Classification of Hyperspectral Images by Gabor Filtering Based Deep Network

In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 11; H. 4; S. 1166 - 1178
Hauptverfasser: Kang, Xudong, Li, Chengchao, Li, Shutao, Lin, Hui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-level spatial structures of different orientations and scales. Then, the Gabor features and spectral features are simply stacked to form the fused features. Afterwards, deep features are captured by training a stacked sparse autoencoder deep network with the fused features obtained above as inputs. Since the number of training samples of hyperspectral images is often very limited, which negatively affects the classification performance in deep learning, an effective way of constructing virtual samples is designed to generate more training samples, automatically. By jointly utilizing both the real and virtual samples, the parameters of the deep network can be better trained and updated, which can result in classification results of higher accuracies. Experiments performed on four real hyperspectral datasets show that the proposed method outperforms several recently proposed classification methods in terms of classification accuracies.
AbstractList In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-level spatial structures of different orientations and scales. Then, the Gabor features and spectral features are simply stacked to form the fused features. Afterwards, deep features are captured by training a stacked sparse autoencoder deep network with the fused features obtained above as inputs. Since the number of training samples of hyperspectral images is often very limited, which negatively affects the classification performance in deep learning, an effective way of constructing virtual samples is designed to generate more training samples, automatically. By jointly utilizing both the real and virtual samples, the parameters of the deep network can be better trained and updated, which can result in classification results of higher accuracies. Experiments performed on four real hyperspectral datasets show that the proposed method outperforms several recently proposed classification methods in terms of classification accuracies.
Author Kang, Xudong
Li, Chengchao
Li, Shutao
Lin, Hui
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0000-0002-3807-2531
  surname: Kang
  fullname: Kang, Xudong
  email: xudong_kang@163.com
  organization: Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Chengchao
  orcidid: 0000-0002-0585-9848
  surname: Li
  fullname: Li, Chengchao
  email: chengchao_li@163.com
  organization: Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Shutao
  surname: Li
  fullname: Li, Shutao
  email: shutao_li@hnu.edu.cn
  organization: Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Hui
  orcidid: 0000-0003-2351-4461
  surname: Lin
  fullname: Lin, Hui
  email: linhui1965@126.com
  organization: Electrical and Information Engineering, Hunan University, Changsha, China
BookMark eNqFkD1PwzAQhi1UJNrCL-hiiTnFZyd1PJZCP1AFEi1z5DiXyiVNgh2E-u9JScXAwnK3vM-d3mdAemVVIiEjYGMApu6eNtvp62bMGcgxlxMJcXRB-hwiCCASUY_0QQkVQMjCKzLwfs_YhEsl-mQ9K7T3NrdGN7YqaZXT5bFG52s0jdMFXR30Dj1Nj3Sh08rRuS0adLbc0XvtMaMPiDV9xuarcu_X5DLXhceb8x6St_njdrYM1i-L1Wy6DgxXsgkgZxJQ6VRwDSZPddZOGUoVizxlWsjMCBNimIU8jiUKZRTEWmqe8ZhxAWJIbru7tas-PtE3yb76dGX7MuEgwyjiPGRtSnUp4yrvHeaJsc1Py7aYLRJgyUle0slLTvKSs7yWFX_Y2tmDdsd_qFFHWUT8JWKAGDgT3wr6fTI
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_TCYB_2021_3051141
crossref_primary_10_1109_TGRS_2022_3195924
crossref_primary_10_1109_LGRS_2023_3317528
crossref_primary_10_1109_TGRS_2024_3432734
crossref_primary_10_1109_TGRS_2022_3179288
crossref_primary_10_1109_LGRS_2018_2866499
crossref_primary_10_1109_TCYB_2021_3080304
crossref_primary_10_1016_j_infrared_2020_103296
crossref_primary_10_3389_frai_2021_643424
crossref_primary_10_3390_rs15010257
crossref_primary_10_1016_j_infrared_2020_103455
crossref_primary_10_1080_01431161_2021_1883199
crossref_primary_10_3390_rs13061143
crossref_primary_10_3390_app12136797
crossref_primary_10_3390_rs12122016
crossref_primary_10_1109_TGRS_2019_2961681
crossref_primary_10_1109_JSTARS_2019_2939833
crossref_primary_10_1109_TGRS_2019_2907932
crossref_primary_10_3390_molecules27186042
crossref_primary_10_1109_JSTARS_2020_2992230
crossref_primary_10_1117_1_JRS_16_034523
crossref_primary_10_1109_TGRS_2022_3189015
crossref_primary_10_1109_LGRS_2019_2923540
crossref_primary_10_1016_j_neucom_2021_01_120
crossref_primary_10_1080_01431161_2020_1736730
crossref_primary_10_1016_j_neucom_2021_12_055
crossref_primary_10_1007_s00521_023_09275_5
crossref_primary_10_1080_07038992_2023_2246158
crossref_primary_10_1016_j_engappai_2020_103647
crossref_primary_10_1080_01431161_2020_1736732
crossref_primary_10_1080_01431161_2020_1736729
crossref_primary_10_1016_j_sigpro_2019_107361
crossref_primary_10_1109_TGRS_2022_3142173
crossref_primary_10_1080_2150704X_2018_1524993
crossref_primary_10_1109_ACCESS_2020_3014975
crossref_primary_10_1080_01431161_2024_2394234
crossref_primary_10_3233_JCS_220031
crossref_primary_10_3390_app12010174
crossref_primary_10_3390_electronics11213471
crossref_primary_10_1109_TGRS_2019_2931730
crossref_primary_10_3390_rs15041050
crossref_primary_10_1080_10106049_2020_1734874
crossref_primary_10_3390_rs13163232
crossref_primary_10_1109_ACCESS_2023_3332695
crossref_primary_10_1109_TGRS_2018_2886853
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1016_j_neucom_2022_05_093
crossref_primary_10_3390_rs14092227
crossref_primary_10_1016_j_micpro_2021_104313
crossref_primary_10_1016_j_patcog_2021_108224
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_1080_10106049_2021_1882006
crossref_primary_10_1109_JSTARS_2018_2866901
crossref_primary_10_1109_TGRS_2023_3257865
crossref_primary_10_3390_s20236823
crossref_primary_10_1109_ACCESS_2018_2853620
crossref_primary_10_1109_TGRS_2020_3046780
crossref_primary_10_1016_j_knosys_2020_106319
crossref_primary_10_1109_TGRS_2021_3127710
crossref_primary_10_3390_rs12091395
crossref_primary_10_1016_j_cageo_2021_104806
crossref_primary_10_1109_TGRS_2022_3188791
crossref_primary_10_1109_TGRS_2018_2867444
crossref_primary_10_3390_rs17081373
crossref_primary_10_1109_TGRS_2018_2823866
crossref_primary_10_1016_j_snb_2019_126630
crossref_primary_10_1109_TIM_2021_3116289
crossref_primary_10_1109_JSTARS_2021_3133009
crossref_primary_10_3390_electronics11244234
crossref_primary_10_1016_j_infrared_2023_104985
crossref_primary_10_1109_TIM_2020_3030167
crossref_primary_10_1109_JSTARS_2019_2924930
crossref_primary_10_1007_s12517_021_07995_3
crossref_primary_10_1109_TGRS_2019_2896471
crossref_primary_10_1007_s12145_020_00485_2
crossref_primary_10_1016_j_cageo_2021_104843
crossref_primary_10_1016_j_compag_2024_109051
crossref_primary_10_1109_JBHI_2019_2905623
crossref_primary_10_1080_01431161_2022_2142079
crossref_primary_10_1109_TGRS_2020_3031928
crossref_primary_10_1080_07038992_2020_1768837
crossref_primary_10_1109_JSTARS_2020_3001198
crossref_primary_10_1109_TGRS_2018_2849225
crossref_primary_10_1109_LGRS_2019_2892117
crossref_primary_10_1117_1_JRS_17_036509
crossref_primary_10_1109_JSTARS_2018_2856741
crossref_primary_10_1109_ACCESS_2022_3166505
crossref_primary_10_1007_s12517_021_06516_6
crossref_primary_10_1080_01431161_2023_2234091
crossref_primary_10_1109_LGRS_2020_2988124
crossref_primary_10_1109_MGRS_2020_2979764
crossref_primary_10_1109_JSTARS_2022_3189105
crossref_primary_10_1109_TGRS_2022_3232784
crossref_primary_10_1109_TGRS_2019_2933588
crossref_primary_10_1080_07038992_2018_1546571
crossref_primary_10_1109_TGRS_2018_2853268
crossref_primary_10_3390_rs12040664
crossref_primary_10_3390_rs13234921
crossref_primary_10_1109_ACCESS_2020_2993864
crossref_primary_10_1109_JSTARS_2021_3062642
crossref_primary_10_1109_LGRS_2021_3112198
crossref_primary_10_1109_JSTARS_2019_2954865
crossref_primary_10_1109_TGRS_2019_2952758
crossref_primary_10_1109_JSTARS_2020_3041344
crossref_primary_10_3390_rs14081814
crossref_primary_10_1016_j_engappai_2023_106307
crossref_primary_10_1109_TGRS_2019_2893180
crossref_primary_10_1109_TGRS_2024_3508737
crossref_primary_10_1049_iet_ipr_2018_5727
crossref_primary_10_1016_j_jag_2021_102603
crossref_primary_10_1109_TGRS_2024_3367127
crossref_primary_10_1007_s12518_023_00500_3
crossref_primary_10_1109_JSTARS_2019_2938208
crossref_primary_10_1109_LGRS_2018_2853705
crossref_primary_10_1109_JSTARS_2019_2926123
crossref_primary_10_1109_ACCESS_2019_2936295
crossref_primary_10_1109_TIM_2020_3038557
crossref_primary_10_1007_s13042_022_01680_x
crossref_primary_10_1109_TIP_2021_3055613
crossref_primary_10_1080_2150704X_2021_1976868
crossref_primary_10_1109_TGRS_2022_3223508
crossref_primary_10_1080_10106049_2020_1797188
Cites_doi 10.1109/LGRS.2016.2619354
10.1109/LGRS.2012.2226426
10.1109/TGRS.2014.2345739
10.1109/TGRS.2011.2162649
10.1109/JSTARS.2016.2634863
10.1109/JSTARS.2015.2420651
10.1109/TGRS.2014.2358934
10.1016/j.imavis.2004.03.010
10.1016/j.imavis.2006.05.002
10.3390/rs8020099
10.1137/0916069
10.1109/TGRS.2014.2358615
10.1109/TGRS.2016.2561842
10.3390/rs9010067
10.1109/TGRS.2013.2275613
10.1109/TGRS.2009.2037898
10.1109/TGRS.2016.2604290
10.1109/TGRS.2014.2318058
10.1109/JSTARS.2015.2477364
10.1109/TGRS.2013.2264508
10.1109/JSTARS.2012.2194696
10.1109/TGRS.2004.831865
10.1109/LGRS.2015.2482520
10.1109/JSTARS.2013.2295313
10.1109/TIP.2011.2179059
10.1109/TGRS.2014.2319373
10.1109/TGRS.2011.2163822
10.1109/MSP.2012.2205597
10.1109/CVPR.2014.244
10.1109/TGRS.2017.2743102
10.1109/JSTARS.2014.2329330
10.1109/TGRS.2011.2129595
10.1109/ICIP.2015.7351656
10.1109/TGRS.2015.2445767
10.1109/TIP.2002.804262
10.1109/TGRS.2012.2216272
10.1109/TGRS.2014.2381602
10.1109/TGRS.2017.2755773
10.1145/1961189.1961199
10.1109/TGRS.2012.2197860
10.1109/TIP.2002.999679
10.1162/089976603321780317
10.1080/01431161.2010.512425
10.1109/JSTARS.2015.2388577
10.1109/TGRS.2017.2710145
10.1109/TGRS.2013.2255297
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2017.2767185
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1178
ExternalDocumentID 10_1109_JSTARS_2017_2767185
8118120
Genre orig-research
GrantInformation_xml – fundername: Fund of Hunan Province for Science and Technology Plan Project
  grantid: 2017RS3024
– fundername: National Natural Science Fund of China for International Cooperation and Exchanges
  grantid: 61520106001
– fundername: National Natural Science Fund of China for Distinguished Young Scholars
  grantid: 61325007
– fundername: National Natural Science Foundation of China
  grantid: 61601179
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c297t-1f071e9ab32a1cfbad1cf747983fb0a37dc3c4e4d42887e39c918a7a2d2802313
IEDL.DBID RIE
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429956000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Jul 25 10:28:24 EDT 2025
Tue Nov 18 22:16:04 EST 2025
Sat Nov 29 04:50:59 EST 2025
Wed Aug 27 02:51:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-1f071e9ab32a1cfbad1cf747983fb0a37dc3c4e4d42887e39c918a7a2d2802313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2351-4461
0000-0002-3807-2531
0000-0002-0585-9848
PQID 2174552240
PQPubID 75722
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2017_2767185
proquest_journals_2174552240
ieee_primary_8118120
crossref_primary_10_1109_JSTARS_2017_2767185
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
liu (ref44) 2002; 11
ref41
ref22
ng (ref39) 2011; 72
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
wang (ref46) 2013
ref3
ref6
ref5
ref40
tao (ref31) 2015; 12
References_xml – ident: ref38
  doi: 10.1109/LGRS.2016.2619354
– ident: ref19
  doi: 10.1109/LGRS.2012.2226426
– ident: ref47
  doi: 10.1109/TGRS.2014.2345739
– ident: ref10
  doi: 10.1109/TGRS.2011.2162649
– ident: ref36
  doi: 10.1109/JSTARS.2016.2634863
– ident: ref1
  doi: 10.1109/JSTARS.2015.2420651
– ident: ref15
  doi: 10.1109/TGRS.2014.2358934
– start-page: 1671
  year: 2013
  ident: ref46
  publication-title: Pearson Correlation Coefficient
– ident: ref42
  doi: 10.1016/j.imavis.2004.03.010
– ident: ref41
  doi: 10.1016/j.imavis.2006.05.002
– ident: ref33
  doi: 10.3390/rs8020099
– ident: ref40
  doi: 10.1137/0916069
– ident: ref21
  doi: 10.1109/TGRS.2014.2358615
– ident: ref35
  doi: 10.1109/TGRS.2016.2561842
– ident: ref34
  doi: 10.3390/rs9010067
– ident: ref6
  doi: 10.1109/TGRS.2013.2275613
– ident: ref11
  doi: 10.1109/TGRS.2009.2037898
– ident: ref22
  doi: 10.1109/TGRS.2016.2604290
– ident: ref17
  doi: 10.1109/TGRS.2014.2318058
– ident: ref5
  doi: 10.1109/JSTARS.2015.2477364
– ident: ref16
  doi: 10.1109/TGRS.2013.2264508
– ident: ref4
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref8
  doi: 10.1109/TGRS.2004.831865
– volume: 12
  start-page: 2438
  year: 2015
  ident: ref31
  article-title: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2015.2482520
– ident: ref18
  doi: 10.1109/JSTARS.2013.2295313
– ident: ref26
  doi: 10.1109/TIP.2011.2179059
– ident: ref23
  doi: 10.1109/TGRS.2014.2319373
– ident: ref13
  doi: 10.1109/TGRS.2011.2163822
– ident: ref27
  doi: 10.1109/MSP.2012.2205597
– ident: ref28
  doi: 10.1109/CVPR.2014.244
– ident: ref7
  doi: 10.1109/TGRS.2017.2743102
– ident: ref30
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref12
  doi: 10.1109/TGRS.2011.2129595
– ident: ref29
  doi: 10.1109/ICIP.2015.7351656
– ident: ref20
  doi: 10.1109/TGRS.2015.2445767
– ident: ref43
  doi: 10.1109/TIP.2002.804262
– volume: 72
  start-page: 1
  year: 2011
  ident: ref39
  article-title: Sparse autoencoder
  publication-title: Cs294a lecture notes
– ident: ref9
  doi: 10.1109/TGRS.2012.2216272
– ident: ref37
  doi: 10.1109/TGRS.2014.2381602
– ident: ref3
  doi: 10.1109/TGRS.2017.2755773
– ident: ref48
  doi: 10.1145/1961189.1961199
– ident: ref24
  doi: 10.1109/TGRS.2012.2197860
– volume: 11
  start-page: 467
  year: 2002
  ident: ref44
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2002.999679
– ident: ref45
  doi: 10.1162/089976603321780317
– ident: ref14
  doi: 10.1080/01431161.2010.512425
– ident: ref32
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref2
  doi: 10.1109/TGRS.2017.2710145
– ident: ref25
  doi: 10.1109/TGRS.2013.2255297
SSID ssj0062793
Score 2.5245466
Snippet In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1166
SubjectTerms Classification
Deep learning
Feature extraction
Gabor filter
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Image filters
Image reconstruction
Machine learning
Methods
Spatial distribution
stacked sparse autoencoders (SSAE)
Training
virtual samples
Title Classification of Hyperspectral Images by Gabor Filtering Based Deep Network
URI https://ieeexplore.ieee.org/document/8118120
https://www.proquest.com/docview/2174552240
Volume 11
WOSCitedRecordID wos000429956000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5qUfDiVsVqlTl4bNpkJsnMHOvSVihFXKC3MFugoG3pIvTf-2aSFkQRvIQcZkL43uS99-VtCN3oJI6NMXkgrQ8zShaoUPPAGmvBPxaSKi_pARsO-Wgkniqoua2Fsdb65DPbcrc-lm-meuV-lbW5q5IkQNB3GEuLWq2N1k0J8w12wR8RgWsZU3YYikLRhiPeeX5xaVysRVgK2jj5ZoX8WJUfutgbmO7h_17tCB2UjiTuFJI_RhU7OUF7PT-od11DAz_t0uUBeejxNMd9oJxFZeUcNj5-gCZZYLXGPXcOcHfs4uZgyPAtGDaD762d4WGRJH6K3roPr3f9oJycEGgi2DKIcvAcrJCKEhnpXEkDVyAOgtNchZIyo6mObWyAfHAGUtIi4pJJYohvCEfPUHUyndhzhBUxYQSSi1VuXGNJSU2YA-3ilEapTXQdkQ2SmS7birvpFu-ZpxehyAr4Mwd_VsJfR83tplnRVePv5TWH-HZpCXYdNTYiy8ovb5E5ipUkzlG5-H3XJdqHZ_Mi-6aBqsv5yl6hXf25HC_m1_5QfQH8Hck7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GH-iLX1OcTs2Dj-tsk3ZpHv2aG9YiOmFvJU1SEHSTbQr-917SbiCK4EvpQ0LKXXJ3v-budwCnKgpDrXXhSeOuGSX3cl_FntHGYHwsJMudphOepvFwKO5r0FrUwhhjXPKZadtXd5evx-rd_io7i22VJEWAvowrUL-s1prb3Q7ljmIXIxLhWdKYimMo8MUZbvLzh0ebyMXblHfQHkff_JBrrPLDGjsX093838dtwUYVSpLzUvfbUDOjHVi9ca16P-uQuH6XNhPICZ-MC9JD0FnWVk5wYv8VbcmU5J_kxu4E0n22N-foysgFujZNrox5I2mZJr4LT93rwWXPq3oneIoKPvOCAmMHI2TOqAxUkUuNT4QOImZF7kvGtWIqNKFG-BFz1JMSQSy5pJo6Sji2B0uj8cjsA8mp9gPUXZgX2lJLSqb9AoFXzFjQMZFqAJ1LMlMVsbjtb_GSOYDhi6wUf2bFn1Xib0BrMemt5NX4e3jdSnwxtBJ2A5pzlWXV2ZtmFmRFkQ1VDn6fdQJrvcFdkiX99PYQ1nGduMzFacLSbPJujmBFfcyep5Njt8G-AJ_9zII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Hyperspectral+Images+by+Gabor+Filtering+Based+Deep+Network&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Kang%2C+Xudong&rft.au=Li%2C+Chengchao&rft.au=Li%2C+Shutao&rft.au=Lin%2C+Hui&rft.date=2018-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=11&rft.issue=4&rft.spage=1166&rft_id=info:doi/10.1109%2FJSTARS.2017.2767185&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon