Optimal decision of multiobjective and multiperiod anticipatory shipping under uncertain demand: A data-driven framework

Anticipatory shipping helps to reduce the waiting time of online customers to receive their products. Present studies on anticipatory shipping mainly consider a single period and ignore the waiting time saved for customers. This paper develops a data-driven framework to investigate the multiperiod a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 159; s. 107445
Hlavní autori: chen, Cheng, Xu, Xianhao, Zou, Bipan, Peng, Hongxia, Li, Zhiwen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2021
Predmet:
ISSN:0360-8352, 1879-0550
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Anticipatory shipping helps to reduce the waiting time of online customers to receive their products. Present studies on anticipatory shipping mainly consider a single period and ignore the waiting time saved for customers. This paper develops a data-driven framework to investigate the multiperiod anticipatory shipping problem with the objectives of minimizing the cost of online retailers and maximizing the saved waiting time of customers. First, we propose a dual-process sales forecasting framework that employs five machine learning algorithms to forecast online retailers’ daily sales using clickstream data and historical sales data. Then, we build a multiperiod and multiobjective integer programming model based on the forecasting sales and forecasting errors to explore the optimal quantity and time of products of anticipatory shipping. Finally, using TOPSIS, Shannon entropy, and LINMAP decision-making methods, the final optimal solution is selected from the Pareto set obtained by the NSGA-II algorithm. The case study results show that anticipatory shipping saves 5.96% cost for the online retailer and 1.69 days of waiting time on average for the customer compared with non-anticipatory shipping. Moreover, performing anticipatory shipping is especially beneficial in the case of high inventory holding cost, large distribution center capacity, and long transportation duration.
AbstractList Anticipatory shipping helps to reduce the waiting time of online customers to receive their products. Present studies on anticipatory shipping mainly consider a single period and ignore the waiting time saved for customers. This paper develops a data-driven framework to investigate the multiperiod anticipatory shipping problem with the objectives of minimizing the cost of online retailers and maximizing the saved waiting time of customers. First, we propose a dual-process sales forecasting framework that employs five machine learning algorithms to forecast online retailers’ daily sales using clickstream data and historical sales data. Then, we build a multiperiod and multiobjective integer programming model based on the forecasting sales and forecasting errors to explore the optimal quantity and time of products of anticipatory shipping. Finally, using TOPSIS, Shannon entropy, and LINMAP decision-making methods, the final optimal solution is selected from the Pareto set obtained by the NSGA-II algorithm. The case study results show that anticipatory shipping saves 5.96% cost for the online retailer and 1.69 days of waiting time on average for the customer compared with non-anticipatory shipping. Moreover, performing anticipatory shipping is especially beneficial in the case of high inventory holding cost, large distribution center capacity, and long transportation duration.
ArticleNumber 107445
Author chen, Cheng
Zou, Bipan
Xu, Xianhao
Peng, Hongxia
Li, Zhiwen
Author_xml – sequence: 1
  givenname: Cheng
  surname: chen
  fullname: chen, Cheng
  organization: School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Xianhao
  surname: Xu
  fullname: Xu, Xianhao
  email: xxhao@hust.edu.cn
  organization: School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Bipan
  surname: Zou
  fullname: Zou, Bipan
  organization: School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430074, China
– sequence: 4
  givenname: Hongxia
  surname: Peng
  fullname: Peng, Hongxia
  organization: School of Business, Hubei University, Wuhan 430062, China
– sequence: 5
  givenname: Zhiwen
  surname: Li
  fullname: Li, Zhiwen
  organization: School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kE1PwzAMhiM0JLbBD-CWP9Dh9Ltwmia-pEm7wLlKExdctqRKs8H-PZnKicMutmz5eSU_MzYx1iBjtwIWAkR-1y0U4SKGWIS5SNPsgk1FWVQRZBlM2BSSHKIyyeIrNhuGDgDSrBJT9rPpPe3klmtUNJA13LZ8t996sk2HytMBuTR6XPXoyOowe1LUS2_dkQ-f1PdkPvjeaHShKnRekgmBuwDe8yXX0stIuxBleOvkDr-t-7pml63cDnjz1-fs_enxbfUSrTfPr6vlOlJxVfhIqEyVsSykxhx0hmXaFholtLluQOWFbPJGQFIJUVSQYdWUAnQjpMybsq1EmcxZMeYqZ4fBYVsr8jK8Z7yTtK0F1CeBdRf2WJ8E1qPAQIp_ZO-CKnc8yzyMDIaXDoSuHsJJcKLJBZu1tnSG_gXHYo4u
CitedBy_id crossref_primary_10_1007_s40747_024_01535_8
crossref_primary_10_1080_10864415_2022_2076196
crossref_primary_10_1109_TFUZZ_2022_3217884
crossref_primary_10_1016_j_elerap_2024_101403
crossref_primary_10_1109_ACCESS_2024_3444282
crossref_primary_10_4018_IJSSMET_347947
crossref_primary_10_1016_j_cie_2025_111038
crossref_primary_10_1016_j_tre_2022_102986
crossref_primary_10_1016_j_cie_2021_107856
crossref_primary_10_1016_j_cie_2024_109947
crossref_primary_10_1016_j_jclepro_2022_134269
crossref_primary_10_1016_j_elerap_2023_101330
Cites_doi 10.1198/tast.2009.08199
10.1109/ACCESS.2018.2873730
10.1016/j.ijepes.2014.07.027
10.1109/MASSP.1987.1165576
10.1109/4235.996017
10.1016/j.cie.2020.106678
10.1007/s10479-017-2421-7
10.1111/poms.12737
10.1016/j.eswa.2020.113342
10.1016/j.rcim.2014.12.015
10.1080/00207543.2016.1221162
10.1016/j.knosys.2016.10.019
10.1016/j.dss.2018.08.010
10.1023/B:STCO.0000035301.49549.88
10.1016/j.jhydrol.2006.01.021
10.1016/j.ijpe.2015.09.039
10.1016/j.jhydrol.2010.04.005
10.1023/A:1010933404324
10.1016/j.patrec.2009.09.011
10.1109/TSC.2020.2964552
10.1080/03610910701723559
10.1016/j.eswa.2017.10.046
10.1016/S0925-5273(03)00068-9
10.1162/neco.1996.8.7.1341
10.2753/JEC1086-4415160202
10.1016/j.cie.2019.04.043
10.1109/JAS.2019.1911723
10.1016/j.dss.2020.113452
10.1016/j.jretconser.2019.02.019
10.1080/00207543.2017.1405166
10.1016/j.chb.2009.12.012
10.1111/poms.12707
10.1016/j.chb.2014.04.028
10.14743/apem2019.2.322
10.1038/nbt0308-303
10.1016/j.knosys.2009.02.005
10.1007/s00521-016-2215-x
10.1007/s10288-016-0316-0
10.1016/j.cie.2020.106380
10.1002/cpe.3720
10.1016/j.mcm.2005.09.012
10.1016/j.cie.2016.07.012
10.1016/j.asoc.2017.02.011
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2021.107445
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2021_107445
S0360835221003491
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-1c5c82a7ade60d5e84f7dea0f6db0c67ab6b1039117905e9b810db1aa6b8f9183
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698643000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:19:31 EST 2025
Tue Nov 18 19:44:35 EST 2025
Fri Feb 23 02:43:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anticipatory shipping
Multiobjective
Online retail
Data-driven
Integer programming model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-1c5c82a7ade60d5e84f7dea0f6db0c67ab6b1039117905e9b810db1aa6b8f9183
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2021_107445
crossref_primary_10_1016_j_cie_2021_107445
elsevier_sciencedirect_doi_10_1016_j_cie_2021_107445
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fan, Lv (b0090) 2010; 20
Gong, Y.Y., & Xu, H. (2014). Clickstream big data and “delivery before order making mode for online retailers. 13th IMHRC Proceedings (Cincinnati, Ohio. USA – 2014).
Chen, Lu (b0055) 2017; 28
Guven, Simsir (b0120) 2020; 147
Spiegel, J.R., McKenna, M.T., Lakshman, G.S., Nordstrom, P.G. (2012). Method and system for anticipatory package shipping. US Patent 8,271,398.
Zhao, Yao, Zhang (b0290) 2016; 28
Di Pillo, Latorre, Lucidi, Procacci (b0080) 2016; 14
Castillo, P.A., Mora, A.M., Faris, H., Merelo, J., García-Sánchez, P., Fernández-Ares, A.J., las Cuevas, P.D., & García-Arenas, M.I. (2017). Applying computational intelligence methods for predicting the sales of newly published books in a real editorial business management environment. Knowledge-Based Systems, 115, 133 – 151. doi:https://doi.org/10.1016/j.knosys.2016.10.019.
Spiegel, J.R., McKenna, M.T., Lakshman, G.S., Nordstrom, P.G. (2013). Method and system for anticipatory package shipping. US Patent 8,615,473.
Kohavi (b0160) 1995; Volume 2 IJCAI’95
Chu, Zhang (b0060) 2003; 86
Drucker, Burges, Kaufman (b0085) 1997; 28
Li, Liao, Liu (b0185) 2015; 64
Cui, Gallino, Moreno, Zhang (b0065) 2018; 27
Lian, Yen (b0190) 2014; 37
Abolghasemi, Beh, Tarr, Gerlach (b0005) 2020; 142
Ahmadizar, Zeynivand (b0010) 2014; 26
Breiman (b0035) 2001; 45
Li, Huang, Wang (b0180) 2019; 6
Chang, Liu, Fan (b0050) 2009; 22
Pai, Liu (b0210) 2018; 6
Ringner (b0220) 2008; 26
Zhao, Han, Han (b0285) 2019; 14
Yu, Chen, Chang (b0275) 2006; 328
Bishop (b0030) 1995
Kuo, Li (b0165) 2016; 99
Guisado, Jiménez-Morales, Guerra (b0115) 2005; 42
Herrera, Torgo, Izquierdo, Pérez-García (b0140) 2010; 387
Gonçalves, Cortez, Carvalho, Frazão (b0100) 2021; 142
Jain (b0145) 2010; 31
Wang, Obremski, Alidaee, Kochenberger (b0255) 2007; 37
He, Jiang (b0135) 2018; 56
Cui, Xu, Xue, Cai (b0070) 2020; 13
Hastie, Tibshirani, Friedman (b0130) 2009
Baumann, Haupt, Gebert, Lessmann (b0025) 2018; 94
Wolpert (b0265) 1996; 8
Hasan (b0125) 2010; 26
Yuan, Xu, Li, Lau (b0280) 2018; 270
Verstraete, Aghezzaf, Desmet (b0245) 2019; 48
Viet, Behdani, Bloemhof (b0250) 2020
Loureiro, Miguéis, da Silva (b0200) 2018; 114
Young, J. (2019). Global ecommerce sales to reach nearly $3.46 trillion in 2019. Https://www.digitalcommerce360.com/article/global-ecommerce-sales/.
Olbrich, Holsing (b0205) 2011; 16
Lee (b0175) 2017; 55
Spiegel, J.R., Mckenna, M.T., Lakshman, G.S., Nordstrom, P.G. (2011). Method and system for anticipatory package shipping. US Patent 8,086,546.
Ramos, Santos, Rebelo (b0215) 2015; 34
Calster, Baesens, Lemahieu (b0040) 2017; 60
Lau, Zhang, Xu (b0170) 2018; 27
Koehn, Lessmann, Schaal (b0155) 2020; 150
Arunraj, Ahrens (b0015) 2015; 170
Feng, Wu, Fung, Jia, Zong (b0095) 2019; 135
Grömping (b0110) 2009; 63
Bai, Sun, Deng, Li, Long, Li (b0020) 2018; 10
Deb, Pratap, Agarwal, Meyarivan (b0075) 2002; 6
Weingarten, Spinler (b0260) 2020
Lippmann (b0195) 1987; 4
Smola, Schölkopf (b0225) 2004; 14
Jia, Li, Yu, Wang (b0150) 2017
Jia (10.1016/j.cie.2021.107445_b0150) 2017
Lee (10.1016/j.cie.2021.107445_b0175) 2017; 55
Viet (10.1016/j.cie.2021.107445_b0250) 2020
Lian (10.1016/j.cie.2021.107445_b0190) 2014; 37
Bai (10.1016/j.cie.2021.107445_b0020) 2018; 10
Drucker (10.1016/j.cie.2021.107445_b0085) 1997; 28
10.1016/j.cie.2021.107445_b0230
10.1016/j.cie.2021.107445_b0235
Guven (10.1016/j.cie.2021.107445_b0120) 2020; 147
Olbrich (10.1016/j.cie.2021.107445_b0205) 2011; 16
Li (10.1016/j.cie.2021.107445_b0185) 2015; 64
Yuan (10.1016/j.cie.2021.107445_b0280) 2018; 270
Chu (10.1016/j.cie.2021.107445_b0060) 2003; 86
Wang (10.1016/j.cie.2021.107445_b0255) 2007; 37
Guisado (10.1016/j.cie.2021.107445_b0115) 2005; 42
He (10.1016/j.cie.2021.107445_b0135) 2018; 56
Li (10.1016/j.cie.2021.107445_b0180) 2019; 6
Verstraete (10.1016/j.cie.2021.107445_b0245) 2019; 48
10.1016/j.cie.2021.107445_b0240
Yu (10.1016/j.cie.2021.107445_b0275) 2006; 328
10.1016/j.cie.2021.107445_b0045
Baumann (10.1016/j.cie.2021.107445_b0025) 2018; 94
Gonçalves (10.1016/j.cie.2021.107445_b0100) 2021; 142
Feng (10.1016/j.cie.2021.107445_b0095) 2019; 135
Ringner (10.1016/j.cie.2021.107445_b0220) 2008; 26
Grömping (10.1016/j.cie.2021.107445_b0110) 2009; 63
Zhao (10.1016/j.cie.2021.107445_b0285) 2019; 14
Pai (10.1016/j.cie.2021.107445_b0210) 2018; 6
Deb (10.1016/j.cie.2021.107445_b0075) 2002; 6
Ramos (10.1016/j.cie.2021.107445_b0215) 2015; 34
Abolghasemi (10.1016/j.cie.2021.107445_b0005) 2020; 142
Kuo (10.1016/j.cie.2021.107445_b0165) 2016; 99
Di Pillo (10.1016/j.cie.2021.107445_b0080) 2016; 14
Breiman (10.1016/j.cie.2021.107445_b0035) 2001; 45
Hastie (10.1016/j.cie.2021.107445_b0130) 2009
Hasan (10.1016/j.cie.2021.107445_b0125) 2010; 26
Jain (10.1016/j.cie.2021.107445_b0145) 2010; 31
Koehn (10.1016/j.cie.2021.107445_b0155) 2020; 150
Arunraj (10.1016/j.cie.2021.107445_b0015) 2015; 170
Bishop (10.1016/j.cie.2021.107445_b0030) 1995
10.1016/j.cie.2021.107445_b0105
Lippmann (10.1016/j.cie.2021.107445_b0195) 1987; 4
Herrera (10.1016/j.cie.2021.107445_b0140) 2010; 387
Calster (10.1016/j.cie.2021.107445_b0040) 2017; 60
Wolpert (10.1016/j.cie.2021.107445_b0265) 1996; 8
Fan (10.1016/j.cie.2021.107445_b0090) 2010; 20
Chang (10.1016/j.cie.2021.107445_b0050) 2009; 22
Kohavi (10.1016/j.cie.2021.107445_b0160) 1995; Volume 2 IJCAI’95
Loureiro (10.1016/j.cie.2021.107445_b0200) 2018; 114
Smola (10.1016/j.cie.2021.107445_b0225) 2004; 14
Chen (10.1016/j.cie.2021.107445_b0055) 2017; 28
Zhao (10.1016/j.cie.2021.107445_b0290) 2016; 28
Ahmadizar (10.1016/j.cie.2021.107445_b0010) 2014; 26
10.1016/j.cie.2021.107445_b0270
Weingarten (10.1016/j.cie.2021.107445_b0260) 2020
Cui (10.1016/j.cie.2021.107445_b0065) 2018; 27
Cui (10.1016/j.cie.2021.107445_b0070) 2020; 13
Lau (10.1016/j.cie.2021.107445_b0170) 2018; 27
References_xml – volume: 26
  start-page: 153
  year: 2014
  end-page: 164
  ident: b0010
  article-title: Bi-objective supply chain planning in a fuzzy environment
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 135
  start-page: 53
  year: 2019
  end-page: 66
  ident: b0095
  article-title: The order and transshipment decisions in a two-location inventory system with demand forecast updates
  publication-title: Computers & Industrial Engineering
– volume: 170
  start-page: 321
  year: 2015
  end-page: 335
  ident: b0015
  article-title: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting
  publication-title: International Journal of Production Economics
– volume: 60
  start-page: 775
  year: 2017
  end-page: 785
  ident: b0040
  article-title: Profarima: A profit-driven order identification algorithm for arima models in sales forecasting
  publication-title: Applied Soft Computing
– volume: 20
  start-page: 101
  year: 2010
  end-page: 148
  ident: b0090
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Statistica Sinica
– volume: 10
  year: 2018
  ident: b0020
  article-title: Manufacturing quality prediction using intelligent learning approaches: A comparative study
  publication-title: Sustainability
– start-page: 1
  year: 2020
  end-page: 17
  ident: b0250
  article-title: Data-driven process redesign: anticipatory shipping in agro-food supply chains
  publication-title: International Journal of Production Research
– volume: 37
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0255
  article-title: Clique partitioning for clustering: a comparison with k-means and latent class analysis
  publication-title: Communications in Statistics-Simulation and Computation
– start-page: 1
  year: 2017
  end-page: 5
  ident: b0150
  article-title: E-commerce purchase prediction approach by user behavior data
  publication-title: 2017 International Conference on Computer, Information and Telecommunication Systems (CITS)
– volume: 6
  start-page: 1344
  year: 2019
  end-page: 1351
  ident: b0180
  article-title: Long-term traffic volume prediction based on k-means gaussian interval type-2 fuzzy sets
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 55
  start-page: 593
  year: 2017
  end-page: 605
  ident: b0175
  article-title: A ga-based optimisation model for big data analytics supporting anticipatory shipping in retail 4.0
  publication-title: International Journal of Production Research
– volume: 4
  start-page: 4
  year: 1987
  end-page: 22
  ident: b0195
  article-title: An introduction to computing with neural nets
  publication-title: IEEE ASSP Magazine
– volume: 63
  start-page: 308
  year: 2009
  end-page: 319
  ident: b0110
  article-title: Variable importance assessment in regression: Linear regression versus random forest
  publication-title: The American Statistician
– volume: 56
  start-page: 2800
  year: 2018
  end-page: 2817
  ident: b0135
  article-title: A new belief markov chain model and its application in inventory prediction
  publication-title: International Journal of Production Research
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b0145
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognition Letters
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0035
  article-title: Random forests
  publication-title: Machine Learning
– volume: 48
  start-page: 169
  year: 2019
  end-page: 177
  ident: b0245
  article-title: A data-driven framework for predicting weather impact on high-volume low-margin retail products
  publication-title: Journal of Retailing and Consumer Services
– volume: 14
  start-page: 309
  year: 2016
  end-page: 325
  ident: b0080
  article-title: An application of support vector machines to sales forecasting under promotions
  publication-title: 4OR
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0075
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 26
  start-page: 597
  year: 2010
  end-page: 601
  ident: b0125
  article-title: Exploring gender differences in online shopping attitude
  publication-title: Computers in Human Behavior
– volume: 28
  start-page: 2633
  year: 2017
  end-page: 2647
  ident: b0055
  article-title: Sales forecasting by combining clustering and machine-learning techniques for computer retailing
  publication-title: Neural Computing and Applications
– volume: 86
  start-page: 217
  year: 2003
  end-page: 231
  ident: b0060
  article-title: A comparative study of linear and nonlinear models for aggregate retail sales forecasting
  publication-title: International Journal of Production Economics
– volume: 150
  start-page: 113342
  year: 2020
  ident: b0155
  article-title: Predicting online shopping behaviour from clickstream data using deep learning
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 303
  year: 2008
  end-page: 304
  ident: b0220
  article-title: What is principal component analysis?
  publication-title: Nature biotechnology
– volume: 142
  start-page: 106380
  year: 2020
  ident: b0005
  article-title: Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion
  publication-title: Computers & Industrial Engineering
– volume: 42
  start-page: 847
  year: 2005
  end-page: 854
  ident: b0115
  article-title: Application of shannon’s entropy to classify emergent behaviors in a simulation of laser dynamics
  publication-title: Mathematical and Computer Modelling
– volume: 114
  start-page: 81
  year: 2018
  end-page: 93
  ident: b0200
  article-title: Exploring the use of deep neural networks for sales forecasting in fashion retail
  publication-title: Decision Support Systems
– volume: 328
  start-page: 704
  year: 2006
  end-page: 716
  ident: b0275
  article-title: Support vector regression for real-time flood stage forecasting
  publication-title: Journal of Hydrology
– volume: 64
  start-page: 167
  year: 2015
  end-page: 175
  ident: b0185
  article-title: Thermo-economic multi-objective optimization for a solar-dish brayton system using nsga-ii and decision making
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 27
  start-page: 1749
  year: 2018
  end-page: 1769
  ident: b0065
  article-title: The operational value of social media information
  publication-title: Production and Operations Management
– start-page: 1
  year: 2020
  end-page: 22
  ident: b0260
  article-title: Shortening delivery times by predicting customers’ online purchases: A case study in the fashion industry
  publication-title: Information Systems Management
– volume: 16
  start-page: 15
  year: 2011
  end-page: 40
  ident: b0205
  article-title: Modeling consumer purchasing behavior in social shopping communities with clickstream data
  publication-title: International Journal of Electronic Commerce
– volume: Volume 2 IJCAI’95
  start-page: 1137
  year: 1995
  end-page: 1143
  ident: b0160
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proceedings of the 14th International Joint Conference on Artificial Intelligence
– volume: 28
  start-page: 779
  year: 1997
  end-page: 784
  ident: b0085
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 151
  year: 2015
  end-page: 163
  ident: b0215
  article-title: Performance of state space and arima models for consumer retail sales forecasting
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 94
  start-page: 137
  year: 2018
  end-page: 148
  ident: b0025
  article-title: Changing perspectives: Using graph metrics to predict purchase probabilities
  publication-title: Expert Systems with Applications
– reference: Spiegel, J.R., Mckenna, M.T., Lakshman, G.S., Nordstrom, P.G. (2011). Method and system for anticipatory package shipping. US Patent 8,086,546.
– volume: 387
  start-page: 141
  year: 2010
  end-page: 150
  ident: b0140
  article-title: Predictive models for forecasting hourly urban water demand
  publication-title: Journal of Hydrology
– volume: 99
  start-page: 153
  year: 2016
  end-page: 161
  ident: b0165
  article-title: Taiwanese export trade forecasting using firefly algorithm based k-means algorithm and svr with wavelet transform
  publication-title: Computers & Industrial Engineering
– reference: Spiegel, J.R., McKenna, M.T., Lakshman, G.S., Nordstrom, P.G. (2013). Method and system for anticipatory package shipping. US Patent 8,615,473.
– volume: 37
  start-page: 133
  year: 2014
  end-page: 143
  ident: b0190
  article-title: Online shopping drivers and barriers for older adults: Age and gender differences
  publication-title: Computers in Human Behavior
– reference: Castillo, P.A., Mora, A.M., Faris, H., Merelo, J., García-Sánchez, P., Fernández-Ares, A.J., las Cuevas, P.D., & García-Arenas, M.I. (2017). Applying computational intelligence methods for predicting the sales of newly published books in a real editorial business management environment. Knowledge-Based Systems, 115, 133 – 151. doi:https://doi.org/10.1016/j.knosys.2016.10.019.
– volume: 142
  start-page: 113452
  year: 2021
  ident: b0100
  article-title: A multivariate approach for multi-step demand forecasting in assembly industries: Empirical evidence from an automotive supply chain
  publication-title: Decision Support Systems
– volume: 147
  start-page: 106678
  year: 2020
  ident: b0120
  article-title: Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ann) and support vector machines (svm) methods
  publication-title: Computers & Industrial Engineering
– reference: Young, J. (2019). Global ecommerce sales to reach nearly $3.46 trillion in 2019. Https://www.digitalcommerce360.com/article/global-ecommerce-sales/.
– volume: 28
  start-page: 3879
  year: 2016
  end-page: 3894
  ident: b0290
  article-title: Purchase prediction using tmall-specific features
  publication-title: Concurrency and Computation: Practice and Experience
– year: 2009
  ident: b0130
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics
– reference: Spiegel, J.R., McKenna, M.T., Lakshman, G.S., Nordstrom, P.G. (2012). Method and system for anticipatory package shipping. US Patent 8,271,398.
– volume: 8
  start-page: 1341
  year: 1996
  end-page: 1390
  ident: b0265
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Computation
– volume: 27
  start-page: 1775
  year: 2018
  end-page: 1794
  ident: b0170
  article-title: Parallel aspect-oriented sentiment analysis for sales forecasting with big data
  publication-title: Production and Operations Management
– volume: 22
  start-page: 344
  year: 2009
  end-page: 355
  ident: b0050
  article-title: Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry
  publication-title: Knowledge-Based Systems
– year: 1995
  ident: b0030
  article-title: Neural Networks for Pattern Recognition
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0225
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
– volume: 270
  start-page: 553
  year: 2018
  end-page: 576
  ident: b0280
  article-title: Topic sentiment mining for sales performance prediction in e-commerce
  publication-title: Annals of Operations Research
– volume: 6
  start-page: 57655
  year: 2018
  end-page: 57662
  ident: b0210
  article-title: Predicting vehicle sales by sentiment analysis of twitter data and stock market values
  publication-title: IEEE Access
– volume: 13
  start-page: 685
  year: 2020
  end-page: 695
  ident: b0070
  article-title: Personalized recommendation system based on collaborative filtering for iot scenarios
  publication-title: IEEE Transactions on Services Computing
– reference: Gong, Y.Y., & Xu, H. (2014). Clickstream big data and “delivery before order making mode for online retailers. 13th IMHRC Proceedings (Cincinnati, Ohio. USA – 2014).
– volume: 14
  start-page: 201
  year: 2019
  end-page: 212
  ident: b0285
  article-title: Time-dependent and bi-objective vehicle routing problem with time windows
  publication-title: Advances in Production Engineering & Management
– volume: 10
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0020
  article-title: Manufacturing quality prediction using intelligent learning approaches: A comparative study
  publication-title: Sustainability
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107445_b0260
  article-title: Shortening delivery times by predicting customers’ online purchases: A case study in the fashion industry
  publication-title: Information Systems Management
– volume: 63
  start-page: 308
  year: 2009
  ident: 10.1016/j.cie.2021.107445_b0110
  article-title: Variable importance assessment in regression: Linear regression versus random forest
  publication-title: The American Statistician
  doi: 10.1198/tast.2009.08199
– volume: 20
  start-page: 101
  year: 2010
  ident: 10.1016/j.cie.2021.107445_b0090
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Statistica Sinica
– volume: 6
  start-page: 57655
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0210
  article-title: Predicting vehicle sales by sentiment analysis of twitter data and stock market values
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873730
– ident: 10.1016/j.cie.2021.107445_b0270
– volume: 64
  start-page: 167
  year: 2015
  ident: 10.1016/j.cie.2021.107445_b0185
  article-title: Thermo-economic multi-objective optimization for a solar-dish brayton system using nsga-ii and decision making
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2014.07.027
– volume: 4
  start-page: 4
  year: 1987
  ident: 10.1016/j.cie.2021.107445_b0195
  article-title: An introduction to computing with neural nets
  publication-title: IEEE ASSP Magazine
  doi: 10.1109/MASSP.1987.1165576
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.cie.2021.107445_b0075
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 147
  start-page: 106678
  year: 2020
  ident: 10.1016/j.cie.2021.107445_b0120
  article-title: Demand forecasting with color parameter in retail apparel industry using artificial neural networks (ann) and support vector machines (svm) methods
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106678
– volume: Volume 2 IJCAI’95
  start-page: 1137
  year: 1995
  ident: 10.1016/j.cie.2021.107445_b0160
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 270
  start-page: 553
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0280
  article-title: Topic sentiment mining for sales performance prediction in e-commerce
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-017-2421-7
– volume: 27
  start-page: 1775
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0170
  article-title: Parallel aspect-oriented sentiment analysis for sales forecasting with big data
  publication-title: Production and Operations Management
  doi: 10.1111/poms.12737
– volume: 150
  start-page: 113342
  year: 2020
  ident: 10.1016/j.cie.2021.107445_b0155
  article-title: Predicting online shopping behaviour from clickstream data using deep learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113342
– start-page: 1
  year: 2017
  ident: 10.1016/j.cie.2021.107445_b0150
  article-title: E-commerce purchase prediction approach by user behavior data
– volume: 34
  start-page: 151
  year: 2015
  ident: 10.1016/j.cie.2021.107445_b0215
  article-title: Performance of state space and arima models for consumer retail sales forecasting
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2014.12.015
– volume: 55
  start-page: 593
  year: 2017
  ident: 10.1016/j.cie.2021.107445_b0175
  article-title: A ga-based optimisation model for big data analytics supporting anticipatory shipping in retail 4.0
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2016.1221162
– ident: 10.1016/j.cie.2021.107445_b0045
  doi: 10.1016/j.knosys.2016.10.019
– year: 2009
  ident: 10.1016/j.cie.2021.107445_b0130
– volume: 114
  start-page: 81
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0200
  article-title: Exploring the use of deep neural networks for sales forecasting in fashion retail
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2018.08.010
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.cie.2021.107445_b0225
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 328
  start-page: 704
  year: 2006
  ident: 10.1016/j.cie.2021.107445_b0275
  article-title: Support vector regression for real-time flood stage forecasting
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2006.01.021
– volume: 170
  start-page: 321
  year: 2015
  ident: 10.1016/j.cie.2021.107445_b0015
  article-title: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2015.09.039
– volume: 387
  start-page: 141
  year: 2010
  ident: 10.1016/j.cie.2021.107445_b0140
  article-title: Predictive models for forecasting hourly urban water demand
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2010.04.005
– ident: 10.1016/j.cie.2021.107445_b0235
– ident: 10.1016/j.cie.2021.107445_b0105
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.cie.2021.107445_b0035
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.cie.2021.107445_b0145
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– volume: 26
  start-page: 153
  year: 2014
  ident: 10.1016/j.cie.2021.107445_b0010
  article-title: Bi-objective supply chain planning in a fuzzy environment
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 13
  start-page: 685
  year: 2020
  ident: 10.1016/j.cie.2021.107445_b0070
  article-title: Personalized recommendation system based on collaborative filtering for iot scenarios
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2020.2964552
– volume: 37
  start-page: 1
  year: 2007
  ident: 10.1016/j.cie.2021.107445_b0255
  article-title: Clique partitioning for clustering: a comparison with k-means and latent class analysis
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610910701723559
– ident: 10.1016/j.cie.2021.107445_b0230
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2021.107445_b0250
  article-title: Data-driven process redesign: anticipatory shipping in agro-food supply chains
  publication-title: International Journal of Production Research
– volume: 94
  start-page: 137
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0025
  article-title: Changing perspectives: Using graph metrics to predict purchase probabilities
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.046
– volume: 28
  start-page: 779
  year: 1997
  ident: 10.1016/j.cie.2021.107445_b0085
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 86
  start-page: 217
  year: 2003
  ident: 10.1016/j.cie.2021.107445_b0060
  article-title: A comparative study of linear and nonlinear models for aggregate retail sales forecasting
  publication-title: International Journal of Production Economics
  doi: 10.1016/S0925-5273(03)00068-9
– volume: 8
  start-page: 1341
  year: 1996
  ident: 10.1016/j.cie.2021.107445_b0265
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.7.1341
– volume: 16
  start-page: 15
  year: 2011
  ident: 10.1016/j.cie.2021.107445_b0205
  article-title: Modeling consumer purchasing behavior in social shopping communities with clickstream data
  publication-title: International Journal of Electronic Commerce
  doi: 10.2753/JEC1086-4415160202
– volume: 135
  start-page: 53
  year: 2019
  ident: 10.1016/j.cie.2021.107445_b0095
  article-title: The order and transshipment decisions in a two-location inventory system with demand forecast updates
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.04.043
– volume: 6
  start-page: 1344
  year: 2019
  ident: 10.1016/j.cie.2021.107445_b0180
  article-title: Long-term traffic volume prediction based on k-means gaussian interval type-2 fuzzy sets
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2019.1911723
– volume: 142
  start-page: 113452
  year: 2021
  ident: 10.1016/j.cie.2021.107445_b0100
  article-title: A multivariate approach for multi-step demand forecasting in assembly industries: Empirical evidence from an automotive supply chain
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2020.113452
– volume: 48
  start-page: 169
  year: 2019
  ident: 10.1016/j.cie.2021.107445_b0245
  article-title: A data-driven framework for predicting weather impact on high-volume low-margin retail products
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2019.02.019
– volume: 56
  start-page: 2800
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0135
  article-title: A new belief markov chain model and its application in inventory prediction
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1405166
– volume: 26
  start-page: 597
  year: 2010
  ident: 10.1016/j.cie.2021.107445_b0125
  article-title: Exploring gender differences in online shopping attitude
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2009.12.012
– year: 1995
  ident: 10.1016/j.cie.2021.107445_b0030
– volume: 27
  start-page: 1749
  year: 2018
  ident: 10.1016/j.cie.2021.107445_b0065
  article-title: The operational value of social media information
  publication-title: Production and Operations Management
  doi: 10.1111/poms.12707
– volume: 37
  start-page: 133
  year: 2014
  ident: 10.1016/j.cie.2021.107445_b0190
  article-title: Online shopping drivers and barriers for older adults: Age and gender differences
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.04.028
– volume: 14
  start-page: 201
  year: 2019
  ident: 10.1016/j.cie.2021.107445_b0285
  article-title: Time-dependent and bi-objective vehicle routing problem with time windows
  publication-title: Advances in Production Engineering & Management
  doi: 10.14743/apem2019.2.322
– volume: 26
  start-page: 303
  year: 2008
  ident: 10.1016/j.cie.2021.107445_b0220
  article-title: What is principal component analysis?
  publication-title: Nature biotechnology
  doi: 10.1038/nbt0308-303
– volume: 22
  start-page: 344
  year: 2009
  ident: 10.1016/j.cie.2021.107445_b0050
  article-title: Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.02.005
– ident: 10.1016/j.cie.2021.107445_b0240
– volume: 28
  start-page: 2633
  year: 2017
  ident: 10.1016/j.cie.2021.107445_b0055
  article-title: Sales forecasting by combining clustering and machine-learning techniques for computer retailing
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2215-x
– volume: 14
  start-page: 309
  year: 2016
  ident: 10.1016/j.cie.2021.107445_b0080
  article-title: An application of support vector machines to sales forecasting under promotions
  publication-title: 4OR
  doi: 10.1007/s10288-016-0316-0
– volume: 142
  start-page: 106380
  year: 2020
  ident: 10.1016/j.cie.2021.107445_b0005
  article-title: Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106380
– volume: 28
  start-page: 3879
  year: 2016
  ident: 10.1016/j.cie.2021.107445_b0290
  article-title: Purchase prediction using tmall-specific features
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.3720
– volume: 42
  start-page: 847
  year: 2005
  ident: 10.1016/j.cie.2021.107445_b0115
  article-title: Application of shannon’s entropy to classify emergent behaviors in a simulation of laser dynamics
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2005.09.012
– volume: 99
  start-page: 153
  year: 2016
  ident: 10.1016/j.cie.2021.107445_b0165
  article-title: Taiwanese export trade forecasting using firefly algorithm based k-means algorithm and svr with wavelet transform
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.07.012
– volume: 60
  start-page: 775
  year: 2017
  ident: 10.1016/j.cie.2021.107445_b0040
  article-title: Profarima: A profit-driven order identification algorithm for arima models in sales forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.02.011
SSID ssj0004591
Score 2.3982296
Snippet Anticipatory shipping helps to reduce the waiting time of online customers to receive their products. Present studies on anticipatory shipping mainly consider...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107445
SubjectTerms Anticipatory shipping
Data-driven
Integer programming model
Multiobjective
Online retail
Title Optimal decision of multiobjective and multiperiod anticipatory shipping under uncertain demand: A data-driven framework
URI https://dx.doi.org/10.1016/j.cie.2021.107445
Volume 159
WOSCitedRecordID wos000698643000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOjA0QAzb5sBMoVdKlsc2tTJs2hMYOQ8otsmMbWm3J1HZT_xX-W56_knRf2g5cnMhKXq2-X56f7d97D6FdwjJJM5FEXBIWpTpWEVUSPrw9DirnMKtrm2f2Bzk5oXnOTnu9vyEW5vqcVBVdLtnlf1U19IGyTejsE9TdCIUOuAelQwtqh_ZRiv8JRuDCHL346jn2BN3QBmsxddbNHhg4JiEMqDbJWj232hy4G_qWDaIy4WUzaEvHGgCBF4YFaUPZDbE0kjNjKr_owO_qOrqhWsTcYmvSFghRbQLEoOzSR4jsw7XpzK9MVw7o_cPrZnu7tr3fYKxVa9SduTqqq9_LCe9uYwyThqfVhm_FkXEHV0yzzxbujKvhjrrck7fsvtuCmA7AHg6M9EH77GqO7RtzX8NIDGS3aQEiCiOicCKeobUhGTHaR2vj44P8eycVvSvHGMYdjswtefDGOO52ejqOzNlr9MqvQPDYIWcD9VS1idb9agR7Wz_fRC87qSrfoKWHFQ6wwrXGq7DCgA7cgRXuwgoHWGELK9zACjtYfcVj3AEVbkD1Fv06PDjbP4p81Y6oHDKyiJJyVNIhJ1yqLJYjRVNNpOKxzqSIy4xwAabB1CWwueEUEzSJpUg4zwTVDGaYd6hf1ZV6j7CA6RTcpTThezplGlYDkidEaJGWQvBEb6E4_K2gNkddMZVVzot71bmFPjevXLp8Lg89nAZdFd4hdY5mAbi7_7UPT_mNj-hF-zl8Qv3F7Epto-fl9WIyn-140P0DiqqwOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+decision+of+multiobjective+and+multiperiod+anticipatory+shipping+under+uncertain+demand%3A+A+data-driven+framework&rft.jtitle=Computers+%26+industrial+engineering&rft.au=chen%2C+Cheng&rft.au=Xu%2C+Xianhao&rft.au=Zou%2C+Bipan&rft.au=Peng%2C+Hongxia&rft.date=2021-09-01&rft.issn=0360-8352&rft.volume=159&rft.spage=107445&rft_id=info:doi/10.1016%2Fj.cie.2021.107445&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2021_107445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon