A Rothe-Chebyshev collocation algorithm for the hyperbolic telegraphic type equations with variable coefficients

We construct a semi-discretized spectral approach for the second-order telegraphic-type equations with Dirichlet or Neumann boundary conditions. The successive method of Rothe is first employed for the temporal discretization procedure to transform the model equations into a system of boundary value...

Full description

Saved in:
Bibliographic Details
Published in:Ain Shams Engineering Journal Vol. 16; no. 11; p. 103720
Main Authors: Izadi, Mohammad, Noeiaghdam, Samad, Ahmed, H.M.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2025
Subjects:
ISSN:2090-4479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We construct a semi-discretized spectral approach for the second-order telegraphic-type equations with Dirichlet or Neumann boundary conditions. The successive method of Rothe is first employed for the temporal discretization procedure to transform the model equations into a system of boundary value problems. Subsequently, the spectral matrix procedure utilizing the shifted modified Chebyshev polynomials (SMCPs) is formulated for the spatial variable. The family of discrete solutions obtained by the hybrid Rothe-SMCPs algorithm is demonstrated to exhibit uniform convergence to the continuous solution of order O(Δτ+R−3). In this context, Δτ signifies the time step, while R represents the number of SMCPs employed in the approximation procedure. Simulation experiments are carried out to highlight the strong agreement between the numerical results and theoretical predictions. The numerical results utilizing a larger time-step size exhibit greater accuracy compared to the computational values available in existing research works.
AbstractList We construct a semi-discretized spectral approach for the second-order telegraphic-type equations with Dirichlet or Neumann boundary conditions. The successive method of Rothe is first employed for the temporal discretization procedure to transform the model equations into a system of boundary value problems. Subsequently, the spectral matrix procedure utilizing the shifted modified Chebyshev polynomials (SMCPs) is formulated for the spatial variable. The family of discrete solutions obtained by the hybrid Rothe-SMCPs algorithm is demonstrated to exhibit uniform convergence to the continuous solution of order O(Δτ+R−3). In this context, Δτ signifies the time step, while R represents the number of SMCPs employed in the approximation procedure. Simulation experiments are carried out to highlight the strong agreement between the numerical results and theoretical predictions. The numerical results utilizing a larger time-step size exhibit greater accuracy compared to the computational values available in existing research works.
ArticleNumber 103720
Author Ahmed, H.M.
Noeiaghdam, Samad
Izadi, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-6116-4928
  surname: Izadi
  fullname: Izadi, Mohammad
  email: izadi@uk.ac.ir
  organization: Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
– sequence: 2
  givenname: Samad
  orcidid: 0000-0002-2307-0891
  surname: Noeiaghdam
  fullname: Noeiaghdam, Samad
  email: snoei@hnas.ac.cn
  organization: Institute of Mathematics, Henan Academy of Sciences, Zhengzhou 450046, China
– sequence: 3
  givenname: H.M.
  orcidid: 0000-0002-5643-8357
  surname: Ahmed
  fullname: Ahmed, H.M.
  email: hanyahmed@techedu.helwan.edu.eg
  organization: Department of Mathematics, Faculty of Technology and Education, Helwan University, Cairo 11281, Egypt
BookMark eNp9kM1qwzAQhHVIoWmaF-hJL-BUK9uRBL2E0D8oFEruQpbXsYJjuZKbkrev3PTc0w7DfsMwN2TW-x4JuQO2Agbr-8PKRDysOONlMnLB2YzMOVMsKwqhrskyRlexpLksZTknw4Z--LHFbNtidY4tnqj1XeetGZ3vqen2PrixPdLGB5r-aHseMFS-c5aO2OE-mKGddLIpfn79YpF-J4aeTHCm6jAlYtM467Af4y25akwXcfl3F2T39LjbvmRv78-v281bZrkSYwZrIwEkKpEbbqHEwigjTQ51CaoWXBhAaxTmVlnIC8mLNYBohJSFtFDkC8IvsTb4GAM2egjuaMJZA9PTUvqgp6X0tJS-LJWghwuEqdjJYdBxKm2xdgHtqGvv_sN_AIB8d5U
Cites_doi 10.1007/s12190-024-02273-3
10.1186/s13661-024-01944-1
10.1007/s13540-023-00184-x
10.1016/j.cpc.2014.10.013
10.1016/j.camwa.2019.03.011
10.1002/num.22957
10.1016/j.chaos.2025.116569
10.3390/sym13122370
10.1007/s10092-023-00557-x
10.1007/s40819-023-01656-7
10.1002/num.20442
10.1080/00150517.2002.12428647
10.1016/S0377-0427(02)00861-0
10.1016/j.aml.2011.04.026
10.1016/j.jocs.2024.102450
10.1142/S0219876218501189
10.1186/s13662-020-03085-y
10.5614/j.math.fund.sci.2020.52.3.6
10.1093/qjmam/4.2.129
10.1140/epjp/i2017-11529-2
10.1007/BF01782368
10.3934/math.2023558
10.3390/math11010032
10.1007/s40096-021-00428-y
10.1142/S0218348X22401661
10.1504/IJCSM.2022.128185
10.1155/2014/526814
10.1016/j.jmaa.2005.12.020
10.1007/s40096-020-00357-2
10.1016/j.camwa.2017.08.020
10.1088/0266-5611/9/6/013
10.1007/s00009-019-1375-1
10.1080/00207721.2010.547626
10.1186/s13661-025-02085-9
10.1007/s40819-020-00903-5
10.1063/1.369258
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asej.2025.103720
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 10_1016_j_asej_2025_103720
S2090447925004617
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
ID FETCH-LOGICAL-c297t-16a8118e973a2c15e4a9a8a31d519d727a1eca9e3c9c1348246117f78848c143
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566565100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-4479
IngestDate Thu Nov 20 00:38:44 EST 2025
Sat Oct 04 17:01:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Collocation nodes
65N12
35B25
Error estimation
65M70
41A10
Hyperbolic telegraphic equation
Time-horizontal Rothe's approach
Modified Chebyshev polynomials
Convergence analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-16a8118e973a2c15e4a9a8a31d519d727a1eca9e3c9c1348246117f78848c143
ORCID 0000-0002-5643-8357
0000-0002-2307-0891
0000-0002-6116-4928
OpenAccessLink https://dx.doi.org/10.1016/j.asej.2025.103720
ParticipantIDs crossref_primary_10_1016_j_asej_2025_103720
elsevier_sciencedirect_doi_10_1016_j_asej_2025_103720
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Ain Shams Engineering Journal
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohanty (br0060) 2005; 165
Singh, Singh, Aggarwal (br0110) 2022; 16
Horadam (br0410) 2002; 40
Rostamy, Emamjome, Abbasbandy (br0190) 2017; 132
Kırlı, Irk, Gorgulu (br0220) 2023; 39
Mittal, Bhatia (br0100) 2014; 2014
Izadi, Yüzbaşı, Ansari (br0430) 2021; 13
Sadri, Amilo, Hinçal (br0300) 2025; 198
Rothe (br0360) 1930; 102
Rektorys (br0370) 1982
Doha, Hafez, Abdelkawy, Ezz-Eldien, Taha, Zaky (br0140) 2017; 69
Goldstein (br0010) 1951; 4
Protter, Weinberger (br0480) 1967
Izadi (br0260) 2022; 16
Ebadi, Shahriari (br0240) 2024; 61
Xu, Aghdam, Farnam, Jafari, Masetshaba, Ünlü (br0310) 2022; 30
El-Azab, El-Gamel (br0380) 2007; 190
Agarwal, El-Sayed (br0420) 2020; 2020
Van Bockstal, Zaky, Hendy (br0270) 2023; 26
Witula, Slota (br0400) 2006; 324
Ahmed (br0250) 2019; 16
Sadri, Amilo, Farman, Hinçal (br0320) 2024; 83
Jordan, Puri (br0050) 1999; 85
Saadatmandi, Dehghan (br0080) 2010; 26
Clavero, Jorge, Lisbona (br0490) 2003; 154
Niknam, Adibi (br0200) 2022; 10
Devi, Maurya, Singh, Singh (br0210) 2020; 367
Mason, Handscomb (br0470) 2003
Bülbül, Sezer (br0090) 2011; 24
Gao, Chi (br0070) 2007; 187
Ahmed, Izadi (br0340) 2025; 2025
Okhovati, Izadi (br0280) 2020; 52
Hosseini, Mohyud-Din, Nakhaeei (br0390) 2012; 43
Izadi, Srivastava, Mamehrashi (br0230) 2025; 71
Weston, He (br0020) 1993; 9
Moumen, Mennouni (br0440) 2023; 11
Banasiak, Mika (br0040) 1998; 11
Pandit, Kumar, Tiwari (br0130) 2015; 187
Abdelkawy, Izadi, Adel (br0180) 2024; 2024
Doha, Abd-Elhameed, Youssri (br0160) 2019; 16
Chaudhary, Aeri, Bala, Kumar, Baleanu (br0450) 2024; 10
Yüzbaşı, Karaşayır (br0170) 2017; 74
Lock, Greeff, Joubert (br0030) 2007
Doha, Hafez, Youssri (br0150) 2019; 78
Izadi (br0290) 2020; 8
Mesgarani, Rashidnina, Esmaeelzade Aghdam, Nikan (br0350) 2020; 6
Stewart (br0460) 2012
Kırlı (br0120) 2023; 8
Mesgarani, Beiranvand, Esmaeelzade Aghdam (br0330) 2021; 15
Horadam (10.1016/j.asej.2025.103720_br0410) 2002; 40
Clavero (10.1016/j.asej.2025.103720_br0490) 2003; 154
Banasiak (10.1016/j.asej.2025.103720_br0040) 1998; 11
Weston (10.1016/j.asej.2025.103720_br0020) 1993; 9
Izadi (10.1016/j.asej.2025.103720_br0290) 2020; 8
Mesgarani (10.1016/j.asej.2025.103720_br0330) 2021; 15
El-Azab (10.1016/j.asej.2025.103720_br0380) 2007; 190
Izadi (10.1016/j.asej.2025.103720_br0230) 2025; 71
Witula (10.1016/j.asej.2025.103720_br0400) 2006; 324
Kırlı (10.1016/j.asej.2025.103720_br0120) 2023; 8
Chaudhary (10.1016/j.asej.2025.103720_br0450) 2024; 10
Jordan (10.1016/j.asej.2025.103720_br0050) 1999; 85
Mesgarani (10.1016/j.asej.2025.103720_br0350) 2020; 6
Singh (10.1016/j.asej.2025.103720_br0110) 2022; 16
Yüzbaşı (10.1016/j.asej.2025.103720_br0170) 2017; 74
Sadri (10.1016/j.asej.2025.103720_br0320) 2024; 83
Izadi (10.1016/j.asej.2025.103720_br0430) 2021; 13
Doha (10.1016/j.asej.2025.103720_br0140) 2017; 69
Izadi (10.1016/j.asej.2025.103720_br0260) 2022; 16
Ahmed (10.1016/j.asej.2025.103720_br0250) 2019; 16
Agarwal (10.1016/j.asej.2025.103720_br0420) 2020; 2020
Niknam (10.1016/j.asej.2025.103720_br0200) 2022; 10
Gao (10.1016/j.asej.2025.103720_br0070) 2007; 187
Ahmed (10.1016/j.asej.2025.103720_br0340) 2025; 2025
Moumen (10.1016/j.asej.2025.103720_br0440) 2023; 11
Xu (10.1016/j.asej.2025.103720_br0310) 2022; 30
Rektorys (10.1016/j.asej.2025.103720_br0370) 1982
Saadatmandi (10.1016/j.asej.2025.103720_br0080) 2010; 26
Sadri (10.1016/j.asej.2025.103720_br0300) 2025; 198
Goldstein (10.1016/j.asej.2025.103720_br0010) 1951; 4
Abdelkawy (10.1016/j.asej.2025.103720_br0180) 2024; 2024
Doha (10.1016/j.asej.2025.103720_br0160) 2019; 16
Mohanty (10.1016/j.asej.2025.103720_br0060) 2005; 165
Kırlı (10.1016/j.asej.2025.103720_br0220) 2023; 39
Doha (10.1016/j.asej.2025.103720_br0150) 2019; 78
Mittal (10.1016/j.asej.2025.103720_br0100) 2014; 2014
Pandit (10.1016/j.asej.2025.103720_br0130) 2015; 187
Hosseini (10.1016/j.asej.2025.103720_br0390) 2012; 43
Van Bockstal (10.1016/j.asej.2025.103720_br0270) 2023; 26
Bülbül (10.1016/j.asej.2025.103720_br0090) 2011; 24
Rostamy (10.1016/j.asej.2025.103720_br0190) 2017; 132
Devi (10.1016/j.asej.2025.103720_br0210) 2020; 367
Rothe (10.1016/j.asej.2025.103720_br0360) 1930; 102
Ebadi (10.1016/j.asej.2025.103720_br0240) 2024; 61
Stewart (10.1016/j.asej.2025.103720_br0460) 2012
Mason (10.1016/j.asej.2025.103720_br0470) 2003
Protter (10.1016/j.asej.2025.103720_br0480) 1967
Okhovati (10.1016/j.asej.2025.103720_br0280) 2020; 52
Lock (10.1016/j.asej.2025.103720_br0030) 2007
References_xml – volume: 13
  start-page: 2370
  year: 2021
  ident: br0430
  article-title: Application of Vieta–Lucas series to solve a class of multi–pantograph delay differential equations with singularity
  publication-title: Symmetry
– volume: 187
  start-page: 1272
  year: 2007
  end-page: 1276
  ident: br0070
  article-title: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
  publication-title: Appl Math Comput
– volume: 102
  start-page: 650
  year: 1930
  end-page: 670
  ident: br0360
  article-title: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben
  publication-title: Math Ann
– volume: 16
  year: 2019
  ident: br0160
  article-title: Fully Legendre spectral Galerkin algorithm for solving linear one-dimensional telegraph type equation
  publication-title: Int J Comput Methods
– volume: 10
  start-page: 969
  year: 2022
  end-page: 985
  ident: br0200
  article-title: A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions
  publication-title: Comput Methods Differ Equ
– volume: 4
  start-page: 129
  year: 1951
  end-page: 156
  ident: br0010
  article-title: On diffusion by discontinuous movements, and on the telegraph equation
  publication-title: Q J Mech Appl Math
– volume: 15
  start-page: 137
  year: 2021
  end-page: 143
  ident: br0330
  article-title: The impact of the Chebyshev collocation method on solutions of the time-fractional Black-Scholes
  publication-title: Math Sci
– volume: 26
  start-page: 239
  year: 2010
  end-page: 252
  ident: br0080
  article-title: Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method
  publication-title: Numer Methods Partial Differ Equ
– year: 1982
  ident: br0370
  article-title: The method of discretization in time and partial differential equations
– volume: 154
  start-page: 415
  year: 2003
  end-page: 429
  ident: br0490
  article-title: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems
  publication-title: J Comput Appl Math
– volume: 16
  start-page: 102
  year: 2019
  ident: br0250
  article-title: Numerical solutions of Korteweg-de Vries and Korteweg–de Vries-Burger's equations in a Bernstein polynomial basis
  publication-title: Mediterr J Math
– volume: 26
  start-page: 2175
  year: 2023
  end-page: 2201
  ident: br0270
  article-title: On the Rothe–Galerkin spectral discretization for a class of variable fractional-order nonlinear wave equations
  publication-title: Fract Calc Appl Anal
– year: 1967
  ident: br0480
  article-title: Maximum principles in differential equations
– volume: 6
  start-page: 149
  year: 2020
  ident: br0350
  article-title: The impact of Chebyshev collocation method on solutions of fractional advection-diffusion equation
  publication-title: Int J Appl Comput Math
– volume: 367
  year: 2020
  ident: br0210
  article-title: Lagrange's operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions
  publication-title: Appl Math Comput
– volume: 324
  start-page: 321
  year: 2006
  end-page: 324
  ident: br0400
  article-title: On modified Chebyshev polynomials
  publication-title: J Math Anal Appl
– volume: 11
  start-page: 9
  year: 1998
  end-page: 28
  ident: br0040
  article-title: Singularly perturbed telegraph equations with applications in the random walk theory
  publication-title: J Appl Math Stoch Anal
– volume: 71
  start-page: 1009
  year: 2025
  end-page: 1033
  ident: br0230
  article-title: Numerical simulations of Rosenau–Burgers equations via Crank–Nicolson spectral Pell matrix algorithm
  publication-title: J Appl Math Comput
– volume: 43
  start-page: 1171
  year: 2012
  end-page: 1176
  ident: br0390
  article-title: New Rothe–wavelet method for solving telegraph equations
  publication-title: Int J Syst Sci
– year: 2003
  ident: br0470
  article-title: Chebyshev polynomials
– volume: 2020
  year: 2020
  ident: br0420
  article-title: Vieta–Lucas polynomials for solving a fractional-order mathematical physics model
  publication-title: Adv Differ Equ
– volume: 39
  start-page: 2060
  year: 2023
  end-page: 2072
  ident: br0220
  article-title: High order accurate method for the numerical solution of the second order linear hyperbolic telegraph equation
  publication-title: Numer Methods Partial Differ Equ
– volume: 8
  start-page: 708
  year: 2020
  end-page: 732
  ident: br0290
  article-title: Application of the Newton–Raphson method in a SDFEM for inviscid Burgers equation
  publication-title: Comput Methods Differ Equ
– volume: 52
  start-page: 322
  year: 2020
  end-page: 338
  ident: br0280
  article-title: A predictor–corrector scheme for conservation equations with discontinuous coefficients
  publication-title: J Math Fundam Sci
– volume: 10
  start-page: 14
  year: 2024
  ident: br0450
  article-title: Solving system of fractional differential equations via Vieta–Lucas operational matrix method
  publication-title: Int J Appl Comput Math
– volume: 16
  start-page: 208
  year: 2022
  end-page: 224
  ident: br0260
  article-title: Two-stage explicit schemes based numerical approximations of convection-diffusion equations
  publication-title: Int J Comput Sci Math
– volume: 40
  start-page: 223
  year: 2002
  end-page: 232
  ident: br0410
  article-title: Vieta polynomials
  publication-title: Fibonacci Q
– volume: 83
  year: 2024
  ident: br0320
  article-title: Bivariate Jacobi polynomials depending on four parameters and their effect on solutions of time-fractional Burgers' equations
  publication-title: J Comput Sci
– volume: 165
  start-page: 229
  year: 2005
  end-page: 236
  ident: br0060
  article-title: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
  publication-title: Appl Math Comput
– volume: 2025
  start-page: 90
  year: 2025
  ident: br0340
  article-title: An accurate approximation technique based on Schröder operational matrices for numerical treatments of time-fractional nonlinear generalized Kawahara equation
  publication-title: Bound Value Probl
– volume: 8
  start-page: 11015
  year: 2023
  end-page: 11036
  ident: br0120
  article-title: A novel B-spline collocation method for hyperbolic telegraph equation
  publication-title: AIMS Math
– volume: 61
  start-page: 4
  year: 2024
  ident: br0240
  article-title: A class of two stage multistep methods in solutions of time dependent parabolic PDEs
  publication-title: Calcolo
– volume: 16
  start-page: 389
  year: 2022
  end-page: 400
  ident: br0110
  article-title: Fourth-order cubic B-spline collocation method for hyperbolic telegraph equation
  publication-title: Math Sci
– volume: 74
  start-page: 3242
  year: 2017
  end-page: 3249
  ident: br0170
  article-title: A Galerkin-like scheme to solve two-dimensional telegraph equation using collocation points in initial and boundary conditions
  publication-title: Comput Math Appl
– volume: 24
  start-page: 1716
  year: 2011
  end-page: 1720
  ident: br0090
  article-title: A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation
  publication-title: Appl Math Lett
– volume: 78
  start-page: 889
  year: 2019
  end-page: 904
  ident: br0150
  article-title: Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations
  publication-title: Comput Math Appl
– volume: 11
  start-page: 32
  year: 2023
  ident: br0440
  article-title: A new projection method for a system of fractional Cauchy integro-differential equations via Vieta–Lucas polynomials
  publication-title: Mathematics
– volume: 69
  start-page: 1
  year: 2017
  end-page: 21
  ident: br0140
  article-title: Bernoulli–Laguerre collocation method for a class of hyperbolic telegraph-type equations
  publication-title: Rom Rep Phys
– volume: 30
  year: 2022
  ident: br0310
  article-title: Pricing European two-asset option using the spectral method with second-kind Chebyshev polynomials
  publication-title: Fractals
– volume: 187
  start-page: 83
  year: 2015
  end-page: 90
  ident: br0130
  article-title: Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients
  publication-title: Comput Phys Commun
– volume: 2024
  year: 2024
  ident: br0180
  article-title: Robust and accurate numerical framework for multi-dimensional fractional-order telegraph equations using Jacobi/Jacobi-Romanovski spectral technique
  publication-title: Bound Value Probl
– volume: 198
  year: 2025
  ident: br0300
  article-title: A combination of classical and shifted Jacobi polynomials for two-dimensional time-fractional diffusion-wave equations
  publication-title: Chaos Solitons Fractals
– year: 2007
  ident: br0030
  article-title: Modelling of telegraph equations in transmission lines
– volume: 2014
  year: 2014
  ident: br0100
  article-title: A collocation method for numerical solution of hyperbolic telegraph equation with Neumann boundary conditions
  publication-title: Int J Comput Math
– year: 2012
  ident: br0460
  article-title: Single variable essential calculus: early transcendentals
– volume: 190
  start-page: 757
  year: 2007
  end-page: 764
  ident: br0380
  article-title: A numerical algorithm for the solution of telegraph equations
  publication-title: Appl Math Comput
– volume: 9
  start-page: 789
  year: 1993
  end-page: 812
  ident: br0020
  article-title: Wave splitting of the telegraph equation in
  publication-title: Inverse Probl
– volume: 85
  start-page: 1273
  year: 1999
  end-page: 1282
  ident: br0050
  article-title: Digital signal propagation in dispersive media
  publication-title: J Appl Phys
– volume: 132
  start-page: 263
  year: 2017
  ident: br0190
  article-title: A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation
  publication-title: Eur Phys J Plus
– volume: 71
  start-page: 1009
  issue: 1
  year: 2025
  ident: 10.1016/j.asej.2025.103720_br0230
  article-title: Numerical simulations of Rosenau–Burgers equations via Crank–Nicolson spectral Pell matrix algorithm
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-024-02273-3
– volume: 2024
  issue: 1
  year: 2024
  ident: 10.1016/j.asej.2025.103720_br0180
  article-title: Robust and accurate numerical framework for multi-dimensional fractional-order telegraph equations using Jacobi/Jacobi-Romanovski spectral technique
  publication-title: Bound Value Probl
  doi: 10.1186/s13661-024-01944-1
– volume: 187
  start-page: 1272
  issue: 2
  year: 2007
  ident: 10.1016/j.asej.2025.103720_br0070
  article-title: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
  publication-title: Appl Math Comput
– volume: 26
  start-page: 2175
  issue: 5
  year: 2023
  ident: 10.1016/j.asej.2025.103720_br0270
  article-title: On the Rothe–Galerkin spectral discretization for a class of variable fractional-order nonlinear wave equations
  publication-title: Fract Calc Appl Anal
  doi: 10.1007/s13540-023-00184-x
– volume: 187
  start-page: 83
  year: 2015
  ident: 10.1016/j.asej.2025.103720_br0130
  article-title: Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2014.10.013
– volume: 78
  start-page: 889
  issue: 3
  year: 2019
  ident: 10.1016/j.asej.2025.103720_br0150
  article-title: Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2019.03.011
– volume: 8
  start-page: 708
  issue: 4
  year: 2020
  ident: 10.1016/j.asej.2025.103720_br0290
  article-title: Application of the Newton–Raphson method in a SDFEM for inviscid Burgers equation
  publication-title: Comput Methods Differ Equ
– volume: 39
  start-page: 2060
  issue: 3
  year: 2023
  ident: 10.1016/j.asej.2025.103720_br0220
  article-title: High order accurate method for the numerical solution of the second order linear hyperbolic telegraph equation
  publication-title: Numer Methods Partial Differ Equ
  doi: 10.1002/num.22957
– volume: 198
  year: 2025
  ident: 10.1016/j.asej.2025.103720_br0300
  article-title: A combination of classical and shifted Jacobi polynomials for two-dimensional time-fractional diffusion-wave equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2025.116569
– volume: 13
  start-page: 2370
  issue: 12
  year: 2021
  ident: 10.1016/j.asej.2025.103720_br0430
  article-title: Application of Vieta–Lucas series to solve a class of multi–pantograph delay differential equations with singularity
  publication-title: Symmetry
  doi: 10.3390/sym13122370
– volume: 61
  start-page: 4
  issue: 1
  year: 2024
  ident: 10.1016/j.asej.2025.103720_br0240
  article-title: A class of two stage multistep methods in solutions of time dependent parabolic PDEs
  publication-title: Calcolo
  doi: 10.1007/s10092-023-00557-x
– volume: 10
  start-page: 14
  year: 2024
  ident: 10.1016/j.asej.2025.103720_br0450
  article-title: Solving system of fractional differential equations via Vieta–Lucas operational matrix method
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-023-01656-7
– volume: 26
  start-page: 239
  issue: 1
  year: 2010
  ident: 10.1016/j.asej.2025.103720_br0080
  article-title: Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method
  publication-title: Numer Methods Partial Differ Equ
  doi: 10.1002/num.20442
– volume: 40
  start-page: 223
  year: 2002
  ident: 10.1016/j.asej.2025.103720_br0410
  article-title: Vieta polynomials
  publication-title: Fibonacci Q
  doi: 10.1080/00150517.2002.12428647
– year: 1967
  ident: 10.1016/j.asej.2025.103720_br0480
– volume: 154
  start-page: 415
  issue: 2
  year: 2003
  ident: 10.1016/j.asej.2025.103720_br0490
  article-title: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(02)00861-0
– volume: 24
  start-page: 1716
  issue: 10
  year: 2011
  ident: 10.1016/j.asej.2025.103720_br0090
  article-title: A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2011.04.026
– volume: 367
  year: 2020
  ident: 10.1016/j.asej.2025.103720_br0210
  article-title: Lagrange's operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions
  publication-title: Appl Math Comput
– volume: 83
  year: 2024
  ident: 10.1016/j.asej.2025.103720_br0320
  article-title: Bivariate Jacobi polynomials depending on four parameters and their effect on solutions of time-fractional Burgers' equations
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2024.102450
– volume: 11
  start-page: 9
  issue: 1
  year: 1998
  ident: 10.1016/j.asej.2025.103720_br0040
  article-title: Singularly perturbed telegraph equations with applications in the random walk theory
  publication-title: J Appl Math Stoch Anal
– volume: 16
  issue: 08
  year: 2019
  ident: 10.1016/j.asej.2025.103720_br0160
  article-title: Fully Legendre spectral Galerkin algorithm for solving linear one-dimensional telegraph type equation
  publication-title: Int J Comput Methods
  doi: 10.1142/S0219876218501189
– volume: 10
  start-page: 969
  issue: 4
  year: 2022
  ident: 10.1016/j.asej.2025.103720_br0200
  article-title: A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions
  publication-title: Comput Methods Differ Equ
– volume: 2020
  year: 2020
  ident: 10.1016/j.asej.2025.103720_br0420
  article-title: Vieta–Lucas polynomials for solving a fractional-order mathematical physics model
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-020-03085-y
– volume: 69
  start-page: 1
  issue: 119
  year: 2017
  ident: 10.1016/j.asej.2025.103720_br0140
  article-title: Bernoulli–Laguerre collocation method for a class of hyperbolic telegraph-type equations
  publication-title: Rom Rep Phys
– volume: 52
  start-page: 322
  issue: 3
  year: 2020
  ident: 10.1016/j.asej.2025.103720_br0280
  article-title: A predictor–corrector scheme for conservation equations with discontinuous coefficients
  publication-title: J Math Fundam Sci
  doi: 10.5614/j.math.fund.sci.2020.52.3.6
– volume: 4
  start-page: 129
  issue: 2
  year: 1951
  ident: 10.1016/j.asej.2025.103720_br0010
  article-title: On diffusion by discontinuous movements, and on the telegraph equation
  publication-title: Q J Mech Appl Math
  doi: 10.1093/qjmam/4.2.129
– volume: 132
  start-page: 263
  year: 2017
  ident: 10.1016/j.asej.2025.103720_br0190
  article-title: A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2017-11529-2
– year: 1982
  ident: 10.1016/j.asej.2025.103720_br0370
– volume: 102
  start-page: 650
  issue: 1
  year: 1930
  ident: 10.1016/j.asej.2025.103720_br0360
  article-title: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben
  publication-title: Math Ann
  doi: 10.1007/BF01782368
– volume: 190
  start-page: 757
  year: 2007
  ident: 10.1016/j.asej.2025.103720_br0380
  article-title: A numerical algorithm for the solution of telegraph equations
  publication-title: Appl Math Comput
– volume: 8
  start-page: 11015
  issue: 5
  year: 2023
  ident: 10.1016/j.asej.2025.103720_br0120
  article-title: A novel B-spline collocation method for hyperbolic telegraph equation
  publication-title: AIMS Math
  doi: 10.3934/math.2023558
– volume: 11
  start-page: 32
  issue: 1
  year: 2023
  ident: 10.1016/j.asej.2025.103720_br0440
  article-title: A new projection method for a system of fractional Cauchy integro-differential equations via Vieta–Lucas polynomials
  publication-title: Mathematics
  doi: 10.3390/math11010032
– volume: 165
  start-page: 229
  year: 2005
  ident: 10.1016/j.asej.2025.103720_br0060
  article-title: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients
  publication-title: Appl Math Comput
– volume: 16
  start-page: 389
  issue: 4
  year: 2022
  ident: 10.1016/j.asej.2025.103720_br0110
  article-title: Fourth-order cubic B-spline collocation method for hyperbolic telegraph equation
  publication-title: Math Sci
  doi: 10.1007/s40096-021-00428-y
– volume: 30
  issue: 5
  year: 2022
  ident: 10.1016/j.asej.2025.103720_br0310
  article-title: Pricing European two-asset option using the spectral method with second-kind Chebyshev polynomials
  publication-title: Fractals
  doi: 10.1142/S0218348X22401661
– volume: 16
  start-page: 208
  issue: 3
  year: 2022
  ident: 10.1016/j.asej.2025.103720_br0260
  article-title: Two-stage explicit schemes based numerical approximations of convection-diffusion equations
  publication-title: Int J Comput Sci Math
  doi: 10.1504/IJCSM.2022.128185
– volume: 2014
  year: 2014
  ident: 10.1016/j.asej.2025.103720_br0100
  article-title: A collocation method for numerical solution of hyperbolic telegraph equation with Neumann boundary conditions
  publication-title: Int J Comput Math
  doi: 10.1155/2014/526814
– volume: 324
  start-page: 321
  issue: 1
  year: 2006
  ident: 10.1016/j.asej.2025.103720_br0400
  article-title: On modified Chebyshev polynomials
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2005.12.020
– volume: 15
  start-page: 137
  issue: 2
  year: 2021
  ident: 10.1016/j.asej.2025.103720_br0330
  article-title: The impact of the Chebyshev collocation method on solutions of the time-fractional Black-Scholes
  publication-title: Math Sci
  doi: 10.1007/s40096-020-00357-2
– volume: 74
  start-page: 3242
  issue: 12
  year: 2017
  ident: 10.1016/j.asej.2025.103720_br0170
  article-title: A Galerkin-like scheme to solve two-dimensional telegraph equation using collocation points in initial and boundary conditions
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2017.08.020
– volume: 9
  start-page: 789
  year: 1993
  ident: 10.1016/j.asej.2025.103720_br0020
  article-title: Wave splitting of the telegraph equation in R3 and its application to inverse scattering
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/9/6/013
– year: 2003
  ident: 10.1016/j.asej.2025.103720_br0470
– volume: 16
  start-page: 102
  year: 2019
  ident: 10.1016/j.asej.2025.103720_br0250
  article-title: Numerical solutions of Korteweg-de Vries and Korteweg–de Vries-Burger's equations in a Bernstein polynomial basis
  publication-title: Mediterr J Math
  doi: 10.1007/s00009-019-1375-1
– volume: 43
  start-page: 1171
  year: 2012
  ident: 10.1016/j.asej.2025.103720_br0390
  article-title: New Rothe–wavelet method for solving telegraph equations
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2010.547626
– year: 2007
  ident: 10.1016/j.asej.2025.103720_br0030
– volume: 2025
  start-page: 90
  year: 2025
  ident: 10.1016/j.asej.2025.103720_br0340
  article-title: An accurate approximation technique based on Schröder operational matrices for numerical treatments of time-fractional nonlinear generalized Kawahara equation
  publication-title: Bound Value Probl
  doi: 10.1186/s13661-025-02085-9
– volume: 6
  start-page: 149
  issue: 5
  year: 2020
  ident: 10.1016/j.asej.2025.103720_br0350
  article-title: The impact of Chebyshev collocation method on solutions of fractional advection-diffusion equation
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-020-00903-5
– year: 2012
  ident: 10.1016/j.asej.2025.103720_br0460
– volume: 85
  start-page: 1273
  issue: 3
  year: 1999
  ident: 10.1016/j.asej.2025.103720_br0050
  article-title: Digital signal propagation in dispersive media
  publication-title: J Appl Phys
  doi: 10.1063/1.369258
SSID ssib044728585
Score 2.3541605
Snippet We construct a semi-discretized spectral approach for the second-order telegraphic-type equations with Dirichlet or Neumann boundary conditions. The successive...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103720
SubjectTerms Collocation nodes
Convergence analysis
Error estimation
Hyperbolic telegraphic equation
Modified Chebyshev polynomials
Time-horizontal Rothe's approach
Title A Rothe-Chebyshev collocation algorithm for the hyperbolic telegraphic type equations with variable coefficients
URI https://dx.doi.org/10.1016/j.asej.2025.103720
Volume 16
WOSCitedRecordID wos001566565100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2090-4479
  databaseCode: M~E
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044728585
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELAgFieckHblGiOs3DPlarRXugKwQ97C1yHWfTapuUbrZaceAH8KuZiWPXlIfYA5coShwn8XwZz0xmPhPyLq9yyZRMwkrk4KCkWRkueFmGYwXyl0KDB9GTuH7Iz8_5xYX4OBp9t7Uwu6u8afjtrdj8V1HDMRA2ls7eQdyuUzgA-yB02ILYYftPgp8Gn7CqKjypNcae9S5AWbcmNBfIq8t2u-zqtcsvrMET3S6QHjjo7CIUuI-xWf3lZkiV6-O1O3Cs-1Ir1eqeesISQTke22WDFNDra5_n0P7ydij8Kss-h2DWQtO1LF1AutVLeVmXBqOfpXdqWq9NVPYsmkV-pCJOh5I9p9DisRiHSWIWj3HaN_NRxjxdihWMfaHcr2reRBxWEUz0qwhvFe0b_8ypfTDXuQxEm9y2KrCPAvsoTB_3yP04TwWmB86-nVrdBI8d4y9UXKvQvsZQg2XSBQ8f5fd2jme7zB-TR8P406kByxMy0s1TspnSA6BQDyjUAYUCUCi0o3ugUA8oFIFCHVAoAoVaoFAfKM_I_P3p_OQsHNbfCFUs8i5kmeTgf2qRT2SsWKoTKSSXE1aC2V-C4SuZVvA9T5RQDEmSkowx-Pg5T7gCO_w5OWraRr8gNFFZLDBszRYiYXLBYebQqVRVFudZVcXHJLCDVWwMy0rxZwkdk9SOZzHYicb-KwAff7nu5Z3u8oo83IP4NTnqtjf6DXmgdt3yevu2B8cPIbqMCw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rothe-Chebyshev+collocation+algorithm+for+the+hyperbolic+telegraphic+type+equations+with+variable+coefficients&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=Izadi%2C+Mohammad&rft.au=Noeiaghdam%2C+Samad&rft.au=Ahmed%2C+H.M.&rft.date=2025-11-01&rft.issn=2090-4479&rft.volume=16&rft.issue=11&rft.spage=103720&rft_id=info:doi/10.1016%2Fj.asej.2025.103720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asej_2025_103720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon