Applying landmarks to enhance memory-based collaborative filtering

Memory-based Collaborative Filtering (CF) has been a widely used approach for personalised recommendation with considerable success in many applications. An important issue regarding memory-based CF lies in similarity computation: the sparsity of the rating matrix leads to similarity computations ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 513; S. 412 - 428
Hauptverfasser: Lima, Gustavo R., Mello, Carlos E., Lyra, Adria, Zimbrao, Geraldo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2020
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Memory-based Collaborative Filtering (CF) has been a widely used approach for personalised recommendation with considerable success in many applications. An important issue regarding memory-based CF lies in similarity computation: the sparsity of the rating matrix leads to similarity computations based on few co-rated items between users, resulting in high sensitive predictions. Additionally, the ‘sparse’ similarity computation has high computational cost, due to the dimensionality of the item space. In this paper, we pursue both these issues. We propose a new model to compute similarity by representing users (or items) through their distances to preselected users, named landmarks. Such user modelling allows the introduction of more ratings into similarity computations through transitive relations created by the landmarks. Unlike conventional memory-based CF, the proposal builds a new user space defined by distances to landmarks, avoiding sensitivity in similarity computations. Findings from our experiments show that the proposed modelling achieves better accuracy than the ‘sparse’ similarity representation in all tested datasets, and has also yielded competitive accuracy results against the compared model-based CF algorithms. Furthermore, the proposed implementation has beaten all compared methods in terms of computational performance, becoming a promising alternative to memory-based CF algorithms for large datasets.
AbstractList Memory-based Collaborative Filtering (CF) has been a widely used approach for personalised recommendation with considerable success in many applications. An important issue regarding memory-based CF lies in similarity computation: the sparsity of the rating matrix leads to similarity computations based on few co-rated items between users, resulting in high sensitive predictions. Additionally, the ‘sparse’ similarity computation has high computational cost, due to the dimensionality of the item space. In this paper, we pursue both these issues. We propose a new model to compute similarity by representing users (or items) through their distances to preselected users, named landmarks. Such user modelling allows the introduction of more ratings into similarity computations through transitive relations created by the landmarks. Unlike conventional memory-based CF, the proposal builds a new user space defined by distances to landmarks, avoiding sensitivity in similarity computations. Findings from our experiments show that the proposed modelling achieves better accuracy than the ‘sparse’ similarity representation in all tested datasets, and has also yielded competitive accuracy results against the compared model-based CF algorithms. Furthermore, the proposed implementation has beaten all compared methods in terms of computational performance, becoming a promising alternative to memory-based CF algorithms for large datasets.
Author Lima, Gustavo R.
Lyra, Adria
Zimbrao, Geraldo
Mello, Carlos E.
Author_xml – sequence: 1
  givenname: Gustavo R.
  orcidid: 0000-0001-5951-2316
  surname: Lima
  fullname: Lima, Gustavo R.
  email: grlima@cos.ufrj.br
  organization: PESC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 68511, Brazil
– sequence: 2
  givenname: Carlos E.
  orcidid: 0000-0002-3632-4002
  surname: Mello
  fullname: Mello, Carlos E.
  email: mello@uniriotec.br
  organization: PPGI, Federal University of the State of Rio de Janeiro, Av. Pasteur 458 - Urca, Rio de Janeiro, Brazil
– sequence: 3
  givenname: Adria
  surname: Lyra
  fullname: Lyra, Adria
  email: adrialyra@ufrrj.br
  organization: DCC, Federal Rural University of Rio de Janeiro, Nova Iguacu, Rio de Janeiro, Brazil
– sequence: 4
  givenname: Geraldo
  surname: Zimbrao
  fullname: Zimbrao, Geraldo
  email: zimbrao@cos.ufrj.br
  organization: PESC, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro 68511, Brazil
BookMark eNp9kE1LAzEQhoNUsK3-AG_7B3adZHeTXTzV4hcUvOg5ZJNZTd0mJQmF_ntT9OShp2EGnpd5nwWZOe-QkFsKFQXK77aVdbFiQPu8V9DQCzKnnWAlZz2dkTkAgxJY216RRYxbAGgE53PysNrvp6N1n8WknNmp8B2L5At0X8ppLHa48-FYDiqiKbSfJjX4oJI9YDHaKWHI5DW5HNUU8eZvLsnH0-P7-qXcvD2_rlebUrNepJKOOILhfd3wtu5Mz7GjHVWKC1WzUQGCEoOgHbS6x6bVvG4GquloWC1MC329JOI3VwcfY8BRapvyL96loOwkKciTCrmVWYU8qTidsopM0n_kPtjc9XiWuf9lMFc6WAwyaovZibEBdZLG2zP0D2VheX8
CitedBy_id crossref_primary_10_1016_j_ins_2021_11_040
crossref_primary_10_1109_ACCESS_2021_3140121
crossref_primary_10_1016_j_knosys_2020_106372
crossref_primary_10_1109_JIOT_2024_3375855
crossref_primary_10_1016_j_ipm_2020_102384
crossref_primary_10_1155_2022_5184221
crossref_primary_10_1016_j_ins_2021_07_084
crossref_primary_10_3390_app11188369
crossref_primary_10_1109_TCE_2024_3411875
crossref_primary_10_1016_j_ipm_2021_102566
crossref_primary_10_1007_s10489_023_05041_1
crossref_primary_10_1007_s11042_023_17428_w
crossref_primary_10_1016_j_patcog_2025_112271
crossref_primary_10_1016_j_ins_2021_12_123
crossref_primary_10_1016_j_eswa_2023_122440
crossref_primary_10_1016_j_eswa_2024_125301
crossref_primary_10_1016_j_engappai_2023_106535
crossref_primary_10_1007_s11227_024_06221_7
crossref_primary_10_1016_j_eswa_2023_120190
crossref_primary_10_1016_j_elerap_2022_101133
crossref_primary_10_1016_j_eswa_2024_123648
crossref_primary_10_1016_j_procs_2024_09_314
crossref_primary_10_1111_exsy_12893
crossref_primary_10_1007_s11042_024_20579_z
crossref_primary_10_1016_j_ins_2022_12_030
crossref_primary_10_1016_j_ins_2022_06_042
Cites_doi 10.1016/j.knosys.2013.11.006
10.1016/j.ins.2011.07.047
10.1007/978-3-319-29659-3_5
10.1145/362003.362025
10.1016/j.dss.2016.06.005
10.1109/MC.2009.263
10.1016/j.eswa.2013.09.005
10.1016/j.eswa.2016.09.040
10.1016/j.isprsjprs.2013.12.003
10.1007/s10791-017-9295-9
10.1016/j.knosys.2017.11.003
10.1145/2556270
10.1109/TKDE.2005.99
10.1007/BF02070824
10.1016/j.ins.2017.04.025
10.1016/j.knosys.2015.12.018
10.1016/j.knosys.2013.06.010
10.1007/978-1-4899-7637-6_2
10.1007/978-3-319-29659-3_2
10.1145/963770.963772
10.1016/j.dss.2015.03.008
10.1016/j.patcog.2008.11.039
10.1145/502807.502808
10.1016/j.knosys.2013.03.012
10.1016/j.patrec.2009.06.013
10.1016/j.ins.2016.10.009
10.1007/978-0-387-85820-3_1
10.1007/s10796-016-9668-4
10.1016/j.ins.2017.02.009
10.1016/j.ins.2007.07.024
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2019.10.041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 428
ExternalDocumentID 10_1016_j_ins_2019_10_041
S0020025519310096
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-1fef0d69346538d96e8181aa67a32fa0e0a7b71805c9e45c634b1c1fd237d5093
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512221800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:25:46 EST 2025
Tue Nov 18 21:19:01 EST 2025
Fri Feb 23 02:49:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Landmarks
Memory-based algorithms
Collaborative filtering
Non-linear transformations
Recommender system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-1fef0d69346538d96e8181aa67a32fa0e0a7b71805c9e45c634b1c1fd237d5093
ORCID 0000-0001-5951-2316
0000-0002-3632-4002
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2019_10_041
crossref_primary_10_1016_j_ins_2019_10_041
elsevier_sciencedirect_doi_10_1016_j_ins_2019_10_041
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Abdollahi, Nasraoui (bib0001) 2017
Bobadilla, Ortega, Hernando, de Rivera (bib0011) 2013; 51
Bennett, Lanning (bib0008) 2007
Herlocker, Konstan, Borchers, Riedl (bib0019) 1999
Ahn (bib0006) 2008; 178
Elahi, Ricci, Rubens (bib0016) 2014; 5
Shi, Larson, Hanjalic (bib0044) 2014; 47
Bank, Douglas (bib0007) 1993; 1
Wu, Zhu, Li, Cui, Huang, Li, Chen, Xu (bib0049) 2017; 393
Adomavicius, Tuzhilin (bib0002) 2005; 17
Koren, Bell, Volinsky (bib0026) 2009; 42
C.C. Aggarwal, Neighborhood-Based Collaborative Filtering, Springer International Publishing, Cham, pp. 29–70. doi
F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender Systems Handbook, Springer US, Boston, MA, pp. 1–35. doi
Zhao, Yao, Kwok, Lee (bib0050) 2017
Hu, Yang, Jing (bib0023) 2009; 30
Salakhutdinov, Mnih (bib0041) 2008
Hernando, Bobadilla, Ortega (bib0021) 2016; 97
.
Harper, Konstan (bib0018) 2015; 5
Agarwal, Chen (bib0003) 2009
Bobadilla, Ortega, Hernando, Gutiérrez (bib0009) 2013; 46
Lika, Kolomvatsos, Hadjiefthymiades (bib0029) 2014; 41
Lu, Wu, Mao, Wang, Zhang (bib0031) 2015; 74
Lathia, Hailes, Capra (bib0027) 2008
Lee, Choi (bib0028) 2009; 42
Mesas, Bellogín (bib0032) 2017
Shi, Yin, Bao, Lei (bib0043) 2016
Mirbakhsh, Ling (bib0033) 2018; 20
Paterek (bib0035) 2007
X. Ning, C. Desrosiers, G. Karypis, A Comprehensive Survey of Neighborhood-Based Recommendation Methods, Springer US, Boston, MA, pp. 37–76. doi
Revathy, Anitha (bib0038) 2019
Pinheiro, Cavalcanti, Tsang (bib0036) 2017; 406–407
Huang, Chen, Chen (bib0024) 2016; 89
Silva, Tenenbaum (bib0045) 2002
C.C. Aggarwal, Knowledge-Based Recommender Systems, Springer International Publishing, Cham, pp. 167–197. doi
Golbeck, Hendler (bib0017) 2006; vol. 1
Sun, Halevy, Benedetto, Czaja, Liu, Wu, Shi, Li (bib0046) 2014; 89
Bobadilla, Ortega, Hernando, de Rivera (bib0010) 2013; 51
Herlocker, Konstan, Terveen, Riedl (bib0020) 2004; 22
Wei, He, Chen, Zhou, Tang (bib0048) 2017; 69
Sarwar, Karypis, Konstan, Riedl (bib0042) 2001
Ebesu, Fang (bib0015) 2017; 20
Kolomiyets, Moens (bib0025) 2011; 181
Hernando, Bobadilla, Ortega, Gutiérrez (bib0022) 2017; 376
Villegas, SÃ!‘nchez, DÃaz-Cely, Tamura (bib0047) 2018; 140
Chávez, Navarro, Baeza-Yates, Marroquín (bib0014) 2001; 33
Liu, Hu, Mian, Tian, Zhu (bib0030) 2014; 56
Salakhutdinov, Mnih (bib0040) 2007
Boratto (bib0012) 2016
Platt (bib0037) 2003
Burkhard, Keller (bib0013) 1973; 16
Boratto (10.1016/j.ins.2019.10.041_bib0012) 2016
Revathy (10.1016/j.ins.2019.10.041_bib0038) 2019
Burkhard (10.1016/j.ins.2019.10.041_bib0013) 1973; 16
Bobadilla (10.1016/j.ins.2019.10.041_bib0010) 2013; 51
Elahi (10.1016/j.ins.2019.10.041_bib0016) 2014; 5
Huang (10.1016/j.ins.2019.10.041_bib0024) 2016; 89
Sun (10.1016/j.ins.2019.10.041_bib0046) 2014; 89
Sarwar (10.1016/j.ins.2019.10.041_bib0042) 2001
Koren (10.1016/j.ins.2019.10.041_bib0026) 2009; 42
10.1016/j.ins.2019.10.041_bib0034
Herlocker (10.1016/j.ins.2019.10.041_bib0019) 1999
Lika (10.1016/j.ins.2019.10.041_bib0029) 2014; 41
Silva (10.1016/j.ins.2019.10.041_bib0045) 2002
Hernando (10.1016/j.ins.2019.10.041_bib0022) 2017; 376
10.1016/j.ins.2019.10.041_bib0039
Mesas (10.1016/j.ins.2019.10.041_bib0032) 2017
Salakhutdinov (10.1016/j.ins.2019.10.041_bib0040) 2007
Harper (10.1016/j.ins.2019.10.041_bib0018) 2015; 5
Golbeck (10.1016/j.ins.2019.10.041_bib0017) 2006; vol. 1
Adomavicius (10.1016/j.ins.2019.10.041_bib0002) 2005; 17
Zhao (10.1016/j.ins.2019.10.041_bib0050) 2017
Bank (10.1016/j.ins.2019.10.041_bib0007) 1993; 1
Abdollahi (10.1016/j.ins.2019.10.041_bib0001) 2017
Lee (10.1016/j.ins.2019.10.041_bib0028) 2009; 42
Ahn (10.1016/j.ins.2019.10.041_bib0006) 2008; 178
Chávez (10.1016/j.ins.2019.10.041_bib0014) 2001; 33
Hu (10.1016/j.ins.2019.10.041_bib0023) 2009; 30
Wu (10.1016/j.ins.2019.10.041_bib0049) 2017; 393
Paterek (10.1016/j.ins.2019.10.041_bib0035) 2007
Herlocker (10.1016/j.ins.2019.10.041_bib0020) 2004; 22
10.1016/j.ins.2019.10.041_bib0004
10.1016/j.ins.2019.10.041_bib0005
Pinheiro (10.1016/j.ins.2019.10.041_bib0036) 2017; 406–407
Salakhutdinov (10.1016/j.ins.2019.10.041_bib0041) 2008
Liu (10.1016/j.ins.2019.10.041_bib0030) 2014; 56
Lu (10.1016/j.ins.2019.10.041_bib0031) 2015; 74
Mirbakhsh (10.1016/j.ins.2019.10.041_bib0033) 2018; 20
Villegas (10.1016/j.ins.2019.10.041_bib0047) 2018; 140
Wei (10.1016/j.ins.2019.10.041_bib0048) 2017; 69
Bennett (10.1016/j.ins.2019.10.041_bib0008) 2007
Shi (10.1016/j.ins.2019.10.041_bib0044) 2014; 47
Agarwal (10.1016/j.ins.2019.10.041_bib0003) 2009
Bobadilla (10.1016/j.ins.2019.10.041_bib0011) 2013; 51
Hernando (10.1016/j.ins.2019.10.041_bib0021) 2016; 97
Shi (10.1016/j.ins.2019.10.041_bib0043) 2016
Platt (10.1016/j.ins.2019.10.041_bib0037) 2003
Bobadilla (10.1016/j.ins.2019.10.041_bib0009) 2013; 46
Ebesu (10.1016/j.ins.2019.10.041_bib0015) 2017; 20
Lathia (10.1016/j.ins.2019.10.041_bib0027) 2008
Kolomiyets (10.1016/j.ins.2019.10.041_bib0025) 2011; 181
References_xml – volume: 42
  start-page: 30
  year: 2009
  end-page: 37
  ident: bib0026
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
– volume: 30
  start-page: 1416
  year: 2009
  end-page: 1423
  ident: bib0023
  article-title: An incremental dimensionality reduction method on discriminant information for pattern classification
  publication-title: Pattern Recognit. Lett.
– volume: 69
  start-page: 29
  year: 2017
  end-page: 39
  ident: bib0048
  article-title: Collaborative filtering and deep learning based recommendation system for cold start items
  publication-title: Expert Syst. Appl.
– start-page: 79
  year: 2017
  end-page: 83
  ident: bib0001
  article-title: Using explainability for constrained matrix factorization
  publication-title: Proceedings of the Eleventh ACM Conference on Recommender Systems
– reference: F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender Systems Handbook, Springer US, Boston, MA, pp. 1–35. doi:
– start-page: 721
  year: 2002
  end-page: 728
  ident: bib0045
  article-title: Global versus local methods in nonlinear dimensionality reduction
  publication-title: Proceedings of the 15th International Conference on Neural Information Processing Systems
– volume: 20
  start-page: 111
  year: 2018
  end-page: 124
  ident: bib0033
  article-title: Leveraging clustering to improve collaborative filtering
  publication-title: Inf. Syst. Frontiers
– volume: 33
  start-page: 273
  year: 2001
  end-page: 321
  ident: bib0014
  article-title: Searching in metric spaces
  publication-title: ACM Comput. Surv.
– volume: 97
  start-page: 188
  year: 2016
  end-page: 202
  ident: bib0021
  article-title: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model
  publication-title: Knowl. Based Syst.
– volume: 181
  start-page: 5412
  year: 2011
  end-page: 5434
  ident: bib0025
  article-title: A survey on question answering technology from an information retrieval perspective
  publication-title: Inf. Sci.
– volume: 56
  start-page: 156
  year: 2014
  end-page: 166
  ident: bib0030
  article-title: A new user similarity model to improve the accuracy of collaborative filtering
  publication-title: Knowl. Based Syst.
– volume: 376
  start-page: 216
  year: 2017
  end-page: 232
  ident: bib0022
  article-title: A probabilistic model for recommending to new cold-start non-registered users
  publication-title: Inf. Sci.
– volume: 46
  start-page: 109
  year: 2013
  end-page: 132
  ident: bib0009
  article-title: Recommender systems survey
  publication-title: Knowl. Based Syst.
– reference: C.C. Aggarwal, Knowledge-Based Recommender Systems, Springer International Publishing, Cham, pp. 167–197. doi:
– volume: 42
  start-page: 2045
  year: 2009
  end-page: 2053
  ident: bib0028
  article-title: Landmark MDS ensemble
  publication-title: Pattern Recognit.
– start-page: 427
  year: 2016
  end-page: 428
  ident: bib0012
  article-title: Group recommender systems
  publication-title: Proceedings of the 10th ACM Conference on Recommender Systems
– volume: 5
  start-page: 19:1
  year: 2015
  end-page: 19:19
  ident: bib0018
  article-title: The movielens datasets: history and context
  publication-title: ACM Trans. Interact. Intell. Syst.
– start-page: 230
  year: 1999
  end-page: 237
  ident: bib0019
  article-title: An algorithmic framework for performing collaborative filtering
  publication-title: Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 645
  year: 2017
  end-page: 654
  ident: bib0050
  article-title: Collaborative filtering with social local models
  publication-title: 2017 IEEE International Conference on Data Mining (ICDM)
– volume: vol. 1
  start-page: 282
  year: 2006
  end-page: 286
  ident: bib0017
  article-title: FilmTrust: movie recommendations using trust in web-based social networks
  publication-title: CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006.
– start-page: 19
  year: 2009
  end-page: 28
  ident: bib0003
  article-title: Regression-based latent factor models
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 20
  start-page: 109
  year: 2017
  end-page: 131
  ident: bib0015
  article-title: Neural semantic personalized ranking for item cold-start recommendation
  publication-title: Inf. Retrieval J.
– volume: 89
  start-page: 25
  year: 2014
  end-page: 36
  ident: bib0046
  article-title: UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 621
  year: 2016
  end-page: 625
  ident: bib0043
  article-title: A novel landmark point selection method for L-ISOMAP
  publication-title: 2016 12th IEEE International Conference on Control and Automation (ICCA)
– start-page: 5
  year: 2007
  end-page: 8
  ident: bib0035
  article-title: Improving regularized singular value decomposition for collaborative filtering
  publication-title: Proceedings of KDD cup and Workshop
– volume: 47
  start-page: 3:1
  year: 2014
  end-page: 3:45
  ident: bib0044
  article-title: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges
  publication-title: ACM Comput. Surv.
– volume: 51
  start-page: 27
  year: 2013
  end-page: 34
  ident: bib0011
  article-title: A similarity metric designed to speed up, using hardware, the recommender systems k-nearest neighbors algorithm
  publication-title: Knowl. Based Syst.
– volume: 89
  start-page: 17
  year: 2016
  end-page: 27
  ident: bib0024
  article-title: A novel recommendation model with Google similarity
  publication-title: Decis. Support Syst.
– start-page: 880
  year: 2008
  end-page: 887
  ident: bib0041
  article-title: Bayesian probabilistic matrix factorization using Markov chain monte carlo
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 178
  start-page: 37
  year: 2008
  end-page: 51
  ident: bib0006
  article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
  publication-title: Inf. Sci.
– volume: 17
  start-page: 734
  year: 2005
  end-page: 749
  ident: bib0002
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: C.C. Aggarwal, Neighborhood-Based Collaborative Filtering, Springer International Publishing, Cham, pp. 29–70. doi:
– reference: X. Ning, C. Desrosiers, G. Karypis, A Comprehensive Survey of Neighborhood-Based Recommendation Methods, Springer US, Boston, MA, pp. 37–76. doi:
– start-page: 1257
  year: 2007
  end-page: 1264
  ident: bib0040
  article-title: Probabilistic matrix factorization
  publication-title: Proceedings of the 20th International Conference on Neural Information Processing Systems
– start-page: 227
  year: 2008
  end-page: 234
  ident: bib0027
  article-title: kNN CF: A temporal social network
  publication-title: Proceedings of the 2008 ACM Conference on Recommender Systems
– start-page: 571
  year: 2003
  end-page: 578
  ident: bib0037
  article-title: Fast embedding of sparse music similarity graphs
  publication-title: Proceedings of the 16th International Conference on Neural Information Processing Systems
– volume: 393
  start-page: 15
  year: 2017
  end-page: 28
  ident: bib0049
  article-title: An efficient Wikipedia semantic matching approach to text document classification
  publication-title: Inf. Sci.
– volume: 406–407
  start-page: 87
  year: 2017
  end-page: 101
  ident: bib0036
  article-title: Combining dissimilarity spaces for text categorization
  publication-title: Inf. Sci.
– volume: 1
  start-page: 127
  year: 1993
  end-page: 137
  ident: bib0007
  article-title: Sparse matrix multiplication package (SMMP)
  publication-title: Adv. Comput. Math.
– volume: 16
  start-page: 230
  year: 1973
  end-page: 236
  ident: bib0013
  article-title: Some approaches to best-match file searching
  publication-title: Commun. ACM
– volume: 51
  start-page: 27
  year: 2013
  end-page: 34
  ident: bib0010
  article-title: A similarity metric designed to speed up, using hardware, the recommender systems k-nearest neighbors algorithm
  publication-title: Knowl. Based Syst.
– start-page: 285
  year: 2001
  end-page: 295
  ident: bib0042
  article-title: Item-based collaborative filtering recommendation algorithms
  publication-title: Proceedings of the 10th International Conference on World Wide Web
– start-page: 105
  year: 2019
  end-page: 115
  ident: bib0038
  article-title: Cold start problem in social recommender systems: State-of-the-art review
  publication-title: Advances in Computer Communication and Computational Sciences
– volume: 140
  start-page: 173
  year: 2018
  end-page: 200
  ident: bib0047
  article-title: Characterizing context-aware recommender systems: a systematic literature review
  publication-title: Knowl. Based Syst.
– reference: .
– volume: 41
  start-page: 2065
  year: 2014
  end-page: 2073
  ident: bib0029
  article-title: Facing the cold start problem in recommender systems
  publication-title: Expert Syst. Appl.
– start-page: 35
  year: 2007
  ident: bib0008
  article-title: The netflix prize
  publication-title: Proceedings of KDD Cup and Workshop
– volume: 5
  start-page: 13:1
  year: 2014
  end-page: 13:33
  ident: bib0016
  article-title: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 74
  start-page: 12
  year: 2015
  end-page: 32
  ident: bib0031
  article-title: Recommender system application developments: a survey
  publication-title: Decis. Support Syst.
– volume: 22
  start-page: 5
  year: 2004
  end-page: 53
  ident: bib0020
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Trans. Inf. Syst.
– start-page: 74
  year: 2017
  end-page: 78
  ident: bib0032
  article-title: Evaluating decision-aware recommender systems
  publication-title: Proceedings of the Eleventh ACM Conference on Recommender Systems
– volume: 56
  start-page: 156
  issue: Supplement C
  year: 2014
  ident: 10.1016/j.ins.2019.10.041_bib0030
  article-title: A new user similarity model to improve the accuracy of collaborative filtering
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.11.006
– start-page: 79
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0001
  article-title: Using explainability for constrained matrix factorization
– volume: 181
  start-page: 5412
  issue: 24
  year: 2011
  ident: 10.1016/j.ins.2019.10.041_bib0025
  article-title: A survey on question answering technology from an information retrieval perspective
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.07.047
– start-page: 19
  year: 2009
  ident: 10.1016/j.ins.2019.10.041_bib0003
  article-title: Regression-based latent factor models
– ident: 10.1016/j.ins.2019.10.041_bib0004
  doi: 10.1007/978-3-319-29659-3_5
– volume: 16
  start-page: 230
  issue: 4
  year: 1973
  ident: 10.1016/j.ins.2019.10.041_bib0013
  article-title: Some approaches to best-match file searching
  publication-title: Commun. ACM
  doi: 10.1145/362003.362025
– volume: 89
  start-page: 17
  issue: C
  year: 2016
  ident: 10.1016/j.ins.2019.10.041_bib0024
  article-title: A novel recommendation model with Google similarity
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.06.005
– volume: 5
  start-page: 13:1
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2019.10.041_bib0016
  article-title: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective
  publication-title: ACM Trans. Intell. Syst. Technol.
– start-page: 880
  year: 2008
  ident: 10.1016/j.ins.2019.10.041_bib0041
  article-title: Bayesian probabilistic matrix factorization using Markov chain monte carlo
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 10.1016/j.ins.2019.10.041_bib0026
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– volume: 5
  start-page: 19:1
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2019.10.041_bib0018
  article-title: The movielens datasets: history and context
  publication-title: ACM Trans. Interact. Intell. Syst.
– start-page: 285
  year: 2001
  ident: 10.1016/j.ins.2019.10.041_bib0042
  article-title: Item-based collaborative filtering recommendation algorithms
– volume: 41
  start-page: 2065
  issue: 4, Part 2
  year: 2014
  ident: 10.1016/j.ins.2019.10.041_bib0029
  article-title: Facing the cold start problem in recommender systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.005
– start-page: 721
  year: 2002
  ident: 10.1016/j.ins.2019.10.041_bib0045
  article-title: Global versus local methods in nonlinear dimensionality reduction
– volume: 69
  start-page: 29
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0048
  article-title: Collaborative filtering and deep learning based recommendation system for cold start items
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.040
– volume: 89
  start-page: 25
  issue: Supplement C
  year: 2014
  ident: 10.1016/j.ins.2019.10.041_bib0046
  article-title: UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.12.003
– volume: 20
  start-page: 109
  issue: 2
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0015
  article-title: Neural semantic personalized ranking for item cold-start recommendation
  publication-title: Inf. Retrieval J.
  doi: 10.1007/s10791-017-9295-9
– volume: 140
  start-page: 173
  year: 2018
  ident: 10.1016/j.ins.2019.10.041_bib0047
  article-title: Characterizing context-aware recommender systems: a systematic literature review
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.11.003
– volume: 47
  start-page: 3:1
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2019.10.041_bib0044
  article-title: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2556270
– start-page: 645
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0050
  article-title: Collaborative filtering with social local models
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 10.1016/j.ins.2019.10.041_bib0002
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.99
– start-page: 105
  year: 2019
  ident: 10.1016/j.ins.2019.10.041_bib0038
  article-title: Cold start problem in social recommender systems: State-of-the-art review
– volume: 1
  start-page: 127
  issue: 1
  year: 1993
  ident: 10.1016/j.ins.2019.10.041_bib0007
  article-title: Sparse matrix multiplication package (SMMP)
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02070824
– volume: vol. 1
  start-page: 282
  year: 2006
  ident: 10.1016/j.ins.2019.10.041_bib0017
  article-title: FilmTrust: movie recommendations using trust in web-based social networks
– volume: 406–407
  start-page: 87
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0036
  article-title: Combining dissimilarity spaces for text categorization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.025
– volume: 97
  start-page: 188
  issue: Supplement C
  year: 2016
  ident: 10.1016/j.ins.2019.10.041_bib0021
  article-title: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.12.018
– volume: 51
  start-page: 27
  year: 2013
  ident: 10.1016/j.ins.2019.10.041_bib0011
  article-title: A similarity metric designed to speed up, using hardware, the recommender systems k-nearest neighbors algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.06.010
– ident: 10.1016/j.ins.2019.10.041_bib0034
  doi: 10.1007/978-1-4899-7637-6_2
– ident: 10.1016/j.ins.2019.10.041_bib0005
  doi: 10.1007/978-3-319-29659-3_2
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2019.10.041_bib0020
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/963770.963772
– start-page: 5
  year: 2007
  ident: 10.1016/j.ins.2019.10.041_bib0035
  article-title: Improving regularized singular value decomposition for collaborative filtering
– start-page: 35
  year: 2007
  ident: 10.1016/j.ins.2019.10.041_bib0008
  article-title: The netflix prize
– volume: 74
  start-page: 12
  issue: Supplement C
  year: 2015
  ident: 10.1016/j.ins.2019.10.041_bib0031
  article-title: Recommender system application developments: a survey
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2015.03.008
– volume: 42
  start-page: 2045
  issue: 9
  year: 2009
  ident: 10.1016/j.ins.2019.10.041_bib0028
  article-title: Landmark MDS ensemble
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.11.039
– volume: 33
  start-page: 273
  issue: 3
  year: 2001
  ident: 10.1016/j.ins.2019.10.041_bib0014
  article-title: Searching in metric spaces
  publication-title: ACM Comput. Surv.
  doi: 10.1145/502807.502808
– volume: 46
  start-page: 109
  issue: Supplement C
  year: 2013
  ident: 10.1016/j.ins.2019.10.041_bib0009
  article-title: Recommender systems survey
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.03.012
– start-page: 1257
  year: 2007
  ident: 10.1016/j.ins.2019.10.041_bib0040
  article-title: Probabilistic matrix factorization
– volume: 30
  start-page: 1416
  issue: 15
  year: 2009
  ident: 10.1016/j.ins.2019.10.041_bib0023
  article-title: An incremental dimensionality reduction method on discriminant information for pattern classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.06.013
– start-page: 74
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0032
  article-title: Evaluating decision-aware recommender systems
– start-page: 427
  year: 2016
  ident: 10.1016/j.ins.2019.10.041_bib0012
  article-title: Group recommender systems
– volume: 376
  start-page: 216
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0022
  article-title: A probabilistic model for recommending to new cold-start non-registered users
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.10.009
– start-page: 227
  year: 2008
  ident: 10.1016/j.ins.2019.10.041_bib0027
  article-title: kNN CF: A temporal social network
– start-page: 571
  year: 2003
  ident: 10.1016/j.ins.2019.10.041_bib0037
  article-title: Fast embedding of sparse music similarity graphs
– ident: 10.1016/j.ins.2019.10.041_bib0039
  doi: 10.1007/978-0-387-85820-3_1
– volume: 20
  start-page: 111
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2019.10.041_bib0033
  article-title: Leveraging clustering to improve collaborative filtering
  publication-title: Inf. Syst. Frontiers
  doi: 10.1007/s10796-016-9668-4
– volume: 393
  start-page: 15
  year: 2017
  ident: 10.1016/j.ins.2019.10.041_bib0049
  article-title: An efficient Wikipedia semantic matching approach to text document classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.009
– volume: 178
  start-page: 37
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2019.10.041_bib0006
  article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2007.07.024
– volume: 51
  start-page: 27
  issue: Supplement C
  year: 2013
  ident: 10.1016/j.ins.2019.10.041_bib0010
  article-title: A similarity metric designed to speed up, using hardware, the recommender systems k-nearest neighbors algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.06.010
– start-page: 621
  year: 2016
  ident: 10.1016/j.ins.2019.10.041_bib0043
  article-title: A novel landmark point selection method for L-ISOMAP
– start-page: 230
  year: 1999
  ident: 10.1016/j.ins.2019.10.041_bib0019
  article-title: An algorithmic framework for performing collaborative filtering
SSID ssj0004766
Score 2.4775069
Snippet Memory-based Collaborative Filtering (CF) has been a widely used approach for personalised recommendation with considerable success in many applications. An...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Collaborative filtering
Dimensionality reduction
Landmarks
Memory-based algorithms
Non-linear transformations
Recommender system
Title Applying landmarks to enhance memory-based collaborative filtering
URI https://dx.doi.org/10.1016/j.ins.2019.10.041
Volume 513
WOSCitedRecordID wos000512221800025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZQ2WE7TAM2jW0gH6YdqIKc2InjI0PdD4TQNDGpt8iJHa0dTVDaIfjv9xz_ILAxwYFL1DqN0_Z98Xt-_t5nhN6TXBKqFImUYjRigiWRSFQWUfDWima1IqLsN5vgJyf5dCq-OUrQst9OgDdNfnkpzh_V1NAGxjalsw8wd-gUGuA1GB2OYHY43svwJq7sa5cMZ3Ehu1-9hoNufvbFAQvDrL2KjPMy9WwBBEb8e2ZWzr0rm3uKeyhvHDtvGaLw49miDz0_myKsi3b8fT-Yzy_pHMrurF2OJ-HM8VVnM7nK8ptt1nq2gEl7a3P0JkfWDpMRMPMMbKxQHABtiVXe9QNsGtPBEMkcbdp6W2ZLw_8ayG1OYQ6zD6OpHot9Q8GzElk3RbNvObNAMfTstXkBXRSmC3hfEKNxsJ7wVOQjtH7wdTI9uq6i5XZl2_8EvwbeswFvfY9_RzGDyOT0BXruphT4wEJhA63pZhM9GwhNbqIdV56CP-CBQbEb2LfQRw8aHECDVy12oMFD0OAboMEBNC_Rj0-T08MvkdtdI6oSwVdRXOuaqExQo7CXK5FpiN1iKTMuaVJLoonkJUQuJK2EZmmVUVbGVVyrhHIFYSZ9hUZN2-jXCKs0Lkt45AWcYAnTZZmb3WTTmPNUUsa2EfH_VlE56XmzA8pZcaeVttFeuOTc6q7878PMm6Bwj4INCAuA092XvXnIPd6ip9eAf4dGq-633kFPqovVbNntOiz9AaiojP4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+landmarks+to+enhance+memory-based+collaborative+filtering&rft.jtitle=Information+sciences&rft.au=Lima%2C+Gustavo+R.&rft.au=Mello%2C+Carlos+E.&rft.au=Lyra%2C+Adria&rft.au=Zimbrao%2C+Geraldo&rft.date=2020-03-01&rft.issn=0020-0255&rft.volume=513&rft.spage=412&rft.epage=428&rft_id=info:doi/10.1016%2Fj.ins.2019.10.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2019_10_041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon