On parse trees and Myhill–Nerode-type tools for handling graphs of bounded rank-width
Rank-width is a structural graph measure introduced by Oum and Seymour and aimed at better handling of graphs of bounded clique-width. We propose a formal mathematical framework and tools for easy design of dynamic algorithms running directly on a rank-decomposition of a graph (on contrary to the us...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 158; číslo 7; s. 851 - 867 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
06.04.2010
|
| Predmet: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Rank-width is a structural graph measure introduced by Oum and Seymour and aimed at better handling of graphs of bounded clique-width. We propose a formal mathematical framework and tools for easy design of dynamic algorithms running directly on a rank-decomposition of a graph (on contrary to the usual approach which translates a rank-decomposition into a clique-width expression, with a possible exponential jump in the parameter). The main advantage of this framework is a fine control over the runtime dependency on the rank-width parameter. Our new approach is linked to a work of Courcelle and Kanté
[7] who first proposed algebraic expressions with a so-called bilinear graph product as a better way of handling rank-decompositions, and to a parallel recent research of Bui-Xuan, Telle and Vatshelle. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2009.10.018 |