Classification of Hyperspectral Images by Gabor Filtering Based Deep Network
In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-l...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 11; H. 4; S. 1166 - 1178 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-level spatial structures of different orientations and scales. Then, the Gabor features and spectral features are simply stacked to form the fused features. Afterwards, deep features are captured by training a stacked sparse autoencoder deep network with the fused features obtained above as inputs. Since the number of training samples of hyperspectral images is often very limited, which negatively affects the classification performance in deep learning, an effective way of constructing virtual samples is designed to generate more training samples, automatically. By jointly utilizing both the real and virtual samples, the parameters of the deep network can be better trained and updated, which can result in classification results of higher accuracies. Experiments performed on four real hyperspectral datasets show that the proposed method outperforms several recently proposed classification methods in terms of classification accuracies. |
|---|---|
| AbstractList | In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-level spatial structures of different orientations and scales. Then, the Gabor features and spectral features are simply stacked to form the fused features. Afterwards, deep features are captured by training a stacked sparse autoencoder deep network with the fused features obtained above as inputs. Since the number of training samples of hyperspectral images is often very limited, which negatively affects the classification performance in deep learning, an effective way of constructing virtual samples is designed to generate more training samples, automatically. By jointly utilizing both the real and virtual samples, the parameters of the deep network can be better trained and updated, which can result in classification results of higher accuracies. Experiments performed on four real hyperspectral datasets show that the proposed method outperforms several recently proposed classification methods in terms of classification accuracies. |
| Author | Kang, Xudong Li, Chengchao Li, Shutao Lin, Hui |
| Author_xml | – sequence: 1 givenname: Xudong orcidid: 0000-0002-3807-2531 surname: Kang fullname: Kang, Xudong email: xudong_kang@163.com organization: Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Chengchao orcidid: 0000-0002-0585-9848 surname: Li fullname: Li, Chengchao email: chengchao_li@163.com organization: Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Shutao surname: Li fullname: Li, Shutao email: shutao_li@hnu.edu.cn organization: Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Hui orcidid: 0000-0003-2351-4461 surname: Lin fullname: Lin, Hui email: linhui1965@126.com organization: Electrical and Information Engineering, Hunan University, Changsha, China |
| BookMark | eNqFkD1PwzAQhi1UJNrCL-hiiTnFZyd1PJZCP1AFEi1z5DiXyiVNgh2E-u9JScXAwnK3vM-d3mdAemVVIiEjYGMApu6eNtvp62bMGcgxlxMJcXRB-hwiCCASUY_0QQkVQMjCKzLwfs_YhEsl-mQ9K7T3NrdGN7YqaZXT5bFG52s0jdMFXR30Dj1Nj3Sh08rRuS0adLbc0XvtMaMPiDV9xuarcu_X5DLXhceb8x6St_njdrYM1i-L1Wy6DgxXsgkgZxJQ6VRwDSZPddZOGUoVizxlWsjMCBNimIU8jiUKZRTEWmqe8ZhxAWJIbru7tas-PtE3yb76dGX7MuEgwyjiPGRtSnUp4yrvHeaJsc1Py7aYLRJgyUle0slLTvKSs7yWFX_Y2tmDdsd_qFFHWUT8JWKAGDgT3wr6fTI |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1109_TCYB_2021_3051141 crossref_primary_10_1109_TGRS_2022_3195924 crossref_primary_10_1109_LGRS_2023_3317528 crossref_primary_10_1109_TGRS_2024_3432734 crossref_primary_10_1109_TGRS_2022_3179288 crossref_primary_10_1109_LGRS_2018_2866499 crossref_primary_10_1109_TCYB_2021_3080304 crossref_primary_10_1016_j_infrared_2020_103296 crossref_primary_10_3389_frai_2021_643424 crossref_primary_10_3390_rs15010257 crossref_primary_10_1016_j_infrared_2020_103455 crossref_primary_10_1080_01431161_2021_1883199 crossref_primary_10_3390_rs13061143 crossref_primary_10_3390_app12136797 crossref_primary_10_3390_rs12122016 crossref_primary_10_1109_TGRS_2019_2961681 crossref_primary_10_1109_JSTARS_2019_2939833 crossref_primary_10_1109_TGRS_2019_2907932 crossref_primary_10_3390_molecules27186042 crossref_primary_10_1109_JSTARS_2020_2992230 crossref_primary_10_1117_1_JRS_16_034523 crossref_primary_10_1109_TGRS_2022_3189015 crossref_primary_10_1109_LGRS_2019_2923540 crossref_primary_10_1016_j_neucom_2021_01_120 crossref_primary_10_1080_01431161_2020_1736730 crossref_primary_10_1016_j_neucom_2021_12_055 crossref_primary_10_1007_s00521_023_09275_5 crossref_primary_10_1080_07038992_2023_2246158 crossref_primary_10_1016_j_engappai_2020_103647 crossref_primary_10_1080_01431161_2020_1736732 crossref_primary_10_1080_01431161_2020_1736729 crossref_primary_10_1016_j_sigpro_2019_107361 crossref_primary_10_1109_TGRS_2022_3142173 crossref_primary_10_1080_2150704X_2018_1524993 crossref_primary_10_1109_ACCESS_2020_3014975 crossref_primary_10_1080_01431161_2024_2394234 crossref_primary_10_3233_JCS_220031 crossref_primary_10_3390_app12010174 crossref_primary_10_3390_electronics11213471 crossref_primary_10_1109_TGRS_2019_2931730 crossref_primary_10_3390_rs15041050 crossref_primary_10_1080_10106049_2020_1734874 crossref_primary_10_3390_rs13163232 crossref_primary_10_1109_ACCESS_2023_3332695 crossref_primary_10_1109_TGRS_2018_2886853 crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1016_j_neucom_2022_05_093 crossref_primary_10_3390_rs14092227 crossref_primary_10_1016_j_micpro_2021_104313 crossref_primary_10_1016_j_patcog_2021_108224 crossref_primary_10_1080_01431161_2022_2133579 crossref_primary_10_1080_10106049_2021_1882006 crossref_primary_10_1109_JSTARS_2018_2866901 crossref_primary_10_1109_TGRS_2023_3257865 crossref_primary_10_3390_s20236823 crossref_primary_10_1109_ACCESS_2018_2853620 crossref_primary_10_1109_TGRS_2020_3046780 crossref_primary_10_1016_j_knosys_2020_106319 crossref_primary_10_1109_TGRS_2021_3127710 crossref_primary_10_3390_rs12091395 crossref_primary_10_1016_j_cageo_2021_104806 crossref_primary_10_1109_TGRS_2022_3188791 crossref_primary_10_1109_TGRS_2018_2867444 crossref_primary_10_3390_rs17081373 crossref_primary_10_1109_TGRS_2018_2823866 crossref_primary_10_1016_j_snb_2019_126630 crossref_primary_10_1109_TIM_2021_3116289 crossref_primary_10_1109_JSTARS_2021_3133009 crossref_primary_10_3390_electronics11244234 crossref_primary_10_1016_j_infrared_2023_104985 crossref_primary_10_1109_TIM_2020_3030167 crossref_primary_10_1109_JSTARS_2019_2924930 crossref_primary_10_1007_s12517_021_07995_3 crossref_primary_10_1109_TGRS_2019_2896471 crossref_primary_10_1007_s12145_020_00485_2 crossref_primary_10_1016_j_cageo_2021_104843 crossref_primary_10_1016_j_compag_2024_109051 crossref_primary_10_1109_JBHI_2019_2905623 crossref_primary_10_1080_01431161_2022_2142079 crossref_primary_10_1109_TGRS_2020_3031928 crossref_primary_10_1080_07038992_2020_1768837 crossref_primary_10_1109_JSTARS_2020_3001198 crossref_primary_10_1109_TGRS_2018_2849225 crossref_primary_10_1109_LGRS_2019_2892117 crossref_primary_10_1117_1_JRS_17_036509 crossref_primary_10_1109_JSTARS_2018_2856741 crossref_primary_10_1109_ACCESS_2022_3166505 crossref_primary_10_1007_s12517_021_06516_6 crossref_primary_10_1080_01431161_2023_2234091 crossref_primary_10_1109_LGRS_2020_2988124 crossref_primary_10_1109_MGRS_2020_2979764 crossref_primary_10_1109_JSTARS_2022_3189105 crossref_primary_10_1109_TGRS_2022_3232784 crossref_primary_10_1109_TGRS_2019_2933588 crossref_primary_10_1080_07038992_2018_1546571 crossref_primary_10_1109_TGRS_2018_2853268 crossref_primary_10_3390_rs12040664 crossref_primary_10_3390_rs13234921 crossref_primary_10_1109_ACCESS_2020_2993864 crossref_primary_10_1109_JSTARS_2021_3062642 crossref_primary_10_1109_LGRS_2021_3112198 crossref_primary_10_1109_JSTARS_2019_2954865 crossref_primary_10_1109_TGRS_2019_2952758 crossref_primary_10_1109_JSTARS_2020_3041344 crossref_primary_10_3390_rs14081814 crossref_primary_10_1016_j_engappai_2023_106307 crossref_primary_10_1109_TGRS_2019_2893180 crossref_primary_10_1109_TGRS_2024_3508737 crossref_primary_10_1049_iet_ipr_2018_5727 crossref_primary_10_1016_j_jag_2021_102603 crossref_primary_10_1109_TGRS_2024_3367127 crossref_primary_10_1007_s12518_023_00500_3 crossref_primary_10_1109_JSTARS_2019_2938208 crossref_primary_10_1109_LGRS_2018_2853705 crossref_primary_10_1109_JSTARS_2019_2926123 crossref_primary_10_1109_ACCESS_2019_2936295 crossref_primary_10_1109_TIM_2020_3038557 crossref_primary_10_1007_s13042_022_01680_x crossref_primary_10_1109_TIP_2021_3055613 crossref_primary_10_1080_2150704X_2021_1976868 crossref_primary_10_1109_TGRS_2022_3223508 crossref_primary_10_1080_10106049_2020_1797188 |
| Cites_doi | 10.1109/LGRS.2016.2619354 10.1109/LGRS.2012.2226426 10.1109/TGRS.2014.2345739 10.1109/TGRS.2011.2162649 10.1109/JSTARS.2016.2634863 10.1109/JSTARS.2015.2420651 10.1109/TGRS.2014.2358934 10.1016/j.imavis.2004.03.010 10.1016/j.imavis.2006.05.002 10.3390/rs8020099 10.1137/0916069 10.1109/TGRS.2014.2358615 10.1109/TGRS.2016.2561842 10.3390/rs9010067 10.1109/TGRS.2013.2275613 10.1109/TGRS.2009.2037898 10.1109/TGRS.2016.2604290 10.1109/TGRS.2014.2318058 10.1109/JSTARS.2015.2477364 10.1109/TGRS.2013.2264508 10.1109/JSTARS.2012.2194696 10.1109/TGRS.2004.831865 10.1109/LGRS.2015.2482520 10.1109/JSTARS.2013.2295313 10.1109/TIP.2011.2179059 10.1109/TGRS.2014.2319373 10.1109/TGRS.2011.2163822 10.1109/MSP.2012.2205597 10.1109/CVPR.2014.244 10.1109/TGRS.2017.2743102 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2011.2129595 10.1109/ICIP.2015.7351656 10.1109/TGRS.2015.2445767 10.1109/TIP.2002.804262 10.1109/TGRS.2012.2216272 10.1109/TGRS.2014.2381602 10.1109/TGRS.2017.2755773 10.1145/1961189.1961199 10.1109/TGRS.2012.2197860 10.1109/TIP.2002.999679 10.1162/089976603321780317 10.1080/01431161.2010.512425 10.1109/JSTARS.2015.2388577 10.1109/TGRS.2017.2710145 10.1109/TGRS.2013.2255297 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/JSTARS.2017.2767185 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 1178 |
| ExternalDocumentID | 10_1109_JSTARS_2017_2767185 8118120 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fund of Hunan Province for Science and Technology Plan Project grantid: 2017RS3024 – fundername: National Natural Science Fund of China for International Cooperation and Exchanges grantid: 61520106001 – fundername: National Natural Science Fund of China for Distinguished Young Scholars grantid: 61325007 – fundername: National Natural Science Foundation of China grantid: 61601179 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c297t-1f071e9ab32a1cfbad1cf747983fb0a37dc3c4e4d42887e39c918a7a2d2802313 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429956000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Jul 25 10:28:24 EDT 2025 Tue Nov 18 22:16:04 EST 2025 Sat Nov 29 04:50:59 EST 2025 Wed Aug 27 02:51:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-1f071e9ab32a1cfbad1cf747983fb0a37dc3c4e4d42887e39c918a7a2d2802313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2351-4461 0000-0002-3807-2531 0000-0002-0585-9848 |
| PQID | 2174552240 |
| PQPubID | 75722 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2017_2767185 proquest_journals_2174552240 ieee_primary_8118120 crossref_primary_10_1109_JSTARS_2017_2767185 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 liu (ref44) 2002; 11 ref41 ref22 ng (ref39) 2011; 72 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 wang (ref46) 2013 ref3 ref6 ref5 ref40 tao (ref31) 2015; 12 |
| References_xml | – ident: ref38 doi: 10.1109/LGRS.2016.2619354 – ident: ref19 doi: 10.1109/LGRS.2012.2226426 – ident: ref47 doi: 10.1109/TGRS.2014.2345739 – ident: ref10 doi: 10.1109/TGRS.2011.2162649 – ident: ref36 doi: 10.1109/JSTARS.2016.2634863 – ident: ref1 doi: 10.1109/JSTARS.2015.2420651 – ident: ref15 doi: 10.1109/TGRS.2014.2358934 – start-page: 1671 year: 2013 ident: ref46 publication-title: Pearson Correlation Coefficient – ident: ref42 doi: 10.1016/j.imavis.2004.03.010 – ident: ref41 doi: 10.1016/j.imavis.2006.05.002 – ident: ref33 doi: 10.3390/rs8020099 – ident: ref40 doi: 10.1137/0916069 – ident: ref21 doi: 10.1109/TGRS.2014.2358615 – ident: ref35 doi: 10.1109/TGRS.2016.2561842 – ident: ref34 doi: 10.3390/rs9010067 – ident: ref6 doi: 10.1109/TGRS.2013.2275613 – ident: ref11 doi: 10.1109/TGRS.2009.2037898 – ident: ref22 doi: 10.1109/TGRS.2016.2604290 – ident: ref17 doi: 10.1109/TGRS.2014.2318058 – ident: ref5 doi: 10.1109/JSTARS.2015.2477364 – ident: ref16 doi: 10.1109/TGRS.2013.2264508 – ident: ref4 doi: 10.1109/JSTARS.2012.2194696 – ident: ref8 doi: 10.1109/TGRS.2004.831865 – volume: 12 start-page: 2438 year: 2015 ident: ref31 article-title: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2015.2482520 – ident: ref18 doi: 10.1109/JSTARS.2013.2295313 – ident: ref26 doi: 10.1109/TIP.2011.2179059 – ident: ref23 doi: 10.1109/TGRS.2014.2319373 – ident: ref13 doi: 10.1109/TGRS.2011.2163822 – ident: ref27 doi: 10.1109/MSP.2012.2205597 – ident: ref28 doi: 10.1109/CVPR.2014.244 – ident: ref7 doi: 10.1109/TGRS.2017.2743102 – ident: ref30 doi: 10.1109/JSTARS.2014.2329330 – ident: ref12 doi: 10.1109/TGRS.2011.2129595 – ident: ref29 doi: 10.1109/ICIP.2015.7351656 – ident: ref20 doi: 10.1109/TGRS.2015.2445767 – ident: ref43 doi: 10.1109/TIP.2002.804262 – volume: 72 start-page: 1 year: 2011 ident: ref39 article-title: Sparse autoencoder publication-title: Cs294a lecture notes – ident: ref9 doi: 10.1109/TGRS.2012.2216272 – ident: ref37 doi: 10.1109/TGRS.2014.2381602 – ident: ref3 doi: 10.1109/TGRS.2017.2755773 – ident: ref48 doi: 10.1145/1961189.1961199 – ident: ref24 doi: 10.1109/TGRS.2012.2197860 – volume: 11 start-page: 467 year: 2002 ident: ref44 article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2002.999679 – ident: ref45 doi: 10.1162/089976603321780317 – ident: ref14 doi: 10.1080/01431161.2010.512425 – ident: ref32 doi: 10.1109/JSTARS.2015.2388577 – ident: ref2 doi: 10.1109/TGRS.2017.2710145 – ident: ref25 doi: 10.1109/TGRS.2013.2255297 |
| SSID | ssj0062793 |
| Score | 2.5245466 |
| Snippet | In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1166 |
| SubjectTerms | Classification Deep learning Feature extraction Gabor filter hyperspectral image (HSI) classification Hyperspectral imaging Image classification Image filters Image reconstruction Machine learning Methods Spatial distribution stacked sparse autoencoders (SSAE) Training virtual samples |
| Title | Classification of Hyperspectral Images by Gabor Filtering Based Deep Network |
| URI | https://ieeexplore.ieee.org/document/8118120 https://www.proquest.com/docview/2174552240 |
| Volume | 11 |
| WOSCitedRecordID | wos000429956000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5qUfDiVsVqlTl4bNpkJsnMHOvSVihFXKC3MFugoG3pIvTf-2aSFkQRvIQcZkL43uS99-VtCN3oJI6NMXkgrQ8zShaoUPPAGmvBPxaSKi_pARsO-Wgkniqoua2Fsdb65DPbcrc-lm-meuV-lbW5q5IkQNB3GEuLWq2N1k0J8w12wR8RgWsZU3YYikLRhiPeeX5xaVysRVgK2jj5ZoX8WJUfutgbmO7h_17tCB2UjiTuFJI_RhU7OUF7PT-od11DAz_t0uUBeejxNMd9oJxFZeUcNj5-gCZZYLXGPXcOcHfs4uZgyPAtGDaD762d4WGRJH6K3roPr3f9oJycEGgi2DKIcvAcrJCKEhnpXEkDVyAOgtNchZIyo6mObWyAfHAGUtIi4pJJYohvCEfPUHUyndhzhBUxYQSSi1VuXGNJSU2YA-3ilEapTXQdkQ2SmS7birvpFu-ZpxehyAr4Mwd_VsJfR83tplnRVePv5TWH-HZpCXYdNTYiy8ovb5E5ipUkzlG5-H3XJdqHZ_Mi-6aBqsv5yl6hXf25HC_m1_5QfQH8Hck7 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GH-iLX1OcTs2Dj-tsk3ZpHv2aG9YiOmFvJU1SEHSTbQr-917SbiCK4EvpQ0LKXXJ3v-budwCnKgpDrXXhSeOuGSX3cl_FntHGYHwsJMudphOepvFwKO5r0FrUwhhjXPKZadtXd5evx-rd_io7i22VJEWAvowrUL-s1prb3Q7ljmIXIxLhWdKYimMo8MUZbvLzh0ebyMXblHfQHkff_JBrrPLDGjsX093838dtwUYVSpLzUvfbUDOjHVi9ca16P-uQuH6XNhPICZ-MC9JD0FnWVk5wYv8VbcmU5J_kxu4E0n22N-foysgFujZNrox5I2mZJr4LT93rwWXPq3oneIoKPvOCAmMHI2TOqAxUkUuNT4QOImZF7kvGtWIqNKFG-BFz1JMSQSy5pJo6Sji2B0uj8cjsA8mp9gPUXZgX2lJLSqb9AoFXzFjQMZFqAJ1LMlMVsbjtb_GSOYDhi6wUf2bFn1Xib0BrMemt5NX4e3jdSnwxtBJ2A5pzlWXV2ZtmFmRFkQ1VDn6fdQJrvcFdkiX99PYQ1nGduMzFacLSbPJujmBFfcyep5Njt8G-AJ_9zII |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Hyperspectral+Images+by+Gabor+Filtering+Based+Deep+Network&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Kang%2C+Xudong&rft.au=Li%2C+Chengchao&rft.au=Li%2C+Shutao&rft.au=Lin%2C+Hui&rft.date=2018-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=11&rft.issue=4&rft.spage=1166&rft_id=info:doi/10.1109%2FJSTARS.2017.2767185&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |