A new distance with derivative information for functional k-means clustering algorithm

•Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional k-means clustering algorithm based on the new distance.•Experimental results show the effectiveness, robustness and convergence of the function...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 463-464; pp. 166 - 185
Main Authors: Meng, Yinfeng, Liang, Jiye, Cao, Fuyuan, He, Yijun
Format: Journal Article
Language:English
Published: Elsevier Inc 01.10.2018
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional k-means clustering algorithm based on the new distance.•Experimental results show the effectiveness, robustness and convergence of the functional k-means clustering algorithm based on the new distance. The functional k-means clustering algorithm is a widely used method for clustering functional data. However, with this algorithm, the derivative information is not further considered in calculating the similarity between two functional samples. In fact, the derivative information is very important for catching the trend characteristic differences among functional data. In this paper, we define a novel distance used to measure the similarity among functional samples by adding their derivative information. Furthermore, in theory, we construct cluster centroids that can minimize the objective function of the functional k-means clustering algorithm based on the proposed distance. After preprocessing functional data using three types of common basis representation techniques, we compare the clustering performance of the functional k-means clustering algorithms based on four different similarity metrics. The experiments on six data sets with class labels show the effectiveness and robustness of the functional k-means clustering algorithm with the defined distance statistically. In addition, the experimental results on three real-life data sets verify the convergence and practicability of the functional k-means clustering algorithm with the defined distance.
AbstractList •Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional k-means clustering algorithm based on the new distance.•Experimental results show the effectiveness, robustness and convergence of the functional k-means clustering algorithm based on the new distance. The functional k-means clustering algorithm is a widely used method for clustering functional data. However, with this algorithm, the derivative information is not further considered in calculating the similarity between two functional samples. In fact, the derivative information is very important for catching the trend characteristic differences among functional data. In this paper, we define a novel distance used to measure the similarity among functional samples by adding their derivative information. Furthermore, in theory, we construct cluster centroids that can minimize the objective function of the functional k-means clustering algorithm based on the proposed distance. After preprocessing functional data using three types of common basis representation techniques, we compare the clustering performance of the functional k-means clustering algorithms based on four different similarity metrics. The experiments on six data sets with class labels show the effectiveness and robustness of the functional k-means clustering algorithm with the defined distance statistically. In addition, the experimental results on three real-life data sets verify the convergence and practicability of the functional k-means clustering algorithm with the defined distance.
Author He, Yijun
Liang, Jiye
Meng, Yinfeng
Cao, Fuyuan
Author_xml – sequence: 1
  givenname: Yinfeng
  orcidid: 0000-0001-9531-3752
  surname: Meng
  fullname: Meng, Yinfeng
  email: mengyf@sxu.edu.cn
  organization: School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
– sequence: 2
  givenname: Jiye
  orcidid: 0000-0001-5887-9327
  surname: Liang
  fullname: Liang, Jiye
  email: ljy@sxu.edu.cn
  organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan, Shanxi 030006, China
– sequence: 3
  givenname: Fuyuan
  surname: Cao
  fullname: Cao, Fuyuan
  organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan, Shanxi 030006, China
– sequence: 4
  givenname: Yijun
  surname: He
  fullname: He, Yijun
  organization: School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
BookMark eNp9kL1OwzAUhS1UJErhAdj8AgnXTm0nYqoq_qRKLMBq-S_FJXGQnbbi7XEpE0One-7wHel8l2gShuAQuiFQEiD8dlP6kEoKpC6Bl1CxMzQltaAFpw2ZoCkAhQIoYxfoMqUNAMwF51P0vsDB7bH1aVTBOLz34we2LvqdGv3OYR_aIfY5DwHnhNttMIdHdfiz6J0KCZtum8ZMhDVW3XqIuaG_Quet6pK7_rsz9PZw_7p8KlYvj8_LxaowtBFjQbQV2om6coTNW2MpN4LVleWCcKCOWXBGaa5MrZluNTTNnAkNurVNTVglqhkix14Th5Sia-VX9L2K35KAPIiRG5nFyIMYCVxmMZkR_xjjx9-FY1S-O0neHUmXJ-28izIZ77I266Mzo7SDP0H_AGq4geg
CitedBy_id crossref_primary_10_1145_3581789
crossref_primary_10_1016_j_ecosta_2023_03_002
crossref_primary_10_1016_j_ins_2022_08_109
crossref_primary_10_1016_j_ymssp_2021_108332
crossref_primary_10_1080_10826076_2019_1701015
crossref_primary_10_1109_ACCESS_2025_3581984
crossref_primary_10_1016_j_jksuci_2021_07_003
crossref_primary_10_1016_j_neucom_2024_129231
crossref_primary_10_1007_s40200_025_01580_1
crossref_primary_10_1007_s00521_019_04673_0
crossref_primary_10_1016_j_cie_2019_106087
crossref_primary_10_1016_j_knosys_2023_110261
crossref_primary_10_1109_ACCESS_2021_3067729
crossref_primary_10_1016_j_scs_2021_103331
crossref_primary_10_1016_j_asoc_2019_105838
crossref_primary_10_1080_02664763_2024_2440035
crossref_primary_10_1016_j_mssp_2024_109010
crossref_primary_10_1016_j_ins_2019_05_063
crossref_primary_10_1080_10618600_2024_2366499
crossref_primary_10_1109_ACCESS_2020_2988796
crossref_primary_10_3390_f13121970
crossref_primary_10_1016_j_eswa_2019_112910
crossref_primary_10_3390_data7110165
crossref_primary_10_1109_ACCESS_2023_3322929
crossref_primary_10_1016_j_image_2019_07_001
crossref_primary_10_1080_00949655_2023_2215371
crossref_primary_10_1016_j_neucom_2024_129245
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_1016_j_neucom_2025_130403
crossref_primary_10_1016_j_jsg_2020_103978
crossref_primary_10_1016_j_ins_2022_05_112
crossref_primary_10_1371_journal_pone_0271928
crossref_primary_10_3390_math12081175
crossref_primary_10_1007_s11634_024_00611_8
crossref_primary_10_12688_f1000research_130245_2
crossref_primary_10_12688_f1000research_130245_3
crossref_primary_10_1109_ACCESS_2021_3058947
crossref_primary_10_12688_f1000research_130245_1
crossref_primary_10_1016_j_eswa_2025_128567
crossref_primary_10_1007_s12561_023_09384_8
crossref_primary_10_3390_math12193083
crossref_primary_10_1088_1361_6501_ab2177
crossref_primary_10_1007_s12145_024_01368_6
crossref_primary_10_1016_j_aei_2022_101771
crossref_primary_10_1088_1742_6596_2406_1_012024
crossref_primary_10_1088_1742_6596_2406_1_012022
crossref_primary_10_1088_1757_899X_1085_1_012030
crossref_primary_10_7717_peerj_cs_2016
crossref_primary_10_1049_trit_2019_0048
crossref_primary_10_1016_j_eswa_2020_113949
crossref_primary_10_1371_journal_pone_0248923
Cites_doi 10.1016/j.knosys.2015.12.016
10.1007/s00180-007-0041-4
10.1016/j.ins.2017.04.008
10.1016/j.patcog.2012.05.016
10.1007/s11634-011-0095-6
10.1016/j.ins.2017.09.047
10.1007/s00180-006-0013-0
10.1109/TPAMI.2002.1114856
10.1016/j.patcog.2017.06.023
10.1016/j.csda.2012.12.008
10.1016/j.isatra.2017.09.004
10.1146/annurev-statistics-041715-033624
10.1016/j.knosys.2012.09.011
10.1214/08-AOAS172
10.1142/S0218488504002849
10.1016/j.patcog.2007.01.017
10.1109/TFUZZ.2005.856565
10.1016/j.csda.2006.07.042
10.1007/s11634-013-0158-y
10.1007/s00357-010-9054-8
10.1111/biom.12546
10.1111/j.1541-0420.2012.01828.x
10.1016/j.spl.2011.11.027
10.1007/s00357-005-0013-8
10.1023/A:1010920819831
10.1111/1467-9469.00350
10.1016/j.camwa.2009.04.017
10.1214/aos/1176324456
10.1016/S0020-0255(02)00208-6
10.1093/bioinformatics/btg014
10.1198/016214504000001574
10.1016/j.patrec.2009.07.014
10.1007/s00357-003-0007-3
10.1016/j.csda.2013.04.001
10.1016/j.cam.2010.01.054
10.1111/j.1467-9868.2006.00539.x
10.1016/j.stamet.2009.06.003
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.06.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 185
ExternalDocumentID 10_1016_j_ins_2018_06_035
S0020025518304766
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-1bd7be783e154fcd26c7583d671602e5d0ecab6ac8b5bfb099457b0bfd9815373
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442712900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:25:07 EST 2025
Tue Nov 18 21:38:59 EST 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational theory
Functional data
Functional k-means clustering algorithm
Cluster centroid
Derivative information
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-1bd7be783e154fcd26c7583d671602e5d0ecab6ac8b5bfb099457b0bfd9815373
ORCID 0000-0001-9531-3752
0000-0001-5887-9327
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_ins_2018_06_035
crossref_citationtrail_10_1016_j_ins_2018_06_035
elsevier_sciencedirect_doi_10_1016_j_ins_2018_06_035
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Giacofci, Lambert-Lacroix, Marot, Picard (bib0024) 2013; 69
Ramsay, Silverman (bib0041) 2005
Zhou, Chen (bib0048) 2012; 82
Meng, Liang, Qian (bib0035) 2016; 97
Wang, Chiou, Müller (bib0047) 2016; 3
Coffey, Hinde, Holian (bib0014) 2014; 71
D’Urso (bib0016) 2005; 13
Serban, Wasserman (bib0042) 2005; 100
Liu, Aickelin, Feyereisl, Durrant (bib0031) 2013; 37
Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The ucr time series classification archive, URL
Chen, Zhang, Yi (bib0011) 2018; 424
Chiou, Müller (bib0012) 2007; 51
Huang, Ye, Xiong, Lau, Jiang, Wang (bib0028) 2016; 367
Gamasaee, Zarandi (bib0022) 2017; 405
Preda, Saporta, Lévéder (bib0040) 2007; 22
Chan, Fu (bib0009) 1999
2015.
Friedman, Hastie, Tibshirani (bib0021) 2001
Bandyopadhyay, Maulik (bib0004) 2002; 146
Peng, Müller (bib0039) 2008; 2
Abraham, Cornillon, Matzner-Løber, Molinari (bib0001) 2003; 30
Fontes, Budman (bib0020) 2017; 71
Jacques, Preda (bib0029) 2014; 8
Park, Ahn (bib0038) 2017; 73
Garcia-Escudero, Gordaliza (bib0023) 2005; 22
Bouveyron, Brunet-Saumard (bib0006) 2014; 71
Wang, Shi, Yeung, Tsang, Heng (bib0045) 2007; 40
López, Martínez, Matías, Taboada, Vilán (bib0032) 2010; 234
Ando (bib0002) 2009; 6
Luan, Li (bib0033) 2003; 19
Boullé (bib0005) 2012; 45
Kayano, Dozono, Konishi (bib0030) 2010; 27
Bai, Cheng, Liang, Shen, Yike (bib0003) 2017; 71
Chow, Teicher (bib0013) 2012
Tarpey, Kinateder (bib0043) 2003; 20
Faloutsos, Ranganathan, Manolopoulos (bib0017) 1994
D’urso (bib0015) 2004; 12
Favero, King (bib0018) 1994
Hand, Till (bib0026) 2001; 45
Maulik, Bandyopadhyay (bib0034) 2002; 24
Wang, Huang, Wang (bib0046) 2009; 28
Morris, Carroll (bib0036) 2006; 68
Muñoz, González (bib0037) 2010; 31
Tokushige, Yadohisa, Inada (bib0044) 2007; 22
Hastie, Buja, Tibshirani (bib0027) 1995; 23
Bouveyron, Jacques (bib0007) 2011; 5
Cao, Liang, Jiang (bib0008) 2009; 58
Ferraty, Vieu (bib0019) 2006
Chen (10.1016/j.ins.2018.06.035_bib0011) 2018; 424
Bouveyron (10.1016/j.ins.2018.06.035_bib0007) 2011; 5
Peng (10.1016/j.ins.2018.06.035_bib0039) 2008; 2
Morris (10.1016/j.ins.2018.06.035_bib0036) 2006; 68
Gamasaee (10.1016/j.ins.2018.06.035_bib0022) 2017; 405
Maulik (10.1016/j.ins.2018.06.035_bib0034) 2002; 24
Bai (10.1016/j.ins.2018.06.035_bib0003) 2017; 71
Wang (10.1016/j.ins.2018.06.035_bib0046) 2009; 28
Ando (10.1016/j.ins.2018.06.035_bib0002) 2009; 6
Wang (10.1016/j.ins.2018.06.035_bib0045) 2007; 40
Serban (10.1016/j.ins.2018.06.035_bib0042) 2005; 100
Jacques (10.1016/j.ins.2018.06.035_bib0029) 2014; 8
Huang (10.1016/j.ins.2018.06.035_bib0028) 2016; 367
Favero (10.1016/j.ins.2018.06.035_bib0018) 1994
Coffey (10.1016/j.ins.2018.06.035_bib0014) 2014; 71
Friedman (10.1016/j.ins.2018.06.035_bib0021) 2001
Tarpey (10.1016/j.ins.2018.06.035_bib0043) 2003; 20
Bouveyron (10.1016/j.ins.2018.06.035_bib0006) 2014; 71
D’Urso (10.1016/j.ins.2018.06.035_bib0016) 2005; 13
Tokushige (10.1016/j.ins.2018.06.035_bib0044) 2007; 22
Kayano (10.1016/j.ins.2018.06.035_bib0030) 2010; 27
Meng (10.1016/j.ins.2018.06.035_bib0035) 2016; 97
Giacofci (10.1016/j.ins.2018.06.035_bib0024) 2013; 69
Muñoz (10.1016/j.ins.2018.06.035_bib0037) 2010; 31
Park (10.1016/j.ins.2018.06.035_bib0038) 2017; 73
Hastie (10.1016/j.ins.2018.06.035_bib0027) 1995; 23
Hand (10.1016/j.ins.2018.06.035_bib0026) 2001; 45
Luan (10.1016/j.ins.2018.06.035_bib0033) 2003; 19
Liu (10.1016/j.ins.2018.06.035_bib0031) 2013; 37
Garcia-Escudero (10.1016/j.ins.2018.06.035_bib0023) 2005; 22
Bandyopadhyay (10.1016/j.ins.2018.06.035_bib0004) 2002; 146
Fontes (10.1016/j.ins.2018.06.035_bib0020) 2017; 71
Chow (10.1016/j.ins.2018.06.035_bib0013) 2012
Boullé (10.1016/j.ins.2018.06.035_bib0005) 2012; 45
10.1016/j.ins.2018.06.035_bib0010
Chiou (10.1016/j.ins.2018.06.035_bib0012) 2007; 51
Preda (10.1016/j.ins.2018.06.035_bib0040) 2007; 22
Cao (10.1016/j.ins.2018.06.035_bib0008) 2009; 58
López (10.1016/j.ins.2018.06.035_bib0032) 2010; 234
Ramsay (10.1016/j.ins.2018.06.035_bib0041) 2005
Abraham (10.1016/j.ins.2018.06.035_bib0001) 2003; 30
Chan (10.1016/j.ins.2018.06.035_bib0009) 1999
D’urso (10.1016/j.ins.2018.06.035_bib0015) 2004; 12
Zhou (10.1016/j.ins.2018.06.035_bib0048) 2012; 82
Ferraty (10.1016/j.ins.2018.06.035_bib0019) 2006
Wang (10.1016/j.ins.2018.06.035_bib0047) 2016; 3
Faloutsos (10.1016/j.ins.2018.06.035_bib0017) 1994
References_xml – volume: 69
  start-page: 31
  year: 2013
  end-page: 40
  ident: bib0024
  article-title: Wavelet-based clustering for mixed-effects functional models in high dimension
  publication-title: Biometrics
– volume: 20
  start-page: 93
  year: 2003
  end-page: 114
  ident: bib0043
  article-title: Clustering functional data
  publication-title: J. Classification
– start-page: 126
  year: 1999
  end-page: 133
  ident: bib0009
  article-title: Efficient time series matching by wavelets
  publication-title: Data Engineering, Proceedings., 15th International Conference on
– volume: 8
  start-page: 231
  year: 2014
  end-page: 255
  ident: bib0029
  article-title: Functional data clustering: a survey
  publication-title: Adv. Data Anal. Classif.
– volume: 68
  start-page: 179
  year: 2006
  end-page: 199
  ident: bib0036
  article-title: Wavelet-based functional mixed models
  publication-title: J. R. Stat. Soc.
– volume: 30
  start-page: 581
  year: 2003
  end-page: 595
  ident: bib0001
  article-title: Unsupervised curve clustering using b-splines
  publication-title: Scand. J. Stat.
– volume: 37
  start-page: 502
  year: 2013
  end-page: 514
  ident: bib0031
  article-title: Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data
  publication-title: Knowl. Based Syst.
– volume: 97
  start-page: 224
  year: 2016
  end-page: 236
  ident: bib0035
  article-title: Comparison study of orthonormal representations of functional data in classification
  publication-title: Knowl. Based Syst.
– volume: 2
  start-page: 1056
  year: 2008
  end-page: 1077
  ident: bib0039
  article-title: Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions
  publication-title: Ann. Appl. Stat.
– volume: 367
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0028
  article-title: Time series
  publication-title: Inf. Sci.
– volume: 27
  start-page: 211
  year: 2010
  end-page: 230
  ident: bib0030
  article-title: Functional cluster analysis via orthonormalized gaussian basis expansions and its application
  publication-title: J. Classif.
– volume: 31
  start-page: 511
  year: 2010
  end-page: 516
  ident: bib0037
  article-title: Representing functional data using support vector machines
  publication-title: Pattern Recognit. Lett.
– volume: 40
  start-page: 2685
  year: 2007
  end-page: 2695
  ident: bib0045
  article-title: Ellipsoidal support vector clustering for functional mri analysis
  publication-title: Pattern Recognit.
– start-page: 694
  year: 1994
  end-page: 697
  ident: bib0018
  article-title: Wavelet parameterization for speech recognition: variations in translation and scale parameters
  publication-title: Speech, Image Processing and Neural Networks, 1994. Proceedings, ISSIPNN’94., International Symposium on
– volume: 58
  start-page: 474
  year: 2009
  end-page: 483
  ident: bib0008
  article-title: An initialization method for the
  publication-title: Comput. Math. Appl.
– volume: 28
  start-page: 839
  year: 2009
  end-page: 844
  ident: bib0046
  article-title: A cluster method of functional data analysis
  publication-title: Appl. Stat. Manage.
– volume: 82
  start-page: 505
  year: 2012
  end-page: 513
  ident: bib0048
  article-title: Spline estimators for semi-functional linear model
  publication-title: Stat. Probab. Lett.
– volume: 22
  start-page: 185
  year: 2005
  end-page: 201
  ident: bib0023
  article-title: A proposal for robust curve clustering
  publication-title: J. Classif.
– volume: 24
  start-page: 1650
  year: 2002
  end-page: 1654
  ident: bib0034
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 71
  start-page: 52
  year: 2014
  end-page: 78
  ident: bib0006
  article-title: Model-based clustering of high-dimensional data: a review
  publication-title: Comput. Stat. Data Anal.
– volume: 5
  start-page: 281
  year: 2011
  end-page: 300
  ident: bib0007
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Adv. Data Anal. Classif.
– reference: , 2015.
– volume: 73
  start-page: 324
  year: 2017
  end-page: 333
  ident: bib0038
  article-title: Clustering multivariate functional data with phase variation
  publication-title: Biometrics
– volume: 22
  start-page: 1
  year: 2007
  end-page: 16
  ident: bib0044
  article-title: Crisp and fuzzy
  publication-title: Comput. Stat.
– year: 2005
  ident: bib0041
  article-title: Functional Data Analysis
  publication-title: Springer Series in Statistics
– volume: 51
  start-page: 4849
  year: 2007
  end-page: 4863
  ident: bib0012
  article-title: Diagnostics for functional regression via residual processes
  publication-title: Comput. Stat. Data Anal.
– volume: 405
  start-page: 55
  year: 2017
  end-page: 80
  ident: bib0022
  article-title: A new dirichlet process for mining dynamic patterns in functional data
  publication-title: Inf. Sci.
– volume: 22
  start-page: 223
  year: 2007
  end-page: 235
  ident: bib0040
  article-title: Pls classification of functional data
  publication-title: Comput. Stat.
– volume: 146
  start-page: 221
  year: 2002
  end-page: 237
  ident: bib0004
  article-title: An evolutionary technique based on
  publication-title: Inf. Sci.
– volume: 424
  start-page: 27
  year: 2018
  end-page: 38
  ident: bib0011
  article-title: Subspace clustering using a low-rank constrained autoencoder
  publication-title: Inf. Sci.
– volume: 6
  start-page: 565
  year: 2009
  end-page: 576
  ident: bib0002
  article-title: Penalized optimal scoring for the classification of multi-dimensional functional data
  publication-title: Stat. Methodol.
– volume: 100
  start-page: 990
  year: 2005
  end-page: 999
  ident: bib0042
  article-title: Cats: clustering after transformation and smoothing
  publication-title: J. Am. Stat. Assoc.
– year: 2012
  ident: bib0013
  article-title: Probability Theory: Independence, Interchangeability, Martingales
– volume: 71
  start-page: 14
  year: 2014
  end-page: 29
  ident: bib0014
  article-title: Clustering longitudinal profiles using p-splines and mixed effects models applied to time-course gene expression data
  publication-title: Comput. Stat. Data Anal.
– volume: 12
  start-page: 287
  year: 2004
  end-page: 326
  ident: bib0015
  article-title: Fuzzy c-means clustering models for multivariate time-varying data: different approaches
  publication-title: Int. J. Uncertainty Fuzziness Knowl. Based Syst.
– volume: 3
  start-page: 257
  year: 2016
  end-page: 295
  ident: bib0047
  article-title: Functional data analysis
  publication-title: Annu. Rev. Stat. Appl.
– volume: 45
  start-page: 4389
  year: 2012
  end-page: 4401
  ident: bib0005
  article-title: Functional data clustering via piecewise constant nonparametric density estimation
  publication-title: Pattern Recognit.
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: bib0003
  article-title: Fast density clustering strategies based on the
  publication-title: Pattern Recognit.
– year: 2001
  ident: bib0021
  article-title: The elements of statistical learning, volume 1
  publication-title: Springer Series in Statistics
– volume: 13
  start-page: 583
  year: 2005
  end-page: 604
  ident: bib0016
  article-title: Fuzzy clustering for data time arrays with inlier and outlier time trajectories
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 71
  start-page: 513
  year: 2017
  end-page: 529
  ident: bib0020
  article-title: A hybrid clustering approach for multivariate time series–a case study applied to failure analysis in a gas turbine
  publication-title: ISA Trans.
– volume: 234
  start-page: 1338
  year: 2010
  end-page: 1345
  ident: bib0032
  article-title: Functional classification of ornamental stone using machine learning techniques
  publication-title: J. Comput. Appl. Math.
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: bib0026
  article-title: A simple generalisation of the area under the roc curve for multiple class classification problems
  publication-title: Mach. Learn.
– start-page: 419
  year: 1994
  end-page: 429
  ident: bib0017
  article-title: Fast subsequence matching in time-series databases
  publication-title: Proc. of the 1994 ACM SIGMOD International Conference on Management of Data
– year: 2006
  ident: bib0019
  article-title: Nonparametric Functional Data Analysis: Theory and Practice
– volume: 19
  start-page: 474
  year: 2003
  end-page: 482
  ident: bib0033
  article-title: Clustering of time-course gene expression data using a mixed-effects model with b-splines
  publication-title: Bioinformatics
– reference: Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The ucr time series classification archive, URL
– volume: 23
  start-page: 73
  year: 1995
  end-page: 102
  ident: bib0027
  article-title: Penalized discriminant analysis
  publication-title: Ann. Stat.
– volume: 367
  start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2018.06.035_bib0028
  article-title: Time series k-means: a new k-means type smooth subspace clustering for time series data
  publication-title: Inf. Sci.
– volume: 97
  start-page: 224
  year: 2016
  ident: 10.1016/j.ins.2018.06.035_bib0035
  article-title: Comparison study of orthonormal representations of functional data in classification
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.12.016
– volume: 22
  start-page: 223
  year: 2007
  ident: 10.1016/j.ins.2018.06.035_bib0040
  article-title: Pls classification of functional data
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-007-0041-4
– volume: 405
  start-page: 55
  year: 2017
  ident: 10.1016/j.ins.2018.06.035_bib0022
  article-title: A new dirichlet process for mining dynamic patterns in functional data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.008
– volume: 45
  start-page: 4389
  year: 2012
  ident: 10.1016/j.ins.2018.06.035_bib0005
  article-title: Functional data clustering via piecewise constant nonparametric density estimation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.05.016
– start-page: 419
  year: 1994
  ident: 10.1016/j.ins.2018.06.035_bib0017
  article-title: Fast subsequence matching in time-series databases
– volume: 5
  start-page: 281
  year: 2011
  ident: 10.1016/j.ins.2018.06.035_bib0007
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-011-0095-6
– year: 2001
  ident: 10.1016/j.ins.2018.06.035_bib0021
  article-title: The elements of statistical learning, volume 1
– volume: 424
  start-page: 27
  year: 2018
  ident: 10.1016/j.ins.2018.06.035_bib0011
  article-title: Subspace clustering using a low-rank constrained autoencoder
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.047
– volume: 22
  start-page: 1
  year: 2007
  ident: 10.1016/j.ins.2018.06.035_bib0044
  article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-006-0013-0
– volume: 24
  start-page: 1650
  year: 2002
  ident: 10.1016/j.ins.2018.06.035_bib0034
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1114856
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.ins.2018.06.035_bib0003
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.023
– volume: 71
  start-page: 52
  year: 2014
  ident: 10.1016/j.ins.2018.06.035_bib0006
  article-title: Model-based clustering of high-dimensional data: a review
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2012.12.008
– volume: 71
  start-page: 513
  year: 2017
  ident: 10.1016/j.ins.2018.06.035_bib0020
  article-title: A hybrid clustering approach for multivariate time series–a case study applied to failure analysis in a gas turbine
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.09.004
– year: 2006
  ident: 10.1016/j.ins.2018.06.035_bib0019
– volume: 3
  start-page: 257
  year: 2016
  ident: 10.1016/j.ins.2018.06.035_bib0047
  article-title: Functional data analysis
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-041715-033624
– volume: 37
  start-page: 502
  year: 2013
  ident: 10.1016/j.ins.2018.06.035_bib0031
  article-title: Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.09.011
– volume: 2
  start-page: 1056
  year: 2008
  ident: 10.1016/j.ins.2018.06.035_bib0039
  article-title: Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS172
– volume: 12
  start-page: 287
  year: 2004
  ident: 10.1016/j.ins.2018.06.035_bib0015
  article-title: Fuzzy c-means clustering models for multivariate time-varying data: different approaches
  publication-title: Int. J. Uncertainty Fuzziness Knowl. Based Syst.
  doi: 10.1142/S0218488504002849
– volume: 40
  start-page: 2685
  year: 2007
  ident: 10.1016/j.ins.2018.06.035_bib0045
  article-title: Ellipsoidal support vector clustering for functional mri analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.01.017
– volume: 13
  start-page: 583
  year: 2005
  ident: 10.1016/j.ins.2018.06.035_bib0016
  article-title: Fuzzy clustering for data time arrays with inlier and outlier time trajectories
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2005.856565
– year: 2012
  ident: 10.1016/j.ins.2018.06.035_bib0013
– start-page: 694
  year: 1994
  ident: 10.1016/j.ins.2018.06.035_bib0018
  article-title: Wavelet parameterization for speech recognition: variations in translation and scale parameters
– volume: 51
  start-page: 4849
  year: 2007
  ident: 10.1016/j.ins.2018.06.035_bib0012
  article-title: Diagnostics for functional regression via residual processes
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.07.042
– volume: 28
  start-page: 839
  year: 2009
  ident: 10.1016/j.ins.2018.06.035_bib0046
  article-title: A cluster method of functional data analysis
  publication-title: Appl. Stat. Manage.
– volume: 8
  start-page: 231
  year: 2014
  ident: 10.1016/j.ins.2018.06.035_bib0029
  article-title: Functional data clustering: a survey
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-013-0158-y
– volume: 27
  start-page: 211
  year: 2010
  ident: 10.1016/j.ins.2018.06.035_bib0030
  article-title: Functional cluster analysis via orthonormalized gaussian basis expansions and its application
  publication-title: J. Classif.
  doi: 10.1007/s00357-010-9054-8
– volume: 73
  start-page: 324
  year: 2017
  ident: 10.1016/j.ins.2018.06.035_bib0038
  article-title: Clustering multivariate functional data with phase variation
  publication-title: Biometrics
  doi: 10.1111/biom.12546
– volume: 69
  start-page: 31
  year: 2013
  ident: 10.1016/j.ins.2018.06.035_bib0024
  article-title: Wavelet-based clustering for mixed-effects functional models in high dimension
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01828.x
– volume: 82
  start-page: 505
  year: 2012
  ident: 10.1016/j.ins.2018.06.035_bib0048
  article-title: Spline estimators for semi-functional linear model
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2011.11.027
– volume: 22
  start-page: 185
  year: 2005
  ident: 10.1016/j.ins.2018.06.035_bib0023
  article-title: A proposal for robust curve clustering
  publication-title: J. Classif.
  doi: 10.1007/s00357-005-0013-8
– volume: 45
  start-page: 171
  year: 2001
  ident: 10.1016/j.ins.2018.06.035_bib0026
  article-title: A simple generalisation of the area under the roc curve for multiple class classification problems
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010920819831
– volume: 30
  start-page: 581
  year: 2003
  ident: 10.1016/j.ins.2018.06.035_bib0001
  article-title: Unsupervised curve clustering using b-splines
  publication-title: Scand. J. Stat.
  doi: 10.1111/1467-9469.00350
– volume: 58
  start-page: 474
  year: 2009
  ident: 10.1016/j.ins.2018.06.035_bib0008
  article-title: An initialization method for the k-means algorithm using neighborhood model
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.04.017
– volume: 23
  start-page: 73
  year: 1995
  ident: 10.1016/j.ins.2018.06.035_bib0027
  article-title: Penalized discriminant analysis
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176324456
– volume: 146
  start-page: 221
  year: 2002
  ident: 10.1016/j.ins.2018.06.035_bib0004
  article-title: An evolutionary technique based on k-means algorithm for optimal clustering in rn
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(02)00208-6
– volume: 19
  start-page: 474
  year: 2003
  ident: 10.1016/j.ins.2018.06.035_bib0033
  article-title: Clustering of time-course gene expression data using a mixed-effects model with b-splines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg014
– volume: 100
  start-page: 990
  year: 2005
  ident: 10.1016/j.ins.2018.06.035_bib0042
  article-title: Cats: clustering after transformation and smoothing
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001574
– volume: 31
  start-page: 511
  year: 2010
  ident: 10.1016/j.ins.2018.06.035_bib0037
  article-title: Representing functional data using support vector machines
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.07.014
– volume: 20
  start-page: 93
  year: 2003
  ident: 10.1016/j.ins.2018.06.035_bib0043
  article-title: Clustering functional data
  publication-title: J. Classification
  doi: 10.1007/s00357-003-0007-3
– volume: 71
  start-page: 14
  year: 2014
  ident: 10.1016/j.ins.2018.06.035_bib0014
  article-title: Clustering longitudinal profiles using p-splines and mixed effects models applied to time-course gene expression data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.04.001
– volume: 234
  start-page: 1338
  year: 2010
  ident: 10.1016/j.ins.2018.06.035_bib0032
  article-title: Functional classification of ornamental stone using machine learning techniques
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.01.054
– volume: 68
  start-page: 179
  year: 2006
  ident: 10.1016/j.ins.2018.06.035_bib0036
  article-title: Wavelet-based functional mixed models
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2006.00539.x
– volume: 6
  start-page: 565
  year: 2009
  ident: 10.1016/j.ins.2018.06.035_bib0002
  article-title: Penalized optimal scoring for the classification of multi-dimensional functional data
  publication-title: Stat. Methodol.
  doi: 10.1016/j.stamet.2009.06.003
– year: 2005
  ident: 10.1016/j.ins.2018.06.035_bib0041
  article-title: Functional Data Analysis
– start-page: 126
  year: 1999
  ident: 10.1016/j.ins.2018.06.035_bib0009
  article-title: Efficient time series matching by wavelets
– ident: 10.1016/j.ins.2018.06.035_bib0010
SSID ssj0004766
Score 2.4695957
Snippet •Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Cluster centroid
Derivative information
Functional data
Functional k-means clustering algorithm
Variational theory
Title A new distance with derivative information for functional k-means clustering algorithm
URI https://dx.doi.org/10.1016/j.ins.2018.06.035
Volume 463-464
WOSCitedRecordID wos000442712900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOaAzQNhjyAXEAWUqcxHaO1bRpm9DEYUy9RfFHUEuXTaWptsP-d55jO8kYQ4DEJYqiOqn8fn5f_r1nhN6ZSMosyQVRClZTCjaECG0MkVTEqjQspy2J5vwTPz0V02n-eTS6DbUw6wWva3F9nV_9V1HDMxC2LZ39C3F3L4UHcA9ChyuIHa5_JPiJPSXcbrys2mqANtGq4cNr1-Lbd0rtKIbWsPl84DdyYcByfVSLxrZPaMsXF18vl_CGi6ETezx4hbegnWduWbKtWrcsL28VLd9n5vPSJ7ObDkr7ZZunPWxumh6jR8YNnzf1MCMRi47b5tNkoVTmDpPT-qXEBjDO8DhtKzgljLrjuoI6TllCUpYOlGrM2MA-x-6In3uq32Uh5hCv2C7ssWvLmmS9nevYh3aDuo2lQJ1FKWfsEdqgPMvFGG1Mjg-mJ31hLXeb3eG_h23xliD404d-7dgMnJWzTfTMRxl44tDxHI1MvYWeDnpPbqE9X7GC3-OBPLHX9S_Q-QQDjnDAEbY4wj2O8ABHGO5wjyPscYR7HOEORy_Rl8ODs_0j4g_hIIrmfEViqbk0XCQGnO1KacoUhJiJZhBoR9RkOjKqlKxUQmaykhBwpBmXkax0LsCa8uQVGteXtdlGWNI0qzR4kEkVp1xIoTjjMqNGx2XFhNpBUZjBQvkO9faglEURqIjzAia9sJNeWDpmku2gD92QK9ee5Xc_ToNYCr86nN9YAIYeHrb7b8Neoyf94niDxqtlY_bQY7Vezb4v33qk_QC1DqBV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+distance+with+derivative+information+for+functional+k-means+clustering+algorithm&rft.jtitle=Information+sciences&rft.au=Meng%2C+Yinfeng&rft.au=Liang%2C+Jiye&rft.au=Cao%2C+Fuyuan&rft.au=He%2C+Yijun&rft.date=2018-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=463-464&rft.spage=166&rft.epage=185&rft_id=info:doi/10.1016%2Fj.ins.2018.06.035&rft.externalDocID=S0020025518304766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon