A new distance with derivative information for functional k-means clustering algorithm
•Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional k-means clustering algorithm based on the new distance.•Experimental results show the effectiveness, robustness and convergence of the function...
Saved in:
| Published in: | Information sciences Vol. 463-464; pp. 166 - 185 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.10.2018
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional k-means clustering algorithm based on the new distance.•Experimental results show the effectiveness, robustness and convergence of the functional k-means clustering algorithm based on the new distance.
The functional k-means clustering algorithm is a widely used method for clustering functional data. However, with this algorithm, the derivative information is not further considered in calculating the similarity between two functional samples. In fact, the derivative information is very important for catching the trend characteristic differences among functional data. In this paper, we define a novel distance used to measure the similarity among functional samples by adding their derivative information. Furthermore, in theory, we construct cluster centroids that can minimize the objective function of the functional k-means clustering algorithm based on the proposed distance. After preprocessing functional data using three types of common basis representation techniques, we compare the clustering performance of the functional k-means clustering algorithms based on four different similarity metrics. The experiments on six data sets with class labels show the effectiveness and robustness of the functional k-means clustering algorithm with the defined distance statistically. In addition, the experimental results on three real-life data sets verify the convergence and practicability of the functional k-means clustering algorithm with the defined distance. |
|---|---|
| AbstractList | •Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional k-means clustering algorithm based on the new distance.•Experimental results show the effectiveness, robustness and convergence of the functional k-means clustering algorithm based on the new distance.
The functional k-means clustering algorithm is a widely used method for clustering functional data. However, with this algorithm, the derivative information is not further considered in calculating the similarity between two functional samples. In fact, the derivative information is very important for catching the trend characteristic differences among functional data. In this paper, we define a novel distance used to measure the similarity among functional samples by adding their derivative information. Furthermore, in theory, we construct cluster centroids that can minimize the objective function of the functional k-means clustering algorithm based on the proposed distance. After preprocessing functional data using three types of common basis representation techniques, we compare the clustering performance of the functional k-means clustering algorithms based on four different similarity metrics. The experiments on six data sets with class labels show the effectiveness and robustness of the functional k-means clustering algorithm with the defined distance statistically. In addition, the experimental results on three real-life data sets verify the convergence and practicability of the functional k-means clustering algorithm with the defined distance. |
| Author | He, Yijun Liang, Jiye Meng, Yinfeng Cao, Fuyuan |
| Author_xml | – sequence: 1 givenname: Yinfeng orcidid: 0000-0001-9531-3752 surname: Meng fullname: Meng, Yinfeng email: mengyf@sxu.edu.cn organization: School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China – sequence: 2 givenname: Jiye orcidid: 0000-0001-5887-9327 surname: Liang fullname: Liang, Jiye email: ljy@sxu.edu.cn organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan, Shanxi 030006, China – sequence: 3 givenname: Fuyuan surname: Cao fullname: Cao, Fuyuan organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan, Shanxi 030006, China – sequence: 4 givenname: Yijun surname: He fullname: He, Yijun organization: School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China |
| BookMark | eNp9kL1OwzAUhS1UJErhAdj8AgnXTm0nYqoq_qRKLMBq-S_FJXGQnbbi7XEpE0One-7wHel8l2gShuAQuiFQEiD8dlP6kEoKpC6Bl1CxMzQltaAFpw2ZoCkAhQIoYxfoMqUNAMwF51P0vsDB7bH1aVTBOLz34we2LvqdGv3OYR_aIfY5DwHnhNttMIdHdfiz6J0KCZtum8ZMhDVW3XqIuaG_Quet6pK7_rsz9PZw_7p8KlYvj8_LxaowtBFjQbQV2om6coTNW2MpN4LVleWCcKCOWXBGaa5MrZluNTTNnAkNurVNTVglqhkix14Th5Sia-VX9L2K35KAPIiRG5nFyIMYCVxmMZkR_xjjx9-FY1S-O0neHUmXJ-28izIZ77I266Mzo7SDP0H_AGq4geg |
| CitedBy_id | crossref_primary_10_1145_3581789 crossref_primary_10_1016_j_ecosta_2023_03_002 crossref_primary_10_1016_j_ins_2022_08_109 crossref_primary_10_1016_j_ymssp_2021_108332 crossref_primary_10_1080_10826076_2019_1701015 crossref_primary_10_1109_ACCESS_2025_3581984 crossref_primary_10_1016_j_jksuci_2021_07_003 crossref_primary_10_1016_j_neucom_2024_129231 crossref_primary_10_1007_s40200_025_01580_1 crossref_primary_10_1007_s00521_019_04673_0 crossref_primary_10_1016_j_cie_2019_106087 crossref_primary_10_1016_j_knosys_2023_110261 crossref_primary_10_1109_ACCESS_2021_3067729 crossref_primary_10_1016_j_scs_2021_103331 crossref_primary_10_1016_j_asoc_2019_105838 crossref_primary_10_1080_02664763_2024_2440035 crossref_primary_10_1016_j_mssp_2024_109010 crossref_primary_10_1016_j_ins_2019_05_063 crossref_primary_10_1080_10618600_2024_2366499 crossref_primary_10_1109_ACCESS_2020_2988796 crossref_primary_10_3390_f13121970 crossref_primary_10_1016_j_eswa_2019_112910 crossref_primary_10_3390_data7110165 crossref_primary_10_1109_ACCESS_2023_3322929 crossref_primary_10_1016_j_image_2019_07_001 crossref_primary_10_1080_00949655_2023_2215371 crossref_primary_10_1016_j_neucom_2024_129245 crossref_primary_10_1007_s40820_024_01489_z crossref_primary_10_1016_j_neucom_2025_130403 crossref_primary_10_1016_j_jsg_2020_103978 crossref_primary_10_1016_j_ins_2022_05_112 crossref_primary_10_1371_journal_pone_0271928 crossref_primary_10_3390_math12081175 crossref_primary_10_1007_s11634_024_00611_8 crossref_primary_10_12688_f1000research_130245_2 crossref_primary_10_12688_f1000research_130245_3 crossref_primary_10_1109_ACCESS_2021_3058947 crossref_primary_10_12688_f1000research_130245_1 crossref_primary_10_1016_j_eswa_2025_128567 crossref_primary_10_1007_s12561_023_09384_8 crossref_primary_10_3390_math12193083 crossref_primary_10_1088_1361_6501_ab2177 crossref_primary_10_1007_s12145_024_01368_6 crossref_primary_10_1016_j_aei_2022_101771 crossref_primary_10_1088_1742_6596_2406_1_012024 crossref_primary_10_1088_1742_6596_2406_1_012022 crossref_primary_10_1088_1757_899X_1085_1_012030 crossref_primary_10_7717_peerj_cs_2016 crossref_primary_10_1049_trit_2019_0048 crossref_primary_10_1016_j_eswa_2020_113949 crossref_primary_10_1371_journal_pone_0248923 |
| Cites_doi | 10.1016/j.knosys.2015.12.016 10.1007/s00180-007-0041-4 10.1016/j.ins.2017.04.008 10.1016/j.patcog.2012.05.016 10.1007/s11634-011-0095-6 10.1016/j.ins.2017.09.047 10.1007/s00180-006-0013-0 10.1109/TPAMI.2002.1114856 10.1016/j.patcog.2017.06.023 10.1016/j.csda.2012.12.008 10.1016/j.isatra.2017.09.004 10.1146/annurev-statistics-041715-033624 10.1016/j.knosys.2012.09.011 10.1214/08-AOAS172 10.1142/S0218488504002849 10.1016/j.patcog.2007.01.017 10.1109/TFUZZ.2005.856565 10.1016/j.csda.2006.07.042 10.1007/s11634-013-0158-y 10.1007/s00357-010-9054-8 10.1111/biom.12546 10.1111/j.1541-0420.2012.01828.x 10.1016/j.spl.2011.11.027 10.1007/s00357-005-0013-8 10.1023/A:1010920819831 10.1111/1467-9469.00350 10.1016/j.camwa.2009.04.017 10.1214/aos/1176324456 10.1016/S0020-0255(02)00208-6 10.1093/bioinformatics/btg014 10.1198/016214504000001574 10.1016/j.patrec.2009.07.014 10.1007/s00357-003-0007-3 10.1016/j.csda.2013.04.001 10.1016/j.cam.2010.01.054 10.1111/j.1467-9868.2006.00539.x 10.1016/j.stamet.2009.06.003 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2018.06.035 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 185 |
| ExternalDocumentID | 10_1016_j_ins_2018_06_035 S0020025518304766 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-1bd7be783e154fcd26c7583d671602e5d0ecab6ac8b5bfb099457b0bfd9815373 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442712900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 06:25:07 EST 2025 Tue Nov 18 21:38:59 EST 2025 Fri Feb 23 02:33:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational theory Functional data Functional k-means clustering algorithm Cluster centroid Derivative information |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-1bd7be783e154fcd26c7583d671602e5d0ecab6ac8b5bfb099457b0bfd9815373 |
| ORCID | 0000-0001-9531-3752 0000-0001-5887-9327 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2018_06_035 crossref_citationtrail_10_1016_j_ins_2018_06_035 elsevier_sciencedirect_doi_10_1016_j_ins_2018_06_035 |
| PublicationCentury | 2000 |
| PublicationDate | October 2018 2018-10-00 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Giacofci, Lambert-Lacroix, Marot, Picard (bib0024) 2013; 69 Ramsay, Silverman (bib0041) 2005 Zhou, Chen (bib0048) 2012; 82 Meng, Liang, Qian (bib0035) 2016; 97 Wang, Chiou, Müller (bib0047) 2016; 3 Coffey, Hinde, Holian (bib0014) 2014; 71 D’Urso (bib0016) 2005; 13 Serban, Wasserman (bib0042) 2005; 100 Liu, Aickelin, Feyereisl, Durrant (bib0031) 2013; 37 Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The ucr time series classification archive, URL Chen, Zhang, Yi (bib0011) 2018; 424 Chiou, Müller (bib0012) 2007; 51 Huang, Ye, Xiong, Lau, Jiang, Wang (bib0028) 2016; 367 Gamasaee, Zarandi (bib0022) 2017; 405 Preda, Saporta, Lévéder (bib0040) 2007; 22 Chan, Fu (bib0009) 1999 2015. Friedman, Hastie, Tibshirani (bib0021) 2001 Bandyopadhyay, Maulik (bib0004) 2002; 146 Peng, Müller (bib0039) 2008; 2 Abraham, Cornillon, Matzner-Løber, Molinari (bib0001) 2003; 30 Fontes, Budman (bib0020) 2017; 71 Jacques, Preda (bib0029) 2014; 8 Park, Ahn (bib0038) 2017; 73 Garcia-Escudero, Gordaliza (bib0023) 2005; 22 Bouveyron, Brunet-Saumard (bib0006) 2014; 71 Wang, Shi, Yeung, Tsang, Heng (bib0045) 2007; 40 López, Martínez, Matías, Taboada, Vilán (bib0032) 2010; 234 Ando (bib0002) 2009; 6 Luan, Li (bib0033) 2003; 19 Boullé (bib0005) 2012; 45 Kayano, Dozono, Konishi (bib0030) 2010; 27 Bai, Cheng, Liang, Shen, Yike (bib0003) 2017; 71 Chow, Teicher (bib0013) 2012 Tarpey, Kinateder (bib0043) 2003; 20 Faloutsos, Ranganathan, Manolopoulos (bib0017) 1994 D’urso (bib0015) 2004; 12 Favero, King (bib0018) 1994 Hand, Till (bib0026) 2001; 45 Maulik, Bandyopadhyay (bib0034) 2002; 24 Wang, Huang, Wang (bib0046) 2009; 28 Morris, Carroll (bib0036) 2006; 68 Muñoz, González (bib0037) 2010; 31 Tokushige, Yadohisa, Inada (bib0044) 2007; 22 Hastie, Buja, Tibshirani (bib0027) 1995; 23 Bouveyron, Jacques (bib0007) 2011; 5 Cao, Liang, Jiang (bib0008) 2009; 58 Ferraty, Vieu (bib0019) 2006 Chen (10.1016/j.ins.2018.06.035_bib0011) 2018; 424 Bouveyron (10.1016/j.ins.2018.06.035_bib0007) 2011; 5 Peng (10.1016/j.ins.2018.06.035_bib0039) 2008; 2 Morris (10.1016/j.ins.2018.06.035_bib0036) 2006; 68 Gamasaee (10.1016/j.ins.2018.06.035_bib0022) 2017; 405 Maulik (10.1016/j.ins.2018.06.035_bib0034) 2002; 24 Bai (10.1016/j.ins.2018.06.035_bib0003) 2017; 71 Wang (10.1016/j.ins.2018.06.035_bib0046) 2009; 28 Ando (10.1016/j.ins.2018.06.035_bib0002) 2009; 6 Wang (10.1016/j.ins.2018.06.035_bib0045) 2007; 40 Serban (10.1016/j.ins.2018.06.035_bib0042) 2005; 100 Jacques (10.1016/j.ins.2018.06.035_bib0029) 2014; 8 Huang (10.1016/j.ins.2018.06.035_bib0028) 2016; 367 Favero (10.1016/j.ins.2018.06.035_bib0018) 1994 Coffey (10.1016/j.ins.2018.06.035_bib0014) 2014; 71 Friedman (10.1016/j.ins.2018.06.035_bib0021) 2001 Tarpey (10.1016/j.ins.2018.06.035_bib0043) 2003; 20 Bouveyron (10.1016/j.ins.2018.06.035_bib0006) 2014; 71 D’Urso (10.1016/j.ins.2018.06.035_bib0016) 2005; 13 Tokushige (10.1016/j.ins.2018.06.035_bib0044) 2007; 22 Kayano (10.1016/j.ins.2018.06.035_bib0030) 2010; 27 Meng (10.1016/j.ins.2018.06.035_bib0035) 2016; 97 Giacofci (10.1016/j.ins.2018.06.035_bib0024) 2013; 69 Muñoz (10.1016/j.ins.2018.06.035_bib0037) 2010; 31 Park (10.1016/j.ins.2018.06.035_bib0038) 2017; 73 Hastie (10.1016/j.ins.2018.06.035_bib0027) 1995; 23 Hand (10.1016/j.ins.2018.06.035_bib0026) 2001; 45 Luan (10.1016/j.ins.2018.06.035_bib0033) 2003; 19 Liu (10.1016/j.ins.2018.06.035_bib0031) 2013; 37 Garcia-Escudero (10.1016/j.ins.2018.06.035_bib0023) 2005; 22 Bandyopadhyay (10.1016/j.ins.2018.06.035_bib0004) 2002; 146 Fontes (10.1016/j.ins.2018.06.035_bib0020) 2017; 71 Chow (10.1016/j.ins.2018.06.035_bib0013) 2012 Boullé (10.1016/j.ins.2018.06.035_bib0005) 2012; 45 10.1016/j.ins.2018.06.035_bib0010 Chiou (10.1016/j.ins.2018.06.035_bib0012) 2007; 51 Preda (10.1016/j.ins.2018.06.035_bib0040) 2007; 22 Cao (10.1016/j.ins.2018.06.035_bib0008) 2009; 58 López (10.1016/j.ins.2018.06.035_bib0032) 2010; 234 Ramsay (10.1016/j.ins.2018.06.035_bib0041) 2005 Abraham (10.1016/j.ins.2018.06.035_bib0001) 2003; 30 Chan (10.1016/j.ins.2018.06.035_bib0009) 1999 D’urso (10.1016/j.ins.2018.06.035_bib0015) 2004; 12 Zhou (10.1016/j.ins.2018.06.035_bib0048) 2012; 82 Ferraty (10.1016/j.ins.2018.06.035_bib0019) 2006 Wang (10.1016/j.ins.2018.06.035_bib0047) 2016; 3 Faloutsos (10.1016/j.ins.2018.06.035_bib0017) 1994 |
| References_xml | – volume: 69 start-page: 31 year: 2013 end-page: 40 ident: bib0024 article-title: Wavelet-based clustering for mixed-effects functional models in high dimension publication-title: Biometrics – volume: 20 start-page: 93 year: 2003 end-page: 114 ident: bib0043 article-title: Clustering functional data publication-title: J. Classification – start-page: 126 year: 1999 end-page: 133 ident: bib0009 article-title: Efficient time series matching by wavelets publication-title: Data Engineering, Proceedings., 15th International Conference on – volume: 8 start-page: 231 year: 2014 end-page: 255 ident: bib0029 article-title: Functional data clustering: a survey publication-title: Adv. Data Anal. Classif. – volume: 68 start-page: 179 year: 2006 end-page: 199 ident: bib0036 article-title: Wavelet-based functional mixed models publication-title: J. R. Stat. Soc. – volume: 30 start-page: 581 year: 2003 end-page: 595 ident: bib0001 article-title: Unsupervised curve clustering using b-splines publication-title: Scand. J. Stat. – volume: 37 start-page: 502 year: 2013 end-page: 514 ident: bib0031 article-title: Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data publication-title: Knowl. Based Syst. – volume: 97 start-page: 224 year: 2016 end-page: 236 ident: bib0035 article-title: Comparison study of orthonormal representations of functional data in classification publication-title: Knowl. Based Syst. – volume: 2 start-page: 1056 year: 2008 end-page: 1077 ident: bib0039 article-title: Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions publication-title: Ann. Appl. Stat. – volume: 367 start-page: 1 year: 2016 end-page: 13 ident: bib0028 article-title: Time series publication-title: Inf. Sci. – volume: 27 start-page: 211 year: 2010 end-page: 230 ident: bib0030 article-title: Functional cluster analysis via orthonormalized gaussian basis expansions and its application publication-title: J. Classif. – volume: 31 start-page: 511 year: 2010 end-page: 516 ident: bib0037 article-title: Representing functional data using support vector machines publication-title: Pattern Recognit. Lett. – volume: 40 start-page: 2685 year: 2007 end-page: 2695 ident: bib0045 article-title: Ellipsoidal support vector clustering for functional mri analysis publication-title: Pattern Recognit. – start-page: 694 year: 1994 end-page: 697 ident: bib0018 article-title: Wavelet parameterization for speech recognition: variations in translation and scale parameters publication-title: Speech, Image Processing and Neural Networks, 1994. Proceedings, ISSIPNN’94., International Symposium on – volume: 58 start-page: 474 year: 2009 end-page: 483 ident: bib0008 article-title: An initialization method for the publication-title: Comput. Math. Appl. – volume: 28 start-page: 839 year: 2009 end-page: 844 ident: bib0046 article-title: A cluster method of functional data analysis publication-title: Appl. Stat. Manage. – volume: 82 start-page: 505 year: 2012 end-page: 513 ident: bib0048 article-title: Spline estimators for semi-functional linear model publication-title: Stat. Probab. Lett. – volume: 22 start-page: 185 year: 2005 end-page: 201 ident: bib0023 article-title: A proposal for robust curve clustering publication-title: J. Classif. – volume: 24 start-page: 1650 year: 2002 end-page: 1654 ident: bib0034 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 71 start-page: 52 year: 2014 end-page: 78 ident: bib0006 article-title: Model-based clustering of high-dimensional data: a review publication-title: Comput. Stat. Data Anal. – volume: 5 start-page: 281 year: 2011 end-page: 300 ident: bib0007 article-title: Model-based clustering of time series in group-specific functional subspaces publication-title: Adv. Data Anal. Classif. – reference: , 2015. – volume: 73 start-page: 324 year: 2017 end-page: 333 ident: bib0038 article-title: Clustering multivariate functional data with phase variation publication-title: Biometrics – volume: 22 start-page: 1 year: 2007 end-page: 16 ident: bib0044 article-title: Crisp and fuzzy publication-title: Comput. Stat. – year: 2005 ident: bib0041 article-title: Functional Data Analysis publication-title: Springer Series in Statistics – volume: 51 start-page: 4849 year: 2007 end-page: 4863 ident: bib0012 article-title: Diagnostics for functional regression via residual processes publication-title: Comput. Stat. Data Anal. – volume: 405 start-page: 55 year: 2017 end-page: 80 ident: bib0022 article-title: A new dirichlet process for mining dynamic patterns in functional data publication-title: Inf. Sci. – volume: 22 start-page: 223 year: 2007 end-page: 235 ident: bib0040 article-title: Pls classification of functional data publication-title: Comput. Stat. – volume: 146 start-page: 221 year: 2002 end-page: 237 ident: bib0004 article-title: An evolutionary technique based on publication-title: Inf. Sci. – volume: 424 start-page: 27 year: 2018 end-page: 38 ident: bib0011 article-title: Subspace clustering using a low-rank constrained autoencoder publication-title: Inf. Sci. – volume: 6 start-page: 565 year: 2009 end-page: 576 ident: bib0002 article-title: Penalized optimal scoring for the classification of multi-dimensional functional data publication-title: Stat. Methodol. – volume: 100 start-page: 990 year: 2005 end-page: 999 ident: bib0042 article-title: Cats: clustering after transformation and smoothing publication-title: J. Am. Stat. Assoc. – year: 2012 ident: bib0013 article-title: Probability Theory: Independence, Interchangeability, Martingales – volume: 71 start-page: 14 year: 2014 end-page: 29 ident: bib0014 article-title: Clustering longitudinal profiles using p-splines and mixed effects models applied to time-course gene expression data publication-title: Comput. Stat. Data Anal. – volume: 12 start-page: 287 year: 2004 end-page: 326 ident: bib0015 article-title: Fuzzy c-means clustering models for multivariate time-varying data: different approaches publication-title: Int. J. Uncertainty Fuzziness Knowl. Based Syst. – volume: 3 start-page: 257 year: 2016 end-page: 295 ident: bib0047 article-title: Functional data analysis publication-title: Annu. Rev. Stat. Appl. – volume: 45 start-page: 4389 year: 2012 end-page: 4401 ident: bib0005 article-title: Functional data clustering via piecewise constant nonparametric density estimation publication-title: Pattern Recognit. – volume: 71 start-page: 375 year: 2017 end-page: 386 ident: bib0003 article-title: Fast density clustering strategies based on the publication-title: Pattern Recognit. – year: 2001 ident: bib0021 article-title: The elements of statistical learning, volume 1 publication-title: Springer Series in Statistics – volume: 13 start-page: 583 year: 2005 end-page: 604 ident: bib0016 article-title: Fuzzy clustering for data time arrays with inlier and outlier time trajectories publication-title: IEEE Trans. Fuzzy Syst. – volume: 71 start-page: 513 year: 2017 end-page: 529 ident: bib0020 article-title: A hybrid clustering approach for multivariate time series–a case study applied to failure analysis in a gas turbine publication-title: ISA Trans. – volume: 234 start-page: 1338 year: 2010 end-page: 1345 ident: bib0032 article-title: Functional classification of ornamental stone using machine learning techniques publication-title: J. Comput. Appl. Math. – volume: 45 start-page: 171 year: 2001 end-page: 186 ident: bib0026 article-title: A simple generalisation of the area under the roc curve for multiple class classification problems publication-title: Mach. Learn. – start-page: 419 year: 1994 end-page: 429 ident: bib0017 article-title: Fast subsequence matching in time-series databases publication-title: Proc. of the 1994 ACM SIGMOD International Conference on Management of Data – year: 2006 ident: bib0019 article-title: Nonparametric Functional Data Analysis: Theory and Practice – volume: 19 start-page: 474 year: 2003 end-page: 482 ident: bib0033 article-title: Clustering of time-course gene expression data using a mixed-effects model with b-splines publication-title: Bioinformatics – reference: Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The ucr time series classification archive, URL – volume: 23 start-page: 73 year: 1995 end-page: 102 ident: bib0027 article-title: Penalized discriminant analysis publication-title: Ann. Stat. – volume: 367 start-page: 1 year: 2016 ident: 10.1016/j.ins.2018.06.035_bib0028 article-title: Time series k-means: a new k-means type smooth subspace clustering for time series data publication-title: Inf. Sci. – volume: 97 start-page: 224 year: 2016 ident: 10.1016/j.ins.2018.06.035_bib0035 article-title: Comparison study of orthonormal representations of functional data in classification publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.12.016 – volume: 22 start-page: 223 year: 2007 ident: 10.1016/j.ins.2018.06.035_bib0040 article-title: Pls classification of functional data publication-title: Comput. Stat. doi: 10.1007/s00180-007-0041-4 – volume: 405 start-page: 55 year: 2017 ident: 10.1016/j.ins.2018.06.035_bib0022 article-title: A new dirichlet process for mining dynamic patterns in functional data publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.008 – volume: 45 start-page: 4389 year: 2012 ident: 10.1016/j.ins.2018.06.035_bib0005 article-title: Functional data clustering via piecewise constant nonparametric density estimation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.05.016 – start-page: 419 year: 1994 ident: 10.1016/j.ins.2018.06.035_bib0017 article-title: Fast subsequence matching in time-series databases – volume: 5 start-page: 281 year: 2011 ident: 10.1016/j.ins.2018.06.035_bib0007 article-title: Model-based clustering of time series in group-specific functional subspaces publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-011-0095-6 – year: 2001 ident: 10.1016/j.ins.2018.06.035_bib0021 article-title: The elements of statistical learning, volume 1 – volume: 424 start-page: 27 year: 2018 ident: 10.1016/j.ins.2018.06.035_bib0011 article-title: Subspace clustering using a low-rank constrained autoencoder publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.047 – volume: 22 start-page: 1 year: 2007 ident: 10.1016/j.ins.2018.06.035_bib0044 article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data publication-title: Comput. Stat. doi: 10.1007/s00180-006-0013-0 – volume: 24 start-page: 1650 year: 2002 ident: 10.1016/j.ins.2018.06.035_bib0034 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1114856 – volume: 71 start-page: 375 year: 2017 ident: 10.1016/j.ins.2018.06.035_bib0003 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.023 – volume: 71 start-page: 52 year: 2014 ident: 10.1016/j.ins.2018.06.035_bib0006 article-title: Model-based clustering of high-dimensional data: a review publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2012.12.008 – volume: 71 start-page: 513 year: 2017 ident: 10.1016/j.ins.2018.06.035_bib0020 article-title: A hybrid clustering approach for multivariate time series–a case study applied to failure analysis in a gas turbine publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.09.004 – year: 2006 ident: 10.1016/j.ins.2018.06.035_bib0019 – volume: 3 start-page: 257 year: 2016 ident: 10.1016/j.ins.2018.06.035_bib0047 article-title: Functional data analysis publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-041715-033624 – volume: 37 start-page: 502 year: 2013 ident: 10.1016/j.ins.2018.06.035_bib0031 article-title: Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.09.011 – volume: 2 start-page: 1056 year: 2008 ident: 10.1016/j.ins.2018.06.035_bib0039 article-title: Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS172 – volume: 12 start-page: 287 year: 2004 ident: 10.1016/j.ins.2018.06.035_bib0015 article-title: Fuzzy c-means clustering models for multivariate time-varying data: different approaches publication-title: Int. J. Uncertainty Fuzziness Knowl. Based Syst. doi: 10.1142/S0218488504002849 – volume: 40 start-page: 2685 year: 2007 ident: 10.1016/j.ins.2018.06.035_bib0045 article-title: Ellipsoidal support vector clustering for functional mri analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.01.017 – volume: 13 start-page: 583 year: 2005 ident: 10.1016/j.ins.2018.06.035_bib0016 article-title: Fuzzy clustering for data time arrays with inlier and outlier time trajectories publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2005.856565 – year: 2012 ident: 10.1016/j.ins.2018.06.035_bib0013 – start-page: 694 year: 1994 ident: 10.1016/j.ins.2018.06.035_bib0018 article-title: Wavelet parameterization for speech recognition: variations in translation and scale parameters – volume: 51 start-page: 4849 year: 2007 ident: 10.1016/j.ins.2018.06.035_bib0012 article-title: Diagnostics for functional regression via residual processes publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.07.042 – volume: 28 start-page: 839 year: 2009 ident: 10.1016/j.ins.2018.06.035_bib0046 article-title: A cluster method of functional data analysis publication-title: Appl. Stat. Manage. – volume: 8 start-page: 231 year: 2014 ident: 10.1016/j.ins.2018.06.035_bib0029 article-title: Functional data clustering: a survey publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-013-0158-y – volume: 27 start-page: 211 year: 2010 ident: 10.1016/j.ins.2018.06.035_bib0030 article-title: Functional cluster analysis via orthonormalized gaussian basis expansions and its application publication-title: J. Classif. doi: 10.1007/s00357-010-9054-8 – volume: 73 start-page: 324 year: 2017 ident: 10.1016/j.ins.2018.06.035_bib0038 article-title: Clustering multivariate functional data with phase variation publication-title: Biometrics doi: 10.1111/biom.12546 – volume: 69 start-page: 31 year: 2013 ident: 10.1016/j.ins.2018.06.035_bib0024 article-title: Wavelet-based clustering for mixed-effects functional models in high dimension publication-title: Biometrics doi: 10.1111/j.1541-0420.2012.01828.x – volume: 82 start-page: 505 year: 2012 ident: 10.1016/j.ins.2018.06.035_bib0048 article-title: Spline estimators for semi-functional linear model publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2011.11.027 – volume: 22 start-page: 185 year: 2005 ident: 10.1016/j.ins.2018.06.035_bib0023 article-title: A proposal for robust curve clustering publication-title: J. Classif. doi: 10.1007/s00357-005-0013-8 – volume: 45 start-page: 171 year: 2001 ident: 10.1016/j.ins.2018.06.035_bib0026 article-title: A simple generalisation of the area under the roc curve for multiple class classification problems publication-title: Mach. Learn. doi: 10.1023/A:1010920819831 – volume: 30 start-page: 581 year: 2003 ident: 10.1016/j.ins.2018.06.035_bib0001 article-title: Unsupervised curve clustering using b-splines publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00350 – volume: 58 start-page: 474 year: 2009 ident: 10.1016/j.ins.2018.06.035_bib0008 article-title: An initialization method for the k-means algorithm using neighborhood model publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.04.017 – volume: 23 start-page: 73 year: 1995 ident: 10.1016/j.ins.2018.06.035_bib0027 article-title: Penalized discriminant analysis publication-title: Ann. Stat. doi: 10.1214/aos/1176324456 – volume: 146 start-page: 221 year: 2002 ident: 10.1016/j.ins.2018.06.035_bib0004 article-title: An evolutionary technique based on k-means algorithm for optimal clustering in rn publication-title: Inf. Sci. doi: 10.1016/S0020-0255(02)00208-6 – volume: 19 start-page: 474 year: 2003 ident: 10.1016/j.ins.2018.06.035_bib0033 article-title: Clustering of time-course gene expression data using a mixed-effects model with b-splines publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg014 – volume: 100 start-page: 990 year: 2005 ident: 10.1016/j.ins.2018.06.035_bib0042 article-title: Cats: clustering after transformation and smoothing publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000001574 – volume: 31 start-page: 511 year: 2010 ident: 10.1016/j.ins.2018.06.035_bib0037 article-title: Representing functional data using support vector machines publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.07.014 – volume: 20 start-page: 93 year: 2003 ident: 10.1016/j.ins.2018.06.035_bib0043 article-title: Clustering functional data publication-title: J. Classification doi: 10.1007/s00357-003-0007-3 – volume: 71 start-page: 14 year: 2014 ident: 10.1016/j.ins.2018.06.035_bib0014 article-title: Clustering longitudinal profiles using p-splines and mixed effects models applied to time-course gene expression data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.04.001 – volume: 234 start-page: 1338 year: 2010 ident: 10.1016/j.ins.2018.06.035_bib0032 article-title: Functional classification of ornamental stone using machine learning techniques publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.01.054 – volume: 68 start-page: 179 year: 2006 ident: 10.1016/j.ins.2018.06.035_bib0036 article-title: Wavelet-based functional mixed models publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2006.00539.x – volume: 6 start-page: 565 year: 2009 ident: 10.1016/j.ins.2018.06.035_bib0002 article-title: Penalized optimal scoring for the classification of multi-dimensional functional data publication-title: Stat. Methodol. doi: 10.1016/j.stamet.2009.06.003 – year: 2005 ident: 10.1016/j.ins.2018.06.035_bib0041 article-title: Functional Data Analysis – start-page: 126 year: 1999 ident: 10.1016/j.ins.2018.06.035_bib0009 article-title: Efficient time series matching by wavelets – ident: 10.1016/j.ins.2018.06.035_bib0010 |
| SSID | ssj0004766 |
| Score | 2.4695957 |
| Snippet | •Define a novel distance used to measure the similarity among functional samples.•Present the optimal representation of cluster centroids for the functional... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 166 |
| SubjectTerms | Cluster centroid Derivative information Functional data Functional k-means clustering algorithm Variational theory |
| Title | A new distance with derivative information for functional k-means clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.ins.2018.06.035 |
| Volume | 463-464 |
| WOSCitedRecordID | wos000442712900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOaAzQNhjyAXEAWUqcxHaO1bRpm9DEYUy9RfFHUEuXTaWptsP-d55jO8kYQ4DEJYqiOqn8fn5f_r1nhN6ZSMosyQVRClZTCjaECG0MkVTEqjQspy2J5vwTPz0V02n-eTS6DbUw6wWva3F9nV_9V1HDMxC2LZ39C3F3L4UHcA9ChyuIHa5_JPiJPSXcbrys2mqANtGq4cNr1-Lbd0rtKIbWsPl84DdyYcByfVSLxrZPaMsXF18vl_CGi6ETezx4hbegnWduWbKtWrcsL28VLd9n5vPSJ7ObDkr7ZZunPWxumh6jR8YNnzf1MCMRi47b5tNkoVTmDpPT-qXEBjDO8DhtKzgljLrjuoI6TllCUpYOlGrM2MA-x-6In3uq32Uh5hCv2C7ssWvLmmS9nevYh3aDuo2lQJ1FKWfsEdqgPMvFGG1Mjg-mJ31hLXeb3eG_h23xliD404d-7dgMnJWzTfTMRxl44tDxHI1MvYWeDnpPbqE9X7GC3-OBPLHX9S_Q-QQDjnDAEbY4wj2O8ABHGO5wjyPscYR7HOEORy_Rl8ODs_0j4g_hIIrmfEViqbk0XCQGnO1KacoUhJiJZhBoR9RkOjKqlKxUQmaykhBwpBmXkax0LsCa8uQVGteXtdlGWNI0qzR4kEkVp1xIoTjjMqNGx2XFhNpBUZjBQvkO9faglEURqIjzAia9sJNeWDpmku2gD92QK9ee5Xc_ToNYCr86nN9YAIYeHrb7b8Neoyf94niDxqtlY_bQY7Vezb4v33qk_QC1DqBV |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+distance+with+derivative+information+for+functional+k-means+clustering+algorithm&rft.jtitle=Information+sciences&rft.au=Meng%2C+Yinfeng&rft.au=Liang%2C+Jiye&rft.au=Cao%2C+Fuyuan&rft.au=He%2C+Yijun&rft.date=2018-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=463-464&rft.spage=166&rft.epage=185&rft_id=info:doi/10.1016%2Fj.ins.2018.06.035&rft.externalDocID=S0020025518304766 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |