Meta-optimization of multi-objective population-based algorithms using multi-objective performance metrics

In this paper, a method for optimizing the parameters of multi-objective population-based algorithms is proposed. It is based on a meta-optimization, in which an external algorithm optimizes the parameters of the main algorithm. The purpose of proposed optimization is to select the functions, on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 489; s. 193 - 204
Hlavní autor: Łapa, Krystian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.07.2019
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a method for optimizing the parameters of multi-objective population-based algorithms is proposed. It is based on a meta-optimization, in which an external algorithm optimizes the parameters of the main algorithm. The purpose of proposed optimization is to select the functions, on the basis of which the values of parameters of the main algorithm are calculated for each algorithm iteration. The assumption was made that the functions should be selected in order to achieve the best possible Pareto front in terms of multi-objective performance metrics. The proposed method has been designed to allow the optimization of any algorithms and thus to avoid the time consuming manual selection of their parameters. To compare the presented method with other approaches, a set of well-known modeling benchmarks were used.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2019.03.054