Stabilization-free Virtual Element Method for 2D second order elliptic equations

In this work, we present and analyze a Stabilization-free Virtual Element high order scheme for 2D second order elliptic equation. This method is characterized by the definition of new polynomial projections that allow the definition of structure-preserving schemes. We provide a necessary and suffic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 438; s. 117839
Hlavní autoři: Berrone, Stefano, Borio, Andrea, Fassino, Davide, Marcon, Francesca
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2025
Témata:
ISSN:0045-7825
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we present and analyze a Stabilization-free Virtual Element high order scheme for 2D second order elliptic equation. This method is characterized by the definition of new polynomial projections that allow the definition of structure-preserving schemes. We provide a necessary and sufficient condition on the polynomial projection space that ensure the well-posedness of the scheme and we derive optimal a priori error estimates. Several numerical tests assess the stability of the method and the robustness in solving problems characterized by anisotropies. •Virtual Element method without an arbitrary stabilization.•Structure preserving bilinear form for 2D second order elliptic equations.•Well-posedness analysis.•Algorithm for the computation of coercive polynomial projection.•Numerical tests assessing local coercivity on several polygons, and good performance on anisotropic diffusion problems.
ISSN:0045-7825
DOI:10.1016/j.cma.2025.117839