A fractional epidemiological model for computer viruses pertaining to a new fractional derivative

In the computer security and for any defensive strategy, computer viruses are very significant aspect. To understand their expansion and extension is very important component. In order to deal with this issue, we consider a fractional epidemiological model. In this article, we analyze moderate epide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 316; s. 504 - 515
Hlavní autoři: Singh, Jagdev, Kumar, Devendra, Hammouch, Zakia, Atangana, Abdon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2018
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the computer security and for any defensive strategy, computer viruses are very significant aspect. To understand their expansion and extension is very important component. In order to deal with this issue, we consider a fractional epidemiological model. In this article, we analyze moderate epidemiological model to describe computer viruses with an arbitrary order derivative having non-singular kernel. We obtain the solution of the problem by using an iterative method. By using the fixed-point theorem the existence of the solution is discussed. The uniqueness of the solution is verified. We perform some numerical simulations and show graphically to observe the impact of the arbitrary order derivative.
AbstractList In the computer security and for any defensive strategy, computer viruses are very significant aspect. To understand their expansion and extension is very important component. In order to deal with this issue, we consider a fractional epidemiological model. In this article, we analyze moderate epidemiological model to describe computer viruses with an arbitrary order derivative having non-singular kernel. We obtain the solution of the problem by using an iterative method. By using the fixed-point theorem the existence of the solution is discussed. The uniqueness of the solution is verified. We perform some numerical simulations and show graphically to observe the impact of the arbitrary order derivative.
Author Atangana, Abdon
Kumar, Devendra
Hammouch, Zakia
Singh, Jagdev
Author_xml – sequence: 1
  givenname: Jagdev
  surname: Singh
  fullname: Singh, Jagdev
  email: jagdevsinghrathore@gmail.com
  organization: Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India
– sequence: 2
  givenname: Devendra
  orcidid: 0000-0003-4249-6326
  surname: Kumar
  fullname: Kumar, Devendra
  email: devendra.maths@gmail.com, dev.ku15@gmail.com
  organization: Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India
– sequence: 3
  givenname: Zakia
  surname: Hammouch
  fullname: Hammouch, Zakia
  email: hammouch.zakia@gmail.com
  organization: E3MI, Departement de Mathematiques, FST Errachidia Universite Moulay Ismail BP.509 Boutalamine 52000 Errachidia, Morocco
– sequence: 4
  givenname: Abdon
  surname: Atangana
  fullname: Atangana, Abdon
  email: abdonatangana@yahoo.fr
  organization: Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9300, Bloemfontein, South Africa
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP2B35JckugqhLwh0066FLI2Dgm0ZWXHp39chXZQushru4lzunBVZ9L5HQu4ZpAxY9XBIdWfSDBhPQaRQiCuyZILnSVkVckGWALJKcoD8hqzG8QAAvGLFkugNbYI20fletxQHZ7FzvvV7Z-bceYstbXygxnfDMWKgkwvHEUc6YIja9a7f0-ippj1-_W2yGNyko5vwllw3uh3x7veuyefz08f2Ndm9v7xtN7vEZJLHhNVCZFrKpiyqygprsDANR8altJnMdYM18FpYwCKHxtYWeSmrXJsqKyWgyNeEn3tN8OMYsFHGRX2aE4N2rWKgTqbUQc2m1MmUAqFmUzPJ_pFDcJ0O3xeZxzOD80uTw6BG47A3aF1AE5X17gL9AyT6hek
CitedBy_id crossref_primary_10_1186_s13662_018_1590_2
crossref_primary_10_1186_s13662_020_03093_y
crossref_primary_10_1371_journal_pone_0307707
crossref_primary_10_1016_j_chaos_2021_110981
crossref_primary_10_1007_s00366_021_01314_w
crossref_primary_10_1016_j_cmpb_2021_106054
crossref_primary_10_1007_s40819_021_01086_3
crossref_primary_10_2478_fcds_2021_0017
crossref_primary_10_1002_mma_10957
crossref_primary_10_1002_mma_6635
crossref_primary_10_3390_fractalfract2030022
crossref_primary_10_1007_s40819_020_00911_5
crossref_primary_10_1088_1757_899X_928_3_032017
crossref_primary_10_1142_S0217979224502138
crossref_primary_10_1155_2021_5130136
crossref_primary_10_1155_2021_6672630
crossref_primary_10_1186_s13662_020_02970_w
crossref_primary_10_1371_journal_pone_0315850
crossref_primary_10_1002_mma_5829
crossref_primary_10_51537_chaos_1518307
crossref_primary_10_1016_j_amc_2019_01_053
crossref_primary_10_1155_2021_6669287
crossref_primary_10_1007_s40819_020_00923_1
crossref_primary_10_1088_1402_4896_ad1796
crossref_primary_10_1515_jaa_2024_0019
crossref_primary_10_1007_s11082_023_04838_1
crossref_primary_10_1016_j_amc_2018_04_025
crossref_primary_10_1016_j_jksus_2021_101347
crossref_primary_10_3390_math7050396
crossref_primary_10_1186_s13662_020_02951_z
crossref_primary_10_1155_2022_2765924
crossref_primary_10_1007_s40995_020_00986_1
crossref_primary_10_1186_s13662_020_03005_0
crossref_primary_10_3389_fphy_2020_00288
crossref_primary_10_1088_1402_4896_ac1ccf
crossref_primary_10_1007_s12190_018_01219_w
crossref_primary_10_1002_mma_7431
crossref_primary_10_1515_phys_2022_0195
crossref_primary_10_2478_fcds_2021_0007
crossref_primary_10_1002_mma_7950
crossref_primary_10_1080_10236198_2021_1976770
crossref_primary_10_1002_mma_7437
crossref_primary_10_1186_s13662_020_03175_x
crossref_primary_10_1016_j_apnum_2021_03_015
crossref_primary_10_32604_cmes_2021_012720
crossref_primary_10_1016_j_physa_2019_01_102
crossref_primary_10_1140_epjp_i2018_11981_4
crossref_primary_10_1142_S0218348X25401073
crossref_primary_10_1108_EC_09_2019_0438
crossref_primary_10_1007_s40819_021_01007_4
crossref_primary_10_1016_j_physa_2019_01_105
crossref_primary_10_1155_2021_5538438
crossref_primary_10_1002_mma_7793
crossref_primary_10_1002_mma_6179
crossref_primary_10_1002_mma_8238
crossref_primary_10_1016_j_cie_2023_109191
crossref_primary_10_1002_num_22728
crossref_primary_10_1007_s12043_022_02411_1
crossref_primary_10_1155_2020_8323148
crossref_primary_10_32604_cmc_2020_012060
crossref_primary_10_1007_s10614_024_10678_2
crossref_primary_10_3389_fphy_2018_00151
crossref_primary_10_1515_phys_2019_0085
crossref_primary_10_1007_s12346_021_00516_3
crossref_primary_10_1016_j_physa_2019_123941
crossref_primary_10_1515_ijnsns_2018_0362
crossref_primary_10_3389_fphy_2020_00064
crossref_primary_10_1007_s40819_021_01015_4
crossref_primary_10_1002_mma_8196
crossref_primary_10_1155_2020_8819183
crossref_primary_10_1080_02286203_2022_2103066
crossref_primary_10_1080_09720502_2019_1706842
crossref_primary_10_21597_jist_658471
crossref_primary_10_1002_mma_7022
crossref_primary_10_1515_phys_2020_0113
crossref_primary_10_1186_s13662_020_03196_6
crossref_primary_10_1007_s10825_021_01758_9
crossref_primary_10_1088_1674_1056_ad9ff8
crossref_primary_10_1002_mma_10406
crossref_primary_10_1186_s13662_020_02822_7
crossref_primary_10_1371_journal_pone_0298620
crossref_primary_10_1142_S0218348X25401000
crossref_primary_10_1016_j_chaos_2020_110436
crossref_primary_10_1002_num_22699
crossref_primary_10_1088_1572_9494_aba24b
crossref_primary_10_3390_fractalfract2020018
crossref_primary_10_1016_j_icheatmasstransfer_2023_107105
crossref_primary_10_1186_s13662_021_03262_7
crossref_primary_10_1016_j_chaos_2018_09_007
crossref_primary_10_1007_s00521_025_11225_2
crossref_primary_10_1080_00207160_2021_1929940
crossref_primary_10_1140_epjp_s13360_020_00819_5
crossref_primary_10_1186_s13662_019_2030_7
crossref_primary_10_1016_j_amc_2018_03_097
crossref_primary_10_1080_17455030_2018_1449987
crossref_primary_10_1007_s40995_020_00976_3
crossref_primary_10_1002_mma_5222
crossref_primary_10_3390_sym15020453
crossref_primary_10_1002_mma_7766
crossref_primary_10_1002_mma_9946
crossref_primary_10_1155_2020_8845867
crossref_primary_10_1002_mma_6954
crossref_primary_10_1016_j_chaos_2021_110702
crossref_primary_10_1002_num_22586
crossref_primary_10_1109_TSMC_2020_3037030
crossref_primary_10_1155_2021_9702569
crossref_primary_10_1007_s40995_021_01078_4
crossref_primary_10_1002_num_22587
crossref_primary_10_1016_j_matcom_2020_09_016
crossref_primary_10_1109_ACCESS_2019_2941021
crossref_primary_10_1007_s40808_024_02270_2
crossref_primary_10_1186_s13662_021_03377_x
crossref_primary_10_1186_s13662_019_2465_x
crossref_primary_10_1002_mma_10348
crossref_primary_10_1002_mma_5331
crossref_primary_10_1088_1402_4896_abbe4f
crossref_primary_10_1155_2020_8815363
crossref_primary_10_1016_j_jocs_2024_102214
crossref_primary_10_1016_j_neucom_2023_126397
crossref_primary_10_1007_s40324_020_00230_1
crossref_primary_10_1002_num_22476
crossref_primary_10_1016_j_chaos_2021_110677
crossref_primary_10_1016_j_chaos_2020_110417
crossref_primary_10_1016_j_chaos_2020_110416
crossref_primary_10_1016_j_matcom_2020_09_008
crossref_primary_10_3390_sym13040532
crossref_primary_10_1007_s40747_018_0070_3
crossref_primary_10_1007_s40808_025_02559_w
crossref_primary_10_1016_j_chaos_2018_12_003
crossref_primary_10_1155_2020_2791380
crossref_primary_10_1007_s40863_023_00382_8
crossref_primary_10_1016_j_apnum_2020_11_015
crossref_primary_10_1016_j_chaos_2018_08_021
crossref_primary_10_1016_j_chaos_2018_08_025
crossref_primary_10_3389_fphy_2019_00193
crossref_primary_10_1016_j_fss_2021_04_012
crossref_primary_10_1080_02286203_2023_2249640
crossref_primary_10_1002_mma_5847
crossref_primary_10_1002_mma_9926
crossref_primary_10_1186_s13662_020_03107_9
crossref_primary_10_1016_j_chaos_2018_10_025
crossref_primary_10_1016_j_chaos_2018_10_023
crossref_primary_10_1515_phys_2021_0081
crossref_primary_10_1016_j_chaos_2018_10_020
crossref_primary_10_1016_j_cjph_2021_01_012
crossref_primary_10_1007_s00500_023_08087_y
crossref_primary_10_1155_2024_8794634
crossref_primary_10_1007_s11063_022_10963_x
crossref_primary_10_1155_2021_5568492
crossref_primary_10_1016_j_amc_2018_09_020
crossref_primary_10_1002_mma_6891
crossref_primary_10_1002_mma_7332
crossref_primary_10_1002_mma_5431
crossref_primary_10_1016_j_matcom_2025_07_014
crossref_primary_10_1002_mma_6886
crossref_primary_10_1016_j_chaos_2018_09_043
crossref_primary_10_1088_1402_4896_ac1218
crossref_primary_10_1088_1402_4896_ab560c
crossref_primary_10_1186_s13662_021_03229_8
Cites_doi 10.1016/j.chaos.2016.03.027
10.1016/0167-4048(88)90327-6
10.1109/RISP.1993.287647
10.1080/17455030.2016.1158436
10.3390/e17064439
10.1155/2014/535793
10.1038/scientificamerican1197-88
10.1016/j.nonrwa.2011.07.048
10.22190/FUMI1702255A
10.1016/S0895-7177(02)00257-1
10.1016/j.asej.2013.11.004
10.1016/S0375-9601(02)00152-4
10.1109/6.275061
10.1111/j.1365-246X.1967.tb02303.x
10.1016/j.cnsns.2016.11.017
10.1016/j.aml.2016.09.011
10.1016/S0167-9473(03)00113-0
10.1515/fca-2015-0007
10.1016/0167-4048(89)90037-0
10.1155/2013/203875
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2017.08.048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 515
ExternalDocumentID 10_1016_j_amc_2017_08_048
S0096300317305994
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-1b882a99f5466d8dce4cf7e1799d293afeb07b8d0e430fdbde75963ac62590e83
ISICitedReferencesCount 429
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413445600038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 02:52:20 EST 2025
Tue Nov 18 21:45:41 EST 2025
Fri Feb 23 02:30:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Caputo-Fabrizio derivative
Fixed point theorem
Computer viruses
Fractional differential equations
Epidemiological model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-1b882a99f5466d8dce4cf7e1799d293afeb07b8d0e430fdbde75963ac62590e83
ORCID 0000-0003-4249-6326
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2017_08_048
crossref_primary_10_1016_j_amc_2017_08_048
elsevier_sciencedirect_doi_10_1016_j_amc_2017_08_048
PublicationCentury 2000
PublicationDate 2018-01-01
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wierman, Marchette (bib0007) 2004; 1
Yang, Machado, Cattani, Gao (bib0025) 2017; 47
Choudhary, Kumar, Singh (bib0022) 2014; 3
Kumar, Kumar, Abbasbandy, Rashidi (bib0030) 2014; 5
Ren, Yang, Zhu, Yang, Zhang (bib0006) 2012; 1
Kephart, White (bib0012) 1997
Debbouche, Nieto (bib0027) 2014; 243
Debbouche, Torres (bib0029) 2015; 18
Losada, Nieto (bib0035) 2015; 1
Kephart, White, Chess (bib0002) 1993; 5
Gleissner (bib0010) 1989; 8
Kumar, Singh, Baleanu, Qurashi (bib0024) 2017; 9
Yang (bib0026) 2017; 64
Kumar, Singh, Baleanu (bib0023) 2016; 11
Piqueira, Araujo (bib0005) 2009; 2
Murray (bib0009) 1988; 7
Atangana, Alkahtani (bib0018) 2015; 17
Debbouche, Nieto (bib0028) 2015; 2015
Sarwar, Rashidi (bib0031) 2016; 26
Abelman, Selvakumaran, Rashidi, Purohit (bib0032) 2017; 32
Yang, Zhang, Cattani, Xie, Rashidi, Zhou, yang (bib0033) 2014; 2014
Atangana, Alkahtani (bib0019) 2016; 89
Caputo, Fabrizio (bib0034) 2015; 1
Baleanu, Guvenc, Machado (bib0015) 2010
Kephart, White (bib0001) 1993
Billings, Spears, Schwartz (bib0003) 2002; 297
Kephart, Sorkin, Chess, White (bib0011) 1997
Bulut, Baskonus, Belgacem (bib0017) 2013; 2013
Kilbas, Srivastava, Trujillo (bib0016) 2006
Caputo (bib0014) 1967; 13
Singh, Kumar, Kilichman (bib0020) 2014; 2014
Lu, Chi, Chen (bib0013) 2002; 36
Kumar, Singh, Rathore (bib0021) 2013; 68
Han, Tan (bib0004) 2010; 6
Handam, Freihat (bib0008) 2015; 10
Caputo (10.1016/j.amc.2017.08.048_bib0014) 1967; 13
Kumar (10.1016/j.amc.2017.08.048_bib0024) 2017; 9
Murray (10.1016/j.amc.2017.08.048_bib0009) 1988; 7
Kephart (10.1016/j.amc.2017.08.048_bib0012) 1997
Handam (10.1016/j.amc.2017.08.048_bib0008) 2015; 10
Choudhary (10.1016/j.amc.2017.08.048_bib0022) 2014; 3
Debbouche (10.1016/j.amc.2017.08.048_bib0028) 2015; 2015
Kephart (10.1016/j.amc.2017.08.048_bib0002) 1993; 5
Piqueira (10.1016/j.amc.2017.08.048_bib0005) 2009; 2
Baleanu (10.1016/j.amc.2017.08.048_bib0015) 2010
Debbouche (10.1016/j.amc.2017.08.048_bib0029) 2015; 18
Gleissner (10.1016/j.amc.2017.08.048_bib0010) 1989; 8
Abelman (10.1016/j.amc.2017.08.048_bib0032) 2017; 32
Lu (10.1016/j.amc.2017.08.048_bib0013) 2002; 36
Debbouche (10.1016/j.amc.2017.08.048_bib0027) 2014; 243
Wierman (10.1016/j.amc.2017.08.048_bib0007) 2004; 1
Kumar (10.1016/j.amc.2017.08.048_bib0021) 2013; 68
Kephart (10.1016/j.amc.2017.08.048_bib0011) 1997
Atangana (10.1016/j.amc.2017.08.048_bib0019) 2016; 89
Kephart (10.1016/j.amc.2017.08.048_bib0001) 1993
Yang (10.1016/j.amc.2017.08.048_bib0025) 2017; 47
Sarwar (10.1016/j.amc.2017.08.048_bib0031) 2016; 26
Kilbas (10.1016/j.amc.2017.08.048_bib0016) 2006
Kumar (10.1016/j.amc.2017.08.048_bib0030) 2014; 5
Losada (10.1016/j.amc.2017.08.048_bib0035) 2015; 1
Yang (10.1016/j.amc.2017.08.048_bib0033) 2014; 2014
Ren (10.1016/j.amc.2017.08.048_bib0006) 2012; 1
Caputo (10.1016/j.amc.2017.08.048_bib0034) 2015; 1
Atangana (10.1016/j.amc.2017.08.048_bib0018) 2015; 17
Kumar (10.1016/j.amc.2017.08.048_bib0023) 2016; 11
Yang (10.1016/j.amc.2017.08.048_bib0026) 2017; 64
Han (10.1016/j.amc.2017.08.048_bib0004) 2010; 6
Billings (10.1016/j.amc.2017.08.048_bib0003) 2002; 297
Singh (10.1016/j.amc.2017.08.048_sbref0020) 2014; 2014
Bulut (10.1016/j.amc.2017.08.048_sbref0017) 2013; 2013
References_xml – start-page: 343
  year: 1997
  end-page: 359
  ident: bib0012
  article-title: Directed-graph epidemiological models of computer viruses
  publication-title: Proceedings of the IEEE Symposium on Security and Privacy
– volume: 5
  start-page: 569
  year: 2014
  end-page: 574
  ident: bib0030
  article-title: Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method
  publication-title: Ain Shams Eng. J.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0028
  article-title: Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions
  publication-title: Elect. J. Differ. Equ.
– volume: 10
  start-page: 919
  year: 2015
  end-page: 936
  ident: bib0008
  article-title: A new analytic numeric method solution for fractional modified epidemiological model for computer viruses
  publication-title: Appl. Appl. Math
– volume: 9
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib0024
  article-title: Analysis of logistic equation pertaining to a new fractional derivative with non- singular kernel
  publication-title: Adv. Mech. Eng.
– volume: 1
  start-page: 3
  year: 2004
  end-page: 23
  ident: bib0007
  article-title: Modeling computer virus prevalence with a susceptible-infected susceptible model with reintroduction
  publication-title: Comput. Stat. Data Anal
– year: 2010
  ident: bib0015
  article-title: New Trends in Nanotechnology and Fractional Calculus Applications
– volume: 3
  start-page: 133
  year: 2014
  end-page: 139
  ident: bib0022
  article-title: Analytical Solution of fractional differential equations arising in fluid mechanics by using Sumudu transform method
  publication-title: Nonl. Eng.
– volume: 68
  start-page: 23
  year: 2013
  end-page: 32
  ident: bib0021
  article-title: On the solutions of fractional reaction-diffusion equations
  publication-title: Le Matematiche
– start-page: 2
  year: 1993
  end-page: 15
  ident: bib0001
  article-title: Measuring and modelling computer virus prevalence
  publication-title: IEEE Comput. Soc. Symp. Res. Secur. Priv
– volume: 13
  start-page: 529
  year: 1967
  end-page: 539
  ident: bib0014
  article-title: Linear models of dissipation whose Q is almost frequency independent, part II
  publication-title: Geophys. J. Int.
– volume: 18
  start-page: 95
  year: 2015
  end-page: 121
  ident: bib0029
  article-title: Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions
  publication-title: Fract. Calc. Appl. Anal.
– volume: 297
  start-page: 261
  year: 2002
  end-page: 266
  ident: bib0003
  article-title: A unified prediction of computer virus spread inconnected networks
  publication-title: Phys. Lett. A
– volume: 11
  year: 2016
  ident: bib0023
  article-title: Numerical computation of a fractional model of differential-difference equation
  publication-title: J. Comput. Nonlin. Dyn.
– volume: 47
  start-page: 200
  year: 2017
  end-page: 206
  ident: bib0025
  article-title: On a fractal LC-electric circuit modeled by local fractional calculus
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 8
  start-page: 35
  year: 1989
  end-page: 41
  ident: bib0010
  article-title: A mathematical theory for the spread of computer viruses
  publication-title: Comput. Secur.
– volume: 2
  start-page: 355
  year: 2009
  end-page: 360
  ident: bib0005
  article-title: A modied epidemiological model for computer viruses
  publication-title: Appl. Math. Comput
– volume: 64
  start-page: 193
  year: 2017
  end-page: 197
  ident: bib0026
  article-title: A new integral transform operator for solving the heat-diffusion problem
  publication-title: Appl. Math. Lett.
– volume: 2014
  year: 2014
  ident: bib0020
  article-title: Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations
  publication-title: Abstr. Appl. Anal.
– volume: 26
  start-page: 365
  year: 2016
  end-page: 382
  ident: bib0031
  article-title: Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method
  publication-title: Waves Random Complex Media
– volume: 17
  start-page: 4439
  year: 2015
  end-page: 4453
  ident: bib0018
  article-title: Analysis of the Keller-Segel model with a fractional derivative without singular kernel
  publication-title: Entropy
– year: 2006
  ident: bib0016
  article-title: Theory and Applications of Fractional Differential Equations
– volume: 1
  start-page: 376
  year: 2012
  end-page: 384
  ident: bib0006
  article-title: A novel computer virus model and its dynamics
  publication-title: Nonlinear Anal
– volume: 6
  start-page: 2520
  year: 2010
  end-page: 2526
  ident: bib0004
  article-title: Dynamical behavior of computer virus on Internet
  publication-title: Appl. Math. Comput
– start-page: 88
  year: 1997
  end-page: 93
  ident: bib0011
  article-title: Fighting computer viruses
  publication-title: Sci. Am.
– volume: 2013
  year: 2013
  ident: bib0017
  article-title: The analytical solutions of some fractional ordinary differential equations by sumudu transform method
  publication-title: Abstr. Appl. Anal.
– volume: 32
  start-page: 255
  year: 2017
  end-page: 267
  ident: bib0032
  article-title: Subordination conditions for a class of non- bazilevivc type defined by using fractional Q-calculus operators, Facta Universitatis
  publication-title: Ser. Math. Inform.
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: bib0034
  article-title: A new definition of fractional derivative without singular Kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 243
  start-page: 161
  year: 2014
  end-page: 175
  ident: bib0027
  article-title: Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions
  publication-title: Appl. Math. Comput.
– volume: 5
  start-page: 20
  year: 1993
  end-page: 26
  ident: bib0002
  article-title: Computers and epidemiology
  publication-title: IEEE Spectr.
– volume: 2014
  year: 2014
  ident: bib0033
  article-title: Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets
  publication-title: Abst. Appl. Anal.
– volume: 7
  start-page: 139
  year: 1988
  end-page: 150
  ident: bib0009
  article-title: The application of epidemiology to computer viruses
  publication-title: Comput. Secur.
– volume: 89
  start-page: 566
  year: 2016
  end-page: 571
  ident: bib0019
  article-title: Analysis of non- homogenous heat model with new trend of derivative with fractional order
  publication-title: Chaos Soliton Fract.
– volume: 36
  start-page: 1039
  year: 2002
  end-page: 1057
  ident: bib0013
  article-title: The effect of constant and pulse vaccination of SIR epidemic model with horizontal and vertical transmission
  publication-title: Math. Comput. Model.
– volume: 1
  start-page: 87
  year: 2015
  end-page: 92
  ident: bib0035
  article-title: Properties of the new fractional derivative without singular Kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 89
  start-page: 566
  year: 2016
  ident: 10.1016/j.amc.2017.08.048_bib0019
  article-title: Analysis of non- homogenous heat model with new trend of derivative with fractional order
  publication-title: Chaos Soliton Fract.
  doi: 10.1016/j.chaos.2016.03.027
– volume: 7
  start-page: 139
  year: 1988
  ident: 10.1016/j.amc.2017.08.048_bib0009
  article-title: The application of epidemiology to computer viruses
  publication-title: Comput. Secur.
  doi: 10.1016/0167-4048(88)90327-6
– start-page: 2
  year: 1993
  ident: 10.1016/j.amc.2017.08.048_bib0001
  article-title: Measuring and modelling computer virus prevalence
  publication-title: IEEE Comput. Soc. Symp. Res. Secur. Priv
  doi: 10.1109/RISP.1993.287647
– volume: 68
  start-page: 23
  issue: 1
  year: 2013
  ident: 10.1016/j.amc.2017.08.048_bib0021
  article-title: On the solutions of fractional reaction-diffusion equations
  publication-title: Le Matematiche
– volume: 26
  start-page: 365
  issue: 3
  year: 2016
  ident: 10.1016/j.amc.2017.08.048_bib0031
  article-title: Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2016.1158436
– volume: 9
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.amc.2017.08.048_bib0024
  article-title: Analysis of logistic equation pertaining to a new fractional derivative with non- singular kernel
  publication-title: Adv. Mech. Eng.
– volume: 17
  start-page: 4439
  issue: 6
  year: 2015
  ident: 10.1016/j.amc.2017.08.048_bib0018
  article-title: Analysis of the Keller-Segel model with a fractional derivative without singular kernel
  publication-title: Entropy
  doi: 10.3390/e17064439
– volume: 1
  start-page: 73
  year: 2015
  ident: 10.1016/j.amc.2017.08.048_bib0034
  article-title: A new definition of fractional derivative without singular Kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 2014
  year: 2014
  ident: 10.1016/j.amc.2017.08.048_sbref0020
  article-title: Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2014/535793
– start-page: 88
  year: 1997
  ident: 10.1016/j.amc.2017.08.048_bib0011
  article-title: Fighting computer viruses
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1197-88
– volume: 2014
  year: 2014
  ident: 10.1016/j.amc.2017.08.048_bib0033
  article-title: Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets
  publication-title: Abst. Appl. Anal.
– volume: 2
  start-page: 355
  issue: 213
  year: 2009
  ident: 10.1016/j.amc.2017.08.048_bib0005
  article-title: A modied epidemiological model for computer viruses
  publication-title: Appl. Math. Comput
– volume: 1
  start-page: 87
  year: 2015
  ident: 10.1016/j.amc.2017.08.048_bib0035
  article-title: Properties of the new fractional derivative without singular Kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 1
  start-page: 376
  issue: 13
  year: 2012
  ident: 10.1016/j.amc.2017.08.048_bib0006
  article-title: A novel computer virus model and its dynamics
  publication-title: Nonlinear Anal
  doi: 10.1016/j.nonrwa.2011.07.048
– volume: 10
  start-page: 919
  issue: 2
  year: 2015
  ident: 10.1016/j.amc.2017.08.048_bib0008
  article-title: A new analytic numeric method solution for fractional modified epidemiological model for computer viruses
  publication-title: Appl. Appl. Math
– volume: 2015
  start-page: 1
  issue: 89
  year: 2015
  ident: 10.1016/j.amc.2017.08.048_bib0028
  article-title: Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions
  publication-title: Elect. J. Differ. Equ.
– volume: 32
  start-page: 255
  issue: 2
  year: 2017
  ident: 10.1016/j.amc.2017.08.048_bib0032
  article-title: Subordination conditions for a class of non- bazilevivc type defined by using fractional Q-calculus operators, Facta Universitatis
  publication-title: Ser. Math. Inform.
  doi: 10.22190/FUMI1702255A
– volume: 36
  start-page: 1039
  year: 2002
  ident: 10.1016/j.amc.2017.08.048_bib0013
  article-title: The effect of constant and pulse vaccination of SIR epidemic model with horizontal and vertical transmission
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(02)00257-1
– volume: 5
  start-page: 569
  issue: 2
  year: 2014
  ident: 10.1016/j.amc.2017.08.048_bib0030
  article-title: Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.11.004
– volume: 243
  start-page: 161
  year: 2014
  ident: 10.1016/j.amc.2017.08.048_bib0027
  article-title: Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions
  publication-title: Appl. Math. Comput.
– volume: 297
  start-page: 261
  year: 2002
  ident: 10.1016/j.amc.2017.08.048_bib0003
  article-title: A unified prediction of computer virus spread inconnected networks
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00152-4
– volume: 5
  start-page: 20
  issue: 30
  year: 1993
  ident: 10.1016/j.amc.2017.08.048_bib0002
  article-title: Computers and epidemiology
  publication-title: IEEE Spectr.
  doi: 10.1109/6.275061
– volume: 13
  start-page: 529
  issue: 5
  year: 1967
  ident: 10.1016/j.amc.2017.08.048_bib0014
  article-title: Linear models of dissipation whose Q is almost frequency independent, part II
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– year: 2010
  ident: 10.1016/j.amc.2017.08.048_bib0015
– volume: 47
  start-page: 200
  year: 2017
  ident: 10.1016/j.amc.2017.08.048_bib0025
  article-title: On a fractal LC-electric circuit modeled by local fractional calculus
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.11.017
– start-page: 343
  year: 1997
  ident: 10.1016/j.amc.2017.08.048_bib0012
  article-title: Directed-graph epidemiological models of computer viruses
– volume: 64
  start-page: 193
  year: 2017
  ident: 10.1016/j.amc.2017.08.048_bib0026
  article-title: A new integral transform operator for solving the heat-diffusion problem
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2016.09.011
– volume: 3
  start-page: 133
  issue: 3
  year: 2014
  ident: 10.1016/j.amc.2017.08.048_bib0022
  article-title: Analytical Solution of fractional differential equations arising in fluid mechanics by using Sumudu transform method
  publication-title: Nonl. Eng.
– volume: 1
  start-page: 3
  issue: 45
  year: 2004
  ident: 10.1016/j.amc.2017.08.048_bib0007
  article-title: Modeling computer virus prevalence with a susceptible-infected susceptible model with reintroduction
  publication-title: Comput. Stat. Data Anal
  doi: 10.1016/S0167-9473(03)00113-0
– volume: 18
  start-page: 95
  issue: 1
  year: 2015
  ident: 10.1016/j.amc.2017.08.048_bib0029
  article-title: Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2015-0007
– volume: 6
  start-page: 2520
  issue: 217
  year: 2010
  ident: 10.1016/j.amc.2017.08.048_bib0004
  article-title: Dynamical behavior of computer virus on Internet
  publication-title: Appl. Math. Comput
– volume: 8
  start-page: 35
  year: 1989
  ident: 10.1016/j.amc.2017.08.048_bib0010
  article-title: A mathematical theory for the spread of computer viruses
  publication-title: Comput. Secur.
  doi: 10.1016/0167-4048(89)90037-0
– year: 2006
  ident: 10.1016/j.amc.2017.08.048_bib0016
– volume: 2013
  year: 2013
  ident: 10.1016/j.amc.2017.08.048_sbref0017
  article-title: The analytical solutions of some fractional ordinary differential equations by sumudu transform method
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2013/203875
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.amc.2017.08.048_bib0023
  article-title: Numerical computation of a fractional model of differential-difference equation
  publication-title: J. Comput. Nonlin. Dyn.
SSID ssj0007614
Score 2.6568482
Snippet In the computer security and for any defensive strategy, computer viruses are very significant aspect. To understand their expansion and extension is very...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 504
SubjectTerms Caputo-Fabrizio derivative
Computer viruses
Epidemiological model
Fixed point theorem
Fractional differential equations
Title A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
URI https://dx.doi.org/10.1016/j.amc.2017.08.048
Volume 316
WOSCitedRecordID wos000413445600038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEJ9q-ah84EQV5KyT2D5GqIhWUCFRpBWXyI6d0qpNq2w26j_h7zKO7SRdaEUPXKJVsplkPW_H42TmPYTepjbgsdRETMsqSpjikZyXNEpjLSRXinLVq5Z8ZoeHfLEQX2ezX6EXpjtjdc2vrsTlf3U17ANn29bZO7h7MAo74DM4Hbbgdtj-k-Pz3apx3Qow-mYUgO290Qvf9KWFpZdz2O1OmtXSLC2BcevkImw-Kq3W-NSShnvvZGjKHIhrfRJ7PrC_LkOnHFi_9pb_G1j-6Qpzj7XpxndIvsbbli_VupFjTIQxWzmlqh-Q5w4Hcshnj6XrZcuV9lfwTy5iPnly4aOxsHV3hE6jMY2n8TR12sR-ak5d5-cfUd89gDh9L88tKWXMelJWR-B5nWF7beYb6hFDqdtpASYKa6Kw4pwJv4c25ywVEC438_29xcEwybPM0caHnxBemPelg2v38feUZ5LGHD1Gj_z6A-cON0_QzNRP0cMvo_ueIZnj0e94DUG4RxAGBOGAIOwRhEcE4fYCSwwImloaEfQcff-4d_ThU-SVOKJyLlgbxQoWYlKIKk2yTHNdmqSsmLFsghryRVkZReBvrolJKKm00gYGLaOytKtrYjh9gTbqi9psIdzrJxCt3eJUM5UJKQlV6ZwYTXW6jUgYrKL0NPVWLeWsuNFJ2-jdcMql42i57ctJ8EDhk0yXPBaApptPe3mXa7xCD0a8v0YbbbMyb9D9smtPls2Oh9JvmZ-hQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fractional+epidemiological+model+for+computer+viruses+pertaining+to+a+new+fractional+derivative&rft.jtitle=Applied+mathematics+and+computation&rft.au=Singh%2C+Jagdev&rft.au=Kumar%2C+Devendra&rft.au=Hammouch%2C+Zakia&rft.au=Atangana%2C+Abdon&rft.date=2018-01-01&rft.issn=0096-3003&rft.volume=316&rft.spage=504&rft.epage=515&rft_id=info:doi/10.1016%2Fj.amc.2017.08.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2017_08_048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon