci, Ulderico
  email: ulderico.fugacci@ge.imati.cnr.it
  organization: Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova, Italy
– sequence: 4
  givenname: Silvia
  surname: Biasotti
  fullname: Biasotti, Silvia
  email: silvia.biasotti@ge.imati.cnr.it
  organization: Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova, Italy
– sequence: 5
  givenname: Walter
  surname: Rocchia
  fullname: Rocchia, Walter
  email: walter.rocchia@iit.it
  organization: CONCEPT Lab, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
– sequence: 6
  givenname: Hao
  surname: Huang
  fullname: Huang, Hao
  email: hh1811@nyu.edu
  organization: Computer Science and Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, USA
– sequence: 7
  givenname: Boulbaba Ben
  surname: Amor
  fullname: Amor, Boulbaba Ben
  email: boulbaba.amor@inceptioniai.org
  organization: Inception Institute of Artificial Intelligence, Masdar City, Abu Dhabi, United Arab Emirates
– sequence: 8
  givenname: Yi
  surname: Fang
  fullname: Fang, Yi
  email: yfang@nyu.edu
  organization: Electrical and Computer Engineering, New York University Abu Dhabi & Tandon School of Engineering, New York University, Saadiyat Island, Abu Dhabi, United Arab Emirates
– sequence: 9
  givenname: Yuanyuan
  surname: Zhang
  fullname: Zhang, Yuanyuan
  email: zhang038@purdue.edu
  organization: Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN 47907, USA
– sequence: 10
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  email: wang3702@purdue.edu
  organization: Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN 47907, USA
– sequence: 11
  givenname: Charles
  surname: Christoffer
  fullname: Christoffer, Charles
  email: christ35@purdue.edu
  organization: Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN 47907, USA
– sequence: 12
  givenname: Daisuke
  surname: Kihara
  fullname: Kihara, Daisuke
  email: dkihara@purdue.edu
  organization: Department of Biological Sciences, Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN 47907, USA
– sequence: 13
  givenname: Apostolos
  surname: Axenopoulos
  fullname: Axenopoulos, Apostolos
  email: axenop@iti.gr
  organization: Information Technologies Institute, Centre for Research and Technology Hellas, 57001, Greece
– sequence: 14
  givenname: Stelios
  surname: Mylonas
  fullname: Mylonas, Stelios
  email: smylonas@iti.gr
  organization: Information Technologies Institute, Centre for Research and Technology Hellas, 57001, Greece
– sequence: 15
  givenname: Petros
  surname: Daras
  fullname: Daras, Petros
  email: daras@iti.gr
  organization: Information Technologies Institute, Centre for Research and Technology Hellas, 57001, Greece
BookMark eNp9z0tOwzAQgGELFYm2cAB2uUDC2IkfgRWqCkVCAvFYW44fkaviIDtCYscduCEnwVFZsehqNvOP5lugWRiCRegcQ4UBs4ttpVVfESCkAl4B0CM0x4LXJWeimaE5QMtL0bT1CVqktAXIm6yZI_q8eVqviim8LB7jMFoffr6-d75XwRSdD8aHvkh-tEW0euiDH_0QTtGxU7tkz_7mEr3erF9Wm_L-4fZudX1fatLysSSYtXVLuBPUOnCc5Y9oRzUGIVzXCWpUxxtGFXcGiGGWMNc2jai14pQ2rF4ivr-r45BStE5qP6rpgzEqv5MY5KSXW5n1ckJI4DLrc4n_le_Rv6n4ebC52jc2kz68jTJpb4O2xmf7KM3gD9S_jN5y9w
CitedBy_id crossref_primary_10_1002_wcms_1676
crossref_primary_10_1016_j_cag_2025_104394
crossref_primary_10_1038_s42256_025_00998_9
crossref_primary_10_1007_s00371_024_03292_8
crossref_primary_10_1016_j_cag_2022_09_005
crossref_primary_10_1016_j_cag_2023_06_023
crossref_primary_10_1016_j_csbj_2025_07_054
crossref_primary_10_1109_ACCESS_2023_3341702
crossref_primary_10_1002_cbic_202200776
Cites_doi 10.1186/1471-2105-10-168
10.1016/j.cag.2020.07.010
10.1021/jm049131r
10.1016/0263-7855(95)00073-9
10.1021/ci200454v
10.1109/TNNLS.2016.2547220
10.1186/1472-6807-6-19
10.1186/1752-153X-1-7
10.1002/prot.22608
10.1007/s10822-019-00235-7
10.1038/nbt1273
10.1002/prot.22639
10.1016/j.chembiol.2011.12.013
10.1093/nar/gky473
10.1016/S0166-218X(98)00067-5
10.1111/cgf.13158
10.1186/s13321-018-0285-8
10.1093/bioinformatics/btx350
10.1016/j.cag.2021.06.010
10.1093/bioinformatics/btab009
10.1093/nar/gku928
10.1016/j.cad.2009.10.003
10.1002/prot.20305
10.1021/jm100574m
10.3389/fphar.2022.870479
10.1016/0022-2836(71)90324-X
10.1093/bioinformatics/bty761
10.1002/prot.21732
10.1016/j.asoc.2020.106250
10.1016/j.cbpa.2011.05.020
10.1021/ci800324m
10.1016/j.cag.2020.07.013
10.1021/ci100241y
10.1109/ICCV48922.2021.01595
10.1007/s10822-021-00390-w
10.1093/bioinformatics/bty374
10.1016/j.str.2011.02.015
10.1371/journal.pone.0059744
10.1016/S1093-3263(98)00002-3
10.1609/aaai.v33i01.33013991
10.1107/S0021889883010985
10.1002/jcc.21720
10.1093/nar/gkm911
10.1016/j.bpj.2019.01.018
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cag.2022.07.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7684
EndPage 31
ExternalDocumentID 10_1016_j_cag_2022_07_005
S0097849322001236
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGSOS
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LG9
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-21693927f85ef0f761875b5c1088fbb85dab7465a7fd02d6e26f94483ca755463
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843625800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0097-8493
IngestDate Sat Nov 29 07:23:54 EST 2025
Tue Nov 18 22:24:53 EST 2025
Fri Feb 23 02:38:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SHREC
Binding site prediction
3D segmentation
Molecular modeling
Computational biology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-21693927f85ef0f761875b5c1088fbb85dab7465a7fd02d6e26f94483ca755463
ORCID 0000-0003-3062-997X
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_cag_2022_07_005
crossref_primary_10_1016_j_cag_2022_07_005
elsevier_sciencedirect_doi_10_1016_j_cag_2022_07_005
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Computers & graphics
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ronneberger, Fischer, Brox (b40) 2015
Desaphy, Bret, Rognan, Kellenberger (b50) 2014; 43
Krivák, Hoksza (b19) 2018; 10
Benson, Smith, Khazanov, Dimcheff, Beaver, Dresslar (b33) 2007; 36
Decherchi, Spitaleri, Stone, Rocchia (b3) 2019; 35
Fauman, Rai, Huang (b20) 2011; 15
Le Guilloux, Schmidtke, Tuffery (b12) 2009; 10
Huang, Schroeder (b10) 2006; 6
Glaser, Rosenberg, Kessel, Pupko, Ben-Tal (b11) 2004; 58
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b37) 2017
Decherchi, Rocchia (b2) 2013; 8
Surade, Blundell (b27) 2012; 19
Kawabata (b45) 2010; 78
Wang, Flannery, Kihara (b47) 2021; 8
Chen, Zheng, Cai (b5) 2010; 42
Mylonas, Axenopoulos, Daras (b51) 2021; 37
Lee, Richards (b4) 1971; 55
Macari, Toti, Polticelli (b8) 2019; 33
Liu, Ting, Zhou (b32) 2008
Unni, Huang, Hanson, Tobias, Krishnan, Li (b35) 2011; 32
Kipf, Welling (b46) 2016
Volkamer, Kuhn, Grombacher, Rippmann, Rarey (b17) 2012; 52
Decherchi, Rocchia (b30) 2017; 28
Edelsbrunner, Facello, Liang (b7) 1998; 88
Cheng, Coleman, Smyth, Cao, Soulard, Caffrey (b18) 2007; 25
Stepniewska-Dziubinska, Zielenkiewicz, Siedlecki (b49) 2018; 34
Zhao H, Jiang L, Jia J, Torr PHS, Koltun V. Point transformer. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021. p. 16259–68.
Laskowski (b52) 1995; 13
Jiang, Wang, Hu, Kakde, Chaudhuri (b31) 2019; 33
Raffo, Fugacci, Biasotti, Rocchia, Liu, Otu (b24) 2021; 99
Hansen, Douglass, Zardecki (b39) 2005
Chen, Mizianty, Gao, Kurgan (b22) 2011; 19
Surade, Blundell (b41) 2012; 19
Mylonas, Axenopoulos, Daras (b48) 2021; 37
Halgren (b13) 2009; 49
Langenfeld, Peng, Lai, Rosin, Aderinwale, Terashi (b23) 2020; 91
Aguti, Gardini, Bertazzo, Decherchi, Cavalli (b28) 2022
Itani, Lecron, Fortemps (b29) 2020; 91
Marchand, Pirard, Ertl, Sirockin (b9) 2021; 35
Simões, Lopes, Dias, Fernandes, Pereira, Jorge (b6) 2017; 36
Jiménez, Doerr, Martínez-Rosell, Rose, De Fabritiis (b21) 2017; 33
Volkamer, Griewel, Grombacher, Rarey (b36) 2010; 50
Ester, Kriegel, Sander, Xu (b42) 1996; vol. 96
Tripathi, Kellogg (b55) 2010; 78
Hajduk, Huth, Fesik (b14) 2005; 48
Weisel, Proschak, Schneider (b54) 2007; 1
Tian, Chen, Lei, Zhao, Liang (b56) 2018; 46
Gagliardi (b34) 2021
Connolly (b1) 1983; 16
Gubins, Chaillet, van der Schot, Veltkamp, Förster, Hao (b25) 2020; 91
Li, Turuvekere, Agrawal, La, Ramani, Kihara (b44) 2008; 71
Krivák, Hoksza (b43) 2015
Amaro (b26) 2019; 116
Schmidtke, Guilloux, Shorkar (b15) 2017
Schmidtke, Barril (b16) 2010; 53
Hendlich, Rippmann, Barnickel (b53) 1997; 15
Edelsbrunner (10.1016/j.cag.2022.07.005_b7) 1998; 88
Decherchi (10.1016/j.cag.2022.07.005_b30) 2017; 28
Vaswani (10.1016/j.cag.2022.07.005_b37) 2017
Decherchi (10.1016/j.cag.2022.07.005_b2) 2013; 8
Amaro (10.1016/j.cag.2022.07.005_b26) 2019; 116
10.1016/j.cag.2022.07.005_b38
Jiang (10.1016/j.cag.2022.07.005_b31) 2019; 33
Surade (10.1016/j.cag.2022.07.005_b41) 2012; 19
Hansen (10.1016/j.cag.2022.07.005_b39) 2005
Chen (10.1016/j.cag.2022.07.005_b22) 2011; 19
Stepniewska-Dziubinska (10.1016/j.cag.2022.07.005_b49) 2018; 34
Laskowski (10.1016/j.cag.2022.07.005_b52) 1995; 13
Macari (10.1016/j.cag.2022.07.005_b8) 2019; 33
Mylonas (10.1016/j.cag.2022.07.005_b51) 2021; 37
Aguti (10.1016/j.cag.2022.07.005_b28) 2022
Connolly (10.1016/j.cag.2022.07.005_b1) 1983; 16
Decherchi (10.1016/j.cag.2022.07.005_b3) 2019; 35
Wang (10.1016/j.cag.2022.07.005_b47) 2021; 8
Jiménez (10.1016/j.cag.2022.07.005_b21) 2017; 33
Kawabata (10.1016/j.cag.2022.07.005_b45) 2010; 78
Benson (10.1016/j.cag.2022.07.005_b33) 2007; 36
Hendlich (10.1016/j.cag.2022.07.005_b53) 1997; 15
Weisel (10.1016/j.cag.2022.07.005_b54) 2007; 1
Mylonas (10.1016/j.cag.2022.07.005_b48) 2021; 37
Tian (10.1016/j.cag.2022.07.005_b56) 2018; 46
Unni (10.1016/j.cag.2022.07.005_b35) 2011; 32
Glaser (10.1016/j.cag.2022.07.005_b11) 2004; 58
Krivák (10.1016/j.cag.2022.07.005_b43) 2015
Volkamer (10.1016/j.cag.2022.07.005_b17) 2012; 52
Raffo (10.1016/j.cag.2022.07.005_b24) 2021; 99
Itani (10.1016/j.cag.2022.07.005_b29) 2020; 91
Gagliardi (10.1016/j.cag.2022.07.005_b34) 2021
Volkamer (10.1016/j.cag.2022.07.005_b36) 2010; 50
Schmidtke (10.1016/j.cag.2022.07.005_b16) 2010; 53
Ester (10.1016/j.cag.2022.07.005_b42) 1996; vol. 96
Kipf (10.1016/j.cag.2022.07.005_b46) 2016
Liu (10.1016/j.cag.2022.07.005_b32) 2008
Simões (10.1016/j.cag.2022.07.005_b6) 2017; 36
Lee (10.1016/j.cag.2022.07.005_b4) 1971; 55
Chen (10.1016/j.cag.2022.07.005_b5) 2010; 42
Hajduk (10.1016/j.cag.2022.07.005_b14) 2005; 48
Schmidtke (10.1016/j.cag.2022.07.005_b15) 2017
Le Guilloux (10.1016/j.cag.2022.07.005_b12) 2009; 10
Surade (10.1016/j.cag.2022.07.005_b27) 2012; 19
Langenfeld (10.1016/j.cag.2022.07.005_b23) 2020; 91
Li (10.1016/j.cag.2022.07.005_b44) 2008; 71
Cheng (10.1016/j.cag.2022.07.005_b18) 2007; 25
Desaphy (10.1016/j.cag.2022.07.005_b50) 2014; 43
Halgren (10.1016/j.cag.2022.07.005_b13) 2009; 49
Krivák (10.1016/j.cag.2022.07.005_b19) 2018; 10
Ronneberger (10.1016/j.cag.2022.07.005_b40) 2015
Huang (10.1016/j.cag.2022.07.005_b10) 2006; 6
Fauman (10.1016/j.cag.2022.07.005_b20) 2011; 15
Marchand (10.1016/j.cag.2022.07.005_b9) 2021; 35
Gubins (10.1016/j.cag.2022.07.005_b25) 2020; 91
Tripathi (10.1016/j.cag.2022.07.005_b55) 2010; 78
References_xml – volume: 19
  start-page: 42
  year: 2012
  end-page: 50
  ident: b41
  article-title: Structural biology and drug discovery of difficult targets: The limits of ligandability
  publication-title: Chem Biol
– volume: 36
  start-page: D674
  year: 2007
  end-page: D678
  ident: b33
  article-title: Binding MOAD, a high-quality protein ligand database
  publication-title: Nucleic Acids Res
– volume: 46
  start-page: W363
  year: 2018
  end-page: W367
  ident: b56
  article-title: CASTp 3.0: Computed atlas of surface topography of proteins
  publication-title: Nucleic Acids Res
– volume: 34
  start-page: 3666
  year: 2018
  end-page: 3674
  ident: b49
  article-title: Development and evaluation of a deep learning model for protein–ligand binding affinity prediction
  publication-title: Bioinformatics
– volume: 71
  start-page: 670
  year: 2008
  end-page: 683
  ident: b44
  article-title: Characterization of local geometry of protein surfaces with the visibility criterion
  publication-title: Proteins
– volume: 91
  year: 2020
  ident: b29
  article-title: A one-class classification decision tree based on kernel density estimation
  publication-title: Appl Soft Comput
– volume: 19
  start-page: 42
  year: 2012
  end-page: 50
  ident: b27
  article-title: Structural biology and drug discovery of difficult targets: The limits of ligandability
  publication-title: Chem Biol
– start-page: 234
  year: 2015
  end-page: 241
  ident: b40
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention – MICCAI 2015
– volume: 33
  start-page: 887
  year: 2019
  end-page: 903
  ident: b8
  article-title: Computational methods and tools for binding site recognition between proteins and small molecules: From classical geometrical approaches to modern machine learning strategies
  publication-title: J Comput Aided Mol Des
– volume: 28
  start-page: 1722
  year: 2017
  end-page: 1729
  ident: b30
  article-title: Import vector domain description: A kernel logistic one-class learning algorithm
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 10
  start-page: 168
  year: 2009
  ident: b12
  article-title: Fpocket: An open source platform for ligand pocket detection
  publication-title: BMC Bioinformatics
– volume: 35
  start-page: 1241
  year: 2019
  end-page: 1243
  ident: b3
  article-title: NanoShaper–VMD interface: Computing and visualizing surfaces, pockets and channels in molecular systems
  publication-title: Bioinformatics
– volume: 91
  start-page: 189
  year: 2020
  end-page: 198
  ident: b23
  article-title: SHREC 2020: Multi-domain protein shape retrieval challenge
  publication-title: Comput Graph
– year: 2016
  ident: b46
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 116
  start-page: 753
  year: 2019
  end-page: 754
  ident: b26
  article-title: Will the real cryptic pocket please stand out?
  publication-title: Biophys J
– volume: 78
  start-page: 1195
  year: 2010
  end-page: 1211
  ident: b45
  article-title: Detection of multiscale pockets on protein surfaces using mathematical morphology
  publication-title: Proteins
– volume: 8
  start-page: 1
  year: 2013
  end-page: 15
  ident: b2
  article-title: A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale
  publication-title: PLoS One
– volume: 55
  start-page: 379
  year: 1971
  end-page: IN4
  ident: b4
  article-title: The interpretation of protein structures: Estimation of static accessibility
  publication-title: J Mol Biol
– start-page: 413
  year: 2008
  end-page: 422
  ident: b32
  article-title: Isolation forest
  publication-title: 2008 eighth IEEE international conference on data mining
– volume: 99
  start-page: 1
  year: 2021
  end-page: 21
  ident: b24
  article-title: SHREC 2021: Retrieval and classification of protein surfaces equipped with physical and chemical properties
  publication-title: Comput Graph
– year: 2017
  ident: b37
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems, vol. 30
– year: 2017
  ident: b15
  article-title: Fpocket: Scalable high performance pocket detection
– volume: vol. 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b42
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– volume: 16
  start-page: 548
  year: 1983
  end-page: 558
  ident: b1
  article-title: Analytical molecular surface calculation
  publication-title: J Appl Crystallogr
– volume: 25
  start-page: 71
  year: 2007
  end-page: 75
  ident: b18
  article-title: Structure-based maximal affinity model predicts small-molecule druggability
  publication-title: Nature Biotechnol
– volume: 42
  start-page: 267
  year: 2010
  end-page: 278
  ident: b5
  article-title: Kernel modeling for molecular surfaces using a uniform solution
  publication-title: Comput Aided Des
– volume: 1
  start-page: 7
  year: 2007
  ident: b54
  article-title: PocketPicker: Analysis of ligand binding-sites with shape descriptors
  publication-title: Chem Cent J
– volume: 35
  start-page: 737
  year: 2021
  end-page: 750
  ident: b9
  article-title: CAVIAR: A method for automatic cavity detection, description and decomposition into subcavities
  publication-title: J Comput Aided Mol Des
– volume: 52
  start-page: 360
  year: 2012
  end-page: 372
  ident: b17
  article-title: Combining global and local measures for structure-based druggability predictions
  publication-title: J Chem Inf Model
– volume: 58
  start-page: 610
  year: 2004
  end-page: 617
  ident: b11
  article-title: The ConSurf-HSSP database: The mapping of evolutionary conservation among homologs onto PDB structures
  publication-title: Proteins
– volume: 33
  start-page: 3036
  year: 2017
  end-page: 3042
  ident: b21
  article-title: DeepSite: Protein-binding site predictor using 3D-convolutional neural networks
  publication-title: Bioinformatics
– volume: 19
  start-page: 613
  year: 2011
  end-page: 621
  ident: b22
  article-title: A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds
  publication-title: Structure
– year: 2021
  ident: b34
  article-title: MOAD ligand finder
– year: 2005
  ident: b39
  article-title: Mesh enhancement: Selected elliptic methods, foundations and applications
– volume: 33
  start-page: 3991
  year: 2019
  end-page: 3998
  ident: b31
  article-title: Fast incremental SVDD learning algorithm with the Gaussian kernel
  publication-title: AAAI
– volume: 13
  start-page: 323
  year: 1995
  end-page: 330
  ident: b52
  article-title: SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions
  publication-title: J Mol Graph
– volume: 37
  start-page: 1681
  year: 2021
  end-page: 1690
  ident: b48
  article-title: DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins
  publication-title: Bioinformatics
– volume: 36
  start-page: 643
  year: 2017
  end-page: 683
  ident: b6
  article-title: Geometric detection algorithms for cavities on protein surfaces in molecular graphics: A survey: Detection algorithms for cavities
  publication-title: Comput Graph Forum
– year: 2022
  ident: b28
  article-title: Probabilistic pocket druggability prediction via one-class learning
  publication-title: Front Pharmacol
– volume: 15
  start-page: 359
  year: 1997
  end-page: 363
  ident: b53
  article-title: LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins
  publication-title: J Mol Graph Model
– volume: 6
  start-page: 19
  year: 2006
  ident: b10
  article-title: LIGSITE CSC : Predicting ligand binding sites using the Connolly surface and degree of conservation
  publication-title: BMC Struct Biol
– volume: 53
  start-page: 5858
  year: 2010
  end-page: 5867
  ident: b16
  article-title: Understanding and predicting druggability. A high-throughput method for detection of drug binding sites
  publication-title: J Med Chem
– volume: 32
  start-page: 1488
  year: 2011
  end-page: 1491
  ident: b35
  article-title: Web servers and services for electrostatics calculations with APBS and PDB2PQR
  publication-title: J Comput Chem
– volume: 48
  start-page: 2518
  year: 2005
  end-page: 2525
  ident: b14
  article-title: Druggability indices for protein targets derived from NMR-based screening data
  publication-title: J Med Chem
– start-page: 41
  year: 2015
  end-page: 52
  ident: b43
  article-title: P2RANK: Knowledge-based ligand binding site prediction using aggregated local features
  publication-title: Algorithms for computational biology
– volume: 15
  start-page: 463
  year: 2011
  end-page: 468
  ident: b20
  article-title: Structure-based druggability assessment—identifying suitable targets for small molecule therapeutics
  publication-title: Curr Opin Chem Biol
– reference: Zhao H, Jiang L, Jia J, Torr PHS, Koltun V. Point transformer. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021. p. 16259–68.
– volume: 49
  start-page: 377
  year: 2009
  end-page: 389
  ident: b13
  article-title: Identifying and characterizing binding sites and assessing druggability
  publication-title: J Chem Inf Model
– volume: 78
  start-page: 825
  year: 2010
  end-page: 842
  ident: b55
  article-title: A novel and efficient tool for locating and characterizing protein cavities and binding sites
  publication-title: Proteins
– volume: 91
  start-page: 279
  year: 2020
  end-page: 289
  ident: b25
  article-title: SHREC 2020: Classification in cryo-electron tomograms
  publication-title: Comput Graph
– volume: 88
  start-page: 83
  year: 1998
  end-page: 102
  ident: b7
  article-title: On the definition and the construction of pockets in macromolecules
  publication-title: Discrete Appl Math
– volume: 8
  year: 2021
  ident: b47
  article-title: Protein docking model evaluation by graph neural networks
  publication-title: Front Mol Biosci
– volume: 37
  start-page: 1681
  year: 2021
  end-page: 1690
  ident: b51
  article-title: DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins
  publication-title: Bioinformatics
– volume: 43
  start-page: D399
  year: 2014
  end-page: D404
  ident: b50
  article-title: SC-PDB: A 3D-database of ligandable binding sites—10 years on
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 39
  year: 2018
  ident: b19
  article-title: P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure
  publication-title: J Cheminformatics
– volume: 50
  start-page: 2041
  year: 2010
  end-page: 2052
  ident: b36
  article-title: Analyzing the topology of active sites: On the prediction of pockets and subpockets
  publication-title: J Chem Inf Model
– volume: 8
  year: 2021
  ident: 10.1016/j.cag.2022.07.005_b47
  article-title: Protein docking model evaluation by graph neural networks
  publication-title: Front Mol Biosci
– volume: 10
  start-page: 168
  issue: 1
  year: 2009
  ident: 10.1016/j.cag.2022.07.005_b12
  article-title: Fpocket: An open source platform for ligand pocket detection
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-168
– volume: 91
  start-page: 279
  year: 2020
  ident: 10.1016/j.cag.2022.07.005_b25
  article-title: SHREC 2020: Classification in cryo-electron tomograms
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2020.07.010
– volume: 48
  start-page: 2518
  issue: 7
  year: 2005
  ident: 10.1016/j.cag.2022.07.005_b14
  article-title: Druggability indices for protein targets derived from NMR-based screening data
  publication-title: J Med Chem
  doi: 10.1021/jm049131r
– volume: 13
  start-page: 323
  issue: 5
  year: 1995
  ident: 10.1016/j.cag.2022.07.005_b52
  article-title: SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions
  publication-title: J Mol Graph
  doi: 10.1016/0263-7855(95)00073-9
– volume: 52
  start-page: 360
  issue: 2
  year: 2012
  ident: 10.1016/j.cag.2022.07.005_b17
  article-title: Combining global and local measures for structure-based druggability predictions
  publication-title: J Chem Inf Model
  doi: 10.1021/ci200454v
– volume: 28
  start-page: 1722
  issue: 7
  year: 2017
  ident: 10.1016/j.cag.2022.07.005_b30
  article-title: Import vector domain description: A kernel logistic one-class learning algorithm
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2547220
– volume: 6
  start-page: 19
  issue: 1
  year: 2006
  ident: 10.1016/j.cag.2022.07.005_b10
  article-title: LIGSITE CSC : Predicting ligand binding sites using the Connolly surface and degree of conservation
  publication-title: BMC Struct Biol
  doi: 10.1186/1472-6807-6-19
– volume: 1
  start-page: 7
  issue: 1
  year: 2007
  ident: 10.1016/j.cag.2022.07.005_b54
  article-title: PocketPicker: Analysis of ligand binding-sites with shape descriptors
  publication-title: Chem Cent J
  doi: 10.1186/1752-153X-1-7
– volume: 78
  start-page: 825
  issue: 4
  year: 2010
  ident: 10.1016/j.cag.2022.07.005_b55
  article-title: A novel and efficient tool for locating and characterizing protein cavities and binding sites
  publication-title: Proteins
  doi: 10.1002/prot.22608
– year: 2005
  ident: 10.1016/j.cag.2022.07.005_b39
– volume: 33
  start-page: 887
  issue: 10
  year: 2019
  ident: 10.1016/j.cag.2022.07.005_b8
  article-title: Computational methods and tools for binding site recognition between proteins and small molecules: From classical geometrical approaches to modern machine learning strategies
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-019-00235-7
– year: 2016
  ident: 10.1016/j.cag.2022.07.005_b46
– volume: 25
  start-page: 71
  issue: 1
  year: 2007
  ident: 10.1016/j.cag.2022.07.005_b18
  article-title: Structure-based maximal affinity model predicts small-molecule druggability
  publication-title: Nature Biotechnol
  doi: 10.1038/nbt1273
– volume: 78
  start-page: 1195
  issue: 5
  year: 2010
  ident: 10.1016/j.cag.2022.07.005_b45
  article-title: Detection of multiscale pockets on protein surfaces using mathematical morphology
  publication-title: Proteins
  doi: 10.1002/prot.22639
– volume: 19
  start-page: 42
  issue: 1
  year: 2012
  ident: 10.1016/j.cag.2022.07.005_b41
  article-title: Structural biology and drug discovery of difficult targets: The limits of ligandability
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2011.12.013
– volume: 46
  start-page: W363
  issue: W1
  year: 2018
  ident: 10.1016/j.cag.2022.07.005_b56
  article-title: CASTp 3.0: Computed atlas of surface topography of proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky473
– volume: vol. 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.cag.2022.07.005_b42
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 19
  start-page: 42
  issue: 1
  year: 2012
  ident: 10.1016/j.cag.2022.07.005_b27
  article-title: Structural biology and drug discovery of difficult targets: The limits of ligandability
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2011.12.013
– volume: 88
  start-page: 83
  issue: 1–3
  year: 1998
  ident: 10.1016/j.cag.2022.07.005_b7
  article-title: On the definition and the construction of pockets in macromolecules
  publication-title: Discrete Appl Math
  doi: 10.1016/S0166-218X(98)00067-5
– volume: 36
  start-page: 643
  issue: 8
  year: 2017
  ident: 10.1016/j.cag.2022.07.005_b6
  article-title: Geometric detection algorithms for cavities on protein surfaces in molecular graphics: A survey: Detection algorithms for cavities
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.13158
– volume: 10
  start-page: 39
  issue: 1
  year: 2018
  ident: 10.1016/j.cag.2022.07.005_b19
  article-title: P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-018-0285-8
– volume: 33
  start-page: 3036
  issue: 19
  year: 2017
  ident: 10.1016/j.cag.2022.07.005_b21
  article-title: DeepSite: Protein-binding site predictor using 3D-convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx350
– volume: 99
  start-page: 1
  year: 2021
  ident: 10.1016/j.cag.2022.07.005_b24
  article-title: SHREC 2021: Retrieval and classification of protein surfaces equipped with physical and chemical properties
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2021.06.010
– volume: 37
  start-page: 1681
  issue: 12
  year: 2021
  ident: 10.1016/j.cag.2022.07.005_b48
  article-title: DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab009
– volume: 43
  start-page: D399
  issue: D1
  year: 2014
  ident: 10.1016/j.cag.2022.07.005_b50
  article-title: SC-PDB: A 3D-database of ligandable binding sites—10 years on
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku928
– volume: 42
  start-page: 267
  issue: 4
  year: 2010
  ident: 10.1016/j.cag.2022.07.005_b5
  article-title: Kernel modeling for molecular surfaces using a uniform solution
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2009.10.003
– year: 2017
  ident: 10.1016/j.cag.2022.07.005_b15
– volume: 58
  start-page: 610
  issue: 3
  year: 2004
  ident: 10.1016/j.cag.2022.07.005_b11
  article-title: The ConSurf-HSSP database: The mapping of evolutionary conservation among homologs onto PDB structures
  publication-title: Proteins
  doi: 10.1002/prot.20305
– volume: 53
  start-page: 5858
  issue: 15
  year: 2010
  ident: 10.1016/j.cag.2022.07.005_b16
  article-title: Understanding and predicting druggability. A high-throughput method for detection of drug binding sites
  publication-title: J Med Chem
  doi: 10.1021/jm100574m
– year: 2022
  ident: 10.1016/j.cag.2022.07.005_b28
  article-title: Probabilistic pocket druggability prediction via one-class learning
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2022.870479
– volume: 55
  start-page: 379
  issue: 3
  year: 1971
  ident: 10.1016/j.cag.2022.07.005_b4
  article-title: The interpretation of protein structures: Estimation of static accessibility
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(71)90324-X
– volume: 35
  start-page: 1241
  issue: 7
  year: 2019
  ident: 10.1016/j.cag.2022.07.005_b3
  article-title: NanoShaper–VMD interface: Computing and visualizing surfaces, pockets and channels in molecular systems
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty761
– volume: 71
  start-page: 670
  issue: 2
  year: 2008
  ident: 10.1016/j.cag.2022.07.005_b44
  article-title: Characterization of local geometry of protein surfaces with the visibility criterion
  publication-title: Proteins
  doi: 10.1002/prot.21732
– year: 2021
  ident: 10.1016/j.cag.2022.07.005_b34
– volume: 91
  year: 2020
  ident: 10.1016/j.cag.2022.07.005_b29
  article-title: A one-class classification decision tree based on kernel density estimation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106250
– volume: 15
  start-page: 463
  issue: 4
  year: 2011
  ident: 10.1016/j.cag.2022.07.005_b20
  article-title: Structure-based druggability assessment—identifying suitable targets for small molecule therapeutics
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2011.05.020
– volume: 49
  start-page: 377
  issue: 2
  year: 2009
  ident: 10.1016/j.cag.2022.07.005_b13
  article-title: Identifying and characterizing binding sites and assessing druggability
  publication-title: J Chem Inf Model
  doi: 10.1021/ci800324m
– start-page: 234
  year: 2015
  ident: 10.1016/j.cag.2022.07.005_b40
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– volume: 91
  start-page: 189
  year: 2020
  ident: 10.1016/j.cag.2022.07.005_b23
  article-title: SHREC 2020: Multi-domain protein shape retrieval challenge
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2020.07.013
– volume: 50
  start-page: 2041
  issue: 11
  year: 2010
  ident: 10.1016/j.cag.2022.07.005_b36
  article-title: Analyzing the topology of active sites: On the prediction of pockets and subpockets
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100241y
– ident: 10.1016/j.cag.2022.07.005_b38
  doi: 10.1109/ICCV48922.2021.01595
– volume: 35
  start-page: 737
  issue: 6
  year: 2021
  ident: 10.1016/j.cag.2022.07.005_b9
  article-title: CAVIAR: A method for automatic cavity detection, description and decomposition into subcavities
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-021-00390-w
– start-page: 413
  year: 2008
  ident: 10.1016/j.cag.2022.07.005_b32
  article-title: Isolation forest
– volume: 34
  start-page: 3666
  issue: 21
  year: 2018
  ident: 10.1016/j.cag.2022.07.005_b49
  article-title: Development and evaluation of a deep learning model for protein–ligand binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty374
– volume: 19
  start-page: 613
  issue: 5
  year: 2011
  ident: 10.1016/j.cag.2022.07.005_b22
  article-title: A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds
  publication-title: Structure
  doi: 10.1016/j.str.2011.02.015
– year: 2017
  ident: 10.1016/j.cag.2022.07.005_b37
  article-title: Attention is all you need
– volume: 8
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.cag.2022.07.005_b2
  article-title: A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059744
– volume: 15
  start-page: 359
  issue: 6
  year: 1997
  ident: 10.1016/j.cag.2022.07.005_b53
  article-title: LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins
  publication-title: J Mol Graph Model
  doi: 10.1016/S1093-3263(98)00002-3
– volume: 33
  start-page: 3991
  year: 2019
  ident: 10.1016/j.cag.2022.07.005_b31
  article-title: Fast incremental SVDD learning algorithm with the Gaussian kernel
  publication-title: AAAI
  doi: 10.1609/aaai.v33i01.33013991
– start-page: 41
  year: 2015
  ident: 10.1016/j.cag.2022.07.005_b43
  article-title: P2RANK: Knowledge-based ligand binding site prediction using aggregated local features
– volume: 16
  start-page: 548
  issue: 5
  year: 1983
  ident: 10.1016/j.cag.2022.07.005_b1
  article-title: Analytical molecular surface calculation
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889883010985
– volume: 32
  start-page: 1488
  issue: 7
  year: 2011
  ident: 10.1016/j.cag.2022.07.005_b35
  article-title: Web servers and services for electrostatics calculations with APBS and PDB2PQR
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21720
– volume: 37
  start-page: 1681
  issue: 12
  year: 2021
  ident: 10.1016/j.cag.2022.07.005_b51
  article-title: DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab009
– volume: 36
  start-page: D674
  issue: Database
  year: 2007
  ident: 10.1016/j.cag.2022.07.005_b33
  article-title: Binding MOAD, a high-quality protein ligand database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm911
– volume: 116
  start-page: 753
  issue: 5
  year: 2019
  ident: 10.1016/j.cag.2022.07.005_b26
  article-title: Will the real cryptic pocket please stand out?
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.01.018
SSID ssj0002264
Score 2.4362524
Snippet This paper presents the methods that have participated in the SHREC 2022 contest on protein–ligand binding site recognition. The prediction of protein- ligand...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms 3D segmentation
Binding site prediction
Computational biology
Molecular modeling
SHREC
Title SHREC 2022: Protein–ligand binding site recognition
URI https://dx.doi.org/10.1016/j.cag.2022.07.005
Volume 107
WOSCitedRecordID wos000843625800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002264
  issn: 0097-8493
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH2SpA986KnBwR1bK6u3EDZNewghm8DejCxLi8PiDdndkGP_Q_5hf0lnJPnRJ22hF7MIy9ZqPs9oRp9mGHtT5RKtbJnFUPEyzpTQsbLaxNYCoHmW2ihfbEIcH-fTqTwJwZylKycgmia_uZGX_1XU2IbCpqOzfyHu7qHYgL9R6HhFseP1jwQ_OTodH-wCWk3y9k8oDwM6_4HTkM7rGYXKy9qfZqG9492ORBRE1CYuCAUflg4eLrP1gBr_Qc3mNcHLefbrnvFzqqxddFzJrvlwPVNau7vPqTI4IrAP0KvlYuV5BZN6fl2rYSwC3diW1RYCZO0hmZ6R5JSuREOY-UKIe8br2VykMe0BfqOIff3bVpUmA6PsLcUP6t5HHi7QlZ_t0XhcHtaE97atYxxO3IEVHASAT1t3l22C4BIV4eb-x_H0U2e-6WSxT13qR91uhTtS4Hcv-vliZrBAOXvEHgbPItr3iHjM7pjmCXswyDf5lHGHjYge_T4KyPjy-dZjIgqYiAgT0QATz9j54fjs4CgOdTNiDVKsYqAEOxKEzbmxiRUjnG1ecv0OLYoty5xXqhTZiCthqwSqkYGRleimp1oJIi2mz9lGs2jMFosgFWClhETg5Amp6cs2mZUKJOg0VdssaSeg0CGpPNU2mRcte_CiwDkr6I8VCVEd-DZ723W59BlVfndz1s5qEZaEfqlXIAR-3W3n37q9YPd7VL9kG6urtXnF7unrVb28eh2A8hVsQH4a
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SHREC+2022%3A+Protein%E2%80%93ligand+binding+site+recognition&rft.jtitle=Computers+%26+graphics&rft.au=Gagliardi%2C+Luca&rft.au=Raffo%2C+Andrea&rft.au=Fugacci%2C+Ulderico&rft.au=Biasotti%2C+Silvia&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0097-8493&rft.eissn=1873-7684&rft.volume=107&rft.spage=20&rft.epage=31&rft_id=info:doi/10.1016%2Fj.cag.2022.07.005&rft.externalDocID=S0097849322001236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon