Monitoring of complex profiles based on deep stacked denoising autoencoders
Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring. [Display omitted] •DNN is developed for modelling complex profiles.•SDAE is effective for feature learning from the profile variables.•Three control charts based on SDAE are developed for profile monitoring.•The results indica...
Uloženo v:
| Vydáno v: | Computers & industrial engineering Ročník 143; s. 106402 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2020
|
| Témata: | |
| ISSN: | 0360-8352 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring.
[Display omitted]
•DNN is developed for modelling complex profiles.•SDAE is effective for feature learning from the profile variables.•Three control charts based on SDAE are developed for profile monitoring.•The results indicate that the SDAE-based method outperforms other typical methods.
Profile monitoring remains an interesting issue in statistical process control (SPC). Although there have been considerable researches devoted to analysis of profile data, the challenges concerning the monitoring of complex profiles (e.g., multivariate profiles, nonlinear profile, autocorrelated profiles) is yet to be addressed well. The high-dimension explanatory variables and autocorrelation generally affect effectiveness of those regular profile monitoring models and could cause many false alarms. Recent years have witnessed remarkable successes of deep learning techniques in visual and acoustic studying fields. In this paper, a deep learning model known as stacked denoising autoencoders (SDAE) is developed for complex profiles modeling and monitoring. Three control charts based on the SDAE model are further developed for abnormal detection of complex profiles. Comparison between the proposed method and other typical methods is implemented to illustrate effectiveness of the proposed method in five representative profiles. Finally, a real dataset is further utilized to demonstrate the effectiveness of the proposed method in agriculture fields. The experimental results illustrate the effectiveness of the SDAE-based method on complex profiles monitoring. This paper provides an inspiration for using deep learning techniques to monitor complex profiles. |
|---|---|
| AbstractList | Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring.
[Display omitted]
•DNN is developed for modelling complex profiles.•SDAE is effective for feature learning from the profile variables.•Three control charts based on SDAE are developed for profile monitoring.•The results indicate that the SDAE-based method outperforms other typical methods.
Profile monitoring remains an interesting issue in statistical process control (SPC). Although there have been considerable researches devoted to analysis of profile data, the challenges concerning the monitoring of complex profiles (e.g., multivariate profiles, nonlinear profile, autocorrelated profiles) is yet to be addressed well. The high-dimension explanatory variables and autocorrelation generally affect effectiveness of those regular profile monitoring models and could cause many false alarms. Recent years have witnessed remarkable successes of deep learning techniques in visual and acoustic studying fields. In this paper, a deep learning model known as stacked denoising autoencoders (SDAE) is developed for complex profiles modeling and monitoring. Three control charts based on the SDAE model are further developed for abnormal detection of complex profiles. Comparison between the proposed method and other typical methods is implemented to illustrate effectiveness of the proposed method in five representative profiles. Finally, a real dataset is further utilized to demonstrate the effectiveness of the proposed method in agriculture fields. The experimental results illustrate the effectiveness of the SDAE-based method on complex profiles monitoring. This paper provides an inspiration for using deep learning techniques to monitor complex profiles. |
| ArticleNumber | 106402 |
| Author | Wang, Shijin Chen, Shumei Yu, Jianbo |
| Author_xml | – sequence: 1 givenname: Shumei surname: Chen fullname: Chen, Shumei organization: School of Mechanical Engineering, Tongji University, 4800 CaoAn Road, 201804 Shanghai, PR China – sequence: 2 givenname: Jianbo surname: Yu fullname: Yu, Jianbo email: jbyu@tongji.edu.cn organization: School of Mechanical Engineering, Tongji University, 4800 CaoAn Road, 201804 Shanghai, PR China – sequence: 3 givenname: Shijin surname: Wang fullname: Wang, Shijin organization: School of Economics and Management, Tongji University, 4800 CaoAn Road, 201804 Shanghai, PR China |
| BookMark | eNp9kL1OAzEQhF0EiSTwAHR-gQtr-3I_okIRPxFBNFBbPnuNHC72yTYI3p47hYoi1Wpm91tpZkFmPngk5IrBigGrrvcr7XDFgU-6KoHPyBxEBUUj1vycLFLaA0C5btmcPD0H73KIzr_TYKkOh6HHbzrEYF2PiXYqoaHBU4M40JSV_hi1QR9cmhj1mQN6HQzGdEHOrOoTXv7NJXm7v3vdPBa7l4ft5nZXaN7WuWCihpoLW6JuqlbVmpmWCdOssexKDYqjHg0LGoUd19jYzkDV8NZYhth1Yknq418dQ0oRrdQuq-yCz1G5XjKQUw9yP_oopx7ksYeRZP_IIbqDij8nmZsjg2OkL4dRpvHEazQuos7SBHeC_gXQa3tP |
| CitedBy_id | crossref_primary_10_3390_math12162549 crossref_primary_10_1007_s00521_022_06962_7 crossref_primary_10_1016_j_cie_2021_107531 crossref_primary_10_1002_qre_3254 crossref_primary_10_1016_j_artmed_2023_102689 crossref_primary_10_1016_j_aei_2020_101136 crossref_primary_10_1016_j_artmed_2024_102826 crossref_primary_10_1016_j_eswa_2023_119660 crossref_primary_10_1007_s00500_023_09047_2 crossref_primary_10_1016_j_jmsy_2021_10_007 crossref_primary_10_1016_j_engappai_2023_106463 crossref_primary_10_1109_ACCESS_2021_3107482 crossref_primary_10_1016_j_cie_2025_111258 crossref_primary_10_1007_s00521_021_06575_6 crossref_primary_10_1016_j_cie_2025_110865 crossref_primary_10_1016_j_engappai_2025_111227 crossref_primary_10_1016_j_cie_2025_111407 |
| Cites_doi | 10.1002/qre.2392 10.1016/j.cie.2015.11.009 10.1080/03610920802468707 10.1002/qre.1502 10.1109/MSP.2012.2205597 10.1002/qre.1762 10.1109/JSTARS.2017.2672736 10.1007/s00170-012-4018-2 10.1504/IJMTM.2013.058901 10.1016/j.neucom.2015.07.130 10.1002/qre.1066 10.1002/qre.1405 10.1016/j.neucom.2013.03.047 10.1198/TECH.2010.08188 10.1002/qre.1531 10.1002/qre.1125 10.1080/03610926.2012.665554 10.1002/qre.1119 10.1198/004017004000000455 10.1109/TCYB.2016.2536638 10.1016/j.cie.2009.04.005 10.1080/00224065.2000.11980027 10.1198/004017007000000164 10.1080/07408170600728913 10.1016/j.cie.2009.12.003 10.1109/ISIE.2017.8001465 10.1080/03610918.2011.621570 10.1016/j.cie.2012.08.006 10.1007/s00170-009-2063-2 10.1002/qre.858 10.1080/00949655.2014.942864 10.1080/03610920701691714 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2020.106402 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cie_2020_106402 S0360835220301364 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN 9JO AAAKG AABNK AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c297t-1370723f4ec869a7c1d913d85e4b4c0a2ecd91f0ce3f9a7e8fbd06829df1eebb3 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525872600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:03:14 EST 2025 Tue Nov 18 21:16:44 EST 2025 Sat Nov 22 16:51:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Within-profile autocorrelation Multivariate profile Nonlinear profile Between-profile autocorrelation Stacked denoising autoencoders |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-1370723f4ec869a7c1d913d85e4b4c0a2ecd91f0ce3f9a7e8fbd06829df1eebb3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2020_106402 crossref_primary_10_1016_j_cie_2020_106402 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106402 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Zhao, Sun, Chang (b0065) 2015 Montgomery, Peck, Vinning (b0125) 2001 Mahmoud (b0115) 2012; 41 Koosha, Amiri (b0100) 2013; 64 Noorossana, Eyvazian, Vaghefi (b0135) 2010; 58 Zhang, He, Zhang, Woodall (b0250) 2014; 30 Zhang, Chen, Wang, Wang, Dai (b0245) 2017; 10 Chuang, Hung, Tsai, Yang (b0025) 2013; 64 Graves, Mohamed, Hinton (b0055) 2013 Noorossana, Vaghefi, Dorri (b0140) 2011; 27 Saghaei, Mehrjoo, Amiri (b0160) 2009; 45 Williams, Woodall, Birch (b0220) 2007; 23 Vesely, Ghoshal, Burget, Povey (b0205) 2013; 1 Soleimani, Noorossana (b0190) 2014; 43 Huwang, Wang, Yeh, Huang (b0070) 2016; 98 Wang, Chen, Shang (b0210) 2016 Wang, Sun, Zhao, Chen (b0215) 2017 Vaghefi, Tajbakhsh, Noorossana (b0200) 2009; 38 Amiri, Koosha, Azhdari, Wang (b0015) 2015; 85 Yosinski, J., Clune, J., Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. Kazemzadeh, Noorossana, Amiri (b0080) 2008; 37 Bengio (b0020) 2008; 25 Kang, Albin (b0075) 2000; 32 Du, Xiong, Wu, Zhang, Zhang, Tao (b0035) 2017; 47 Ciresan, Meier, Schmidhuber (b0030) 2012 Qiu, Zou (b0150) 2010 Amarasinghe, Marino, Manic (b0010) 2017; IEEE Krizhevsky, Sutskever, Hinton (b0105) 2012 Ghahyazi, Niaki, Soleimani (b0050) 2014; 30 Mahmoud, Woodall (b0120) 2004; 46 Garcia, Delakis (b0045) 2002; 2 Su, Xing, Kong (b0195) 2015 Yu, Zheng, Wang (b0235) 2019; 35 Eyvazian, Noorossana, Saghaei, Amiri (b0040) 2011; 27 Noorossana, Eyvazian, Amiri, Mahmoud (b0130) 2010; 26 Kuremoto, Kimura, Kobayashi, Obayashi (b0110) 2014; 137 Zou, Tsung, Wang (b0255) 2007; 49 Soleimani, Narvand, Raissi (b0180) 2013; 27 Shen, Liang (b0175) 2016 Zou, Zhang, Wang (b0260) 2006; 38 Sermanet, Lecun (b0170) 2011 Yu, D., Seltzer, M. L., Li, J., Huang, J. T., & Seide, F. (2013). Feature learning in deep neural networks - Studies on speech recognition tasks, pp. 1–9. Keramatpour, Taghi, Niaki, Amiri (b0090) 2014; 7 Qiu, Zou, Wang (b0145) 2010; 52 Zhan, Tao, Li (b0240) 2016; 187 Abdel-Salam, Birch, Jensen (b0005) 2013; 29 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Kingsbury (b0060) 2012; November Seltzer, Yu, Wang (b0165) 2013 Kazemzadeh, Noorossana, Amiri (b0085) 2010; 17 Khedmati, Niaki (b0095) 2016; 32 Soleimani, Noorossana, Amiri (b0185) 2009; 57 Rosa, Yu, Li (b0155) 2016 Vaghefi (10.1016/j.cie.2020.106402_b0200) 2009; 38 Ghahyazi (10.1016/j.cie.2020.106402_b0050) 2014; 30 Noorossana (10.1016/j.cie.2020.106402_b0130) 2010; 26 Montgomery (10.1016/j.cie.2020.106402_b0125) 2001 Bengio (10.1016/j.cie.2020.106402_b0020) 2008; 25 Ciresan (10.1016/j.cie.2020.106402_b0030) 2012 Hinton (10.1016/j.cie.2020.106402_b0060) 2012; November Chuang (10.1016/j.cie.2020.106402_b0025) 2013; 64 Mahmoud (10.1016/j.cie.2020.106402_b0120) 2004; 46 Huang (10.1016/j.cie.2020.106402_b0065) 2015 Keramatpour (10.1016/j.cie.2020.106402_b0090) 2014; 7 Soleimani (10.1016/j.cie.2020.106402_b0180) 2013; 27 Sermanet (10.1016/j.cie.2020.106402_b0170) 2011 Kang (10.1016/j.cie.2020.106402_b0075) 2000; 32 Zhang (10.1016/j.cie.2020.106402_b0250) 2014; 30 Amarasinghe (10.1016/j.cie.2020.106402_b0010) 2017; IEEE 10.1016/j.cie.2020.106402_b0230 Zhang (10.1016/j.cie.2020.106402_b0245) 2017; 10 Zhan (10.1016/j.cie.2020.106402_b0240) 2016; 187 Qiu (10.1016/j.cie.2020.106402_b0145) 2010; 52 Yu (10.1016/j.cie.2020.106402_b0235) 2019; 35 Wang (10.1016/j.cie.2020.106402_b0210) 2016 Kazemzadeh (10.1016/j.cie.2020.106402_b0080) 2008; 37 Mahmoud (10.1016/j.cie.2020.106402_b0115) 2012; 41 Amiri (10.1016/j.cie.2020.106402_b0015) 2015; 85 10.1016/j.cie.2020.106402_b0225 Su (10.1016/j.cie.2020.106402_b0195) 2015 Seltzer (10.1016/j.cie.2020.106402_b0165) 2013 Huwang (10.1016/j.cie.2020.106402_b0070) 2016; 98 Garcia (10.1016/j.cie.2020.106402_b0045) 2002; 2 Noorossana (10.1016/j.cie.2020.106402_b0135) 2010; 58 Eyvazian (10.1016/j.cie.2020.106402_b0040) 2011; 27 Abdel-Salam (10.1016/j.cie.2020.106402_b0005) 2013; 29 Koosha (10.1016/j.cie.2020.106402_b0100) 2013; 64 Soleimani (10.1016/j.cie.2020.106402_b0185) 2009; 57 Soleimani (10.1016/j.cie.2020.106402_b0190) 2014; 43 Kazemzadeh (10.1016/j.cie.2020.106402_b0085) 2010; 17 Rosa (10.1016/j.cie.2020.106402_b0155) 2016 Zou (10.1016/j.cie.2020.106402_b0255) 2007; 49 Qiu (10.1016/j.cie.2020.106402_b0150) 2010 Kuremoto (10.1016/j.cie.2020.106402_b0110) 2014; 137 Saghaei (10.1016/j.cie.2020.106402_b0160) 2009; 45 Williams (10.1016/j.cie.2020.106402_b0220) 2007; 23 Krizhevsky (10.1016/j.cie.2020.106402_b0105) 2012 Shen (10.1016/j.cie.2020.106402_b0175) 2016 Zou (10.1016/j.cie.2020.106402_b0260) 2006; 38 Khedmati (10.1016/j.cie.2020.106402_b0095) 2016; 32 Noorossana (10.1016/j.cie.2020.106402_b0140) 2011; 27 Wang (10.1016/j.cie.2020.106402_b0215) 2017 Du (10.1016/j.cie.2020.106402_b0035) 2017; 47 Graves (10.1016/j.cie.2020.106402_b0055) 2013 Vesely (10.1016/j.cie.2020.106402_b0205) 2013; 1 |
| References_xml | – volume: 58 start-page: 563 year: 2010 end-page: 570 ident: b0135 article-title: Phase II monitoring of multivariate simple linear profiles publication-title: Computers and Industrial Engineering – volume: 187 start-page: 19 year: 2016 end-page: 26 ident: b0240 article-title: Face detection using representation learning publication-title: Neurocomputing – start-page: 326 year: 2016 end-page: 335 ident: b0175 article-title: A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction publication-title: International conference on artificial neural networks – volume: 23 start-page: 925 year: 2007 end-page: 941 ident: b0220 article-title: Statistical monitoring of nonlinear product and process quality profiles publication-title: Quality and Reliability Engineering International – volume: 137 start-page: 47 year: 2014 end-page: 56 ident: b0110 article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines publication-title: Neurocomputing – volume: 47 start-page: 1017 year: 2017 end-page: 1027 ident: b0035 article-title: Stacked convolutional denoising auto-encoders for feature representation publication-title: IEEE Transactions on Cybernetics – volume: 25 start-page: 1163 year: 2008 end-page: 1306 ident: b0020 article-title: Stacked denoising autoencoders publication-title: Journal of Machine Learning Research – volume: November start-page: 82 year: 2012 end-page: 97 ident: b0060 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Processing Magazine – start-page: 002157 year: 2016 end-page: 002162 ident: b0155 article-title: Nonlinear system modeling with deep neural networks and autoencoders algorithm publication-title: 2016 IEEE international conference on systems, man, and cybernetics (SMC) – volume: 30 start-page: 487 year: 2014 end-page: 501 ident: b0250 article-title: Control charts for monitoring linear profiles with within-profile correlation using gaussian process models publication-title: Quality and Reliability Engineering International – start-page: 6645 year: 2013 end-page: 6649 ident: b0055 article-title: Speech recognition with deep recurrent neural networks publication-title: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP) – volume: 2 start-page: 44 year: 2002 end-page: 47 ident: b0045 article-title: A neural architecture for fast and robust face detection. Object recognition supported by user interaction for service robots publication-title: IEEE – start-page: 383 year: 2015 end-page: 390 ident: b0195 article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders publication-title: International conference on medical image computing and computer-assisted intervention – volume: 32 start-page: 443 year: 2016 end-page: 452 ident: b0095 article-title: Phase II monitoring of general linear profiles in the presence of between-profile autocorrelation publication-title: Quality and Reliability Engineering International – volume: 46 start-page: 380 year: 2004 end-page: 391 ident: b0120 article-title: Phase I analysis of linear profiles with calibration applications publication-title: Technometrics – reference: Yosinski, J., Clune, J., Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. – volume: 57 start-page: 1015 year: 2009 end-page: 1021 ident: b0185 article-title: Simple linear profiles monitoring in the presence of within profile autocorrelation publication-title: Computers & Industrial Engineering – volume: 38 start-page: 1834 year: 2009 end-page: 1851 ident: b0200 article-title: Phase II monitoring of nonlinear profiles publication-title: Communications in Statistics—Theory and Methods – volume: 52 start-page: 265 year: 2010 end-page: 277 ident: b0145 article-title: Nonparametric profile monitoring by mixed effects modeling publication-title: Technometrics – year: 2017 ident: b0215 article-title: Feature ensemble learning using stacked denoising autoencoders for induction motor fault diagnosis publication-title: 2017 prognostics and system health management conference, PHM-Harbin 2017 - proceedings – volume: IEEE start-page: 1483 year: 2017 end-page: 1488 ident: b0010 article-title: Deep neural networks for energy load forecasting publication-title: 2017 IEEE 26th international symposium on industrial electronics (ISIE) – volume: 26 start-page: 291 year: 2010 end-page: 303 ident: b0130 article-title: Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application publication-title: Quality and Reliability Engineering International – start-page: 29 year: 2016 end-page: 30 ident: b0210 article-title: Human activity recognition in a smart home environment with stacked denoising autoencoders publication-title: International conference on web-age information management – volume: 49 start-page: 395 year: 2007 end-page: 408 ident: b0255 article-title: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes publication-title: Technometrics – volume: 35 start-page: 204 year: 2019 end-page: 223 ident: b0235 article-title: Stacked denoising autoencoder-based feature learning for out-of-control source recognition in multivariate manufacturing process publication-title: Quality and Reliability Engineering International – reference: Yu, D., Seltzer, M. L., Li, J., Huang, J. T., & Seide, F. (2013). Feature learning in deep neural networks - Studies on speech recognition tasks, pp. 1–9. – volume: 64 start-page: 487 year: 2013 end-page: 495 ident: b0100 article-title: Generalized linear mixed model for monitoring autocorrelated logistic regression profiles publication-title: The International Journal of Advanced Manufacturing Technology – volume: 10 start-page: 3373 year: 2017 end-page: 3385 ident: b0245 article-title: Object-based land-cover supervised classification for very-high-resolution UAV images using stacked denoising autoencoders publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 7 start-page: 53 year: 2014 end-page: 59 ident: b0090 article-title: Phase-II monitoring of AR (1) auto correlated polynomial profiles publication-title: Journal of Optimization in Industrial Engineering – start-page: 3642 year: 2012 end-page: 3649 ident: b0030 article-title: Multi-column deep neural networks for image classification publication-title: Cvpr – volume: 41 start-page: 1816 year: 2012 end-page: 1833 ident: b0115 article-title: The performance of Phase II simple linear profile approaches when parameters are estimated publication-title: Communications in Statistics: Simulation and Computation – volume: 1 start-page: 3 year: 2013 end-page: 7 ident: b0205 article-title: Sequence-discriminative training of deep neural networks publication-title: Interspeech – start-page: 2809 year: 2011 end-page: 2813 ident: b0170 article-title: Traffic sign recognition with multi-scale convolutional networks publication-title: Proceedings of the international joint conference on neural networks – volume: 85 start-page: 2839 year: 2015 end-page: 2859 ident: b0015 article-title: Phase I monitoring of generalized linear model-based regression profiles publication-title: Journal of Statistical Computation and Simulation – volume: 37 start-page: 1671 year: 2008 end-page: 1686 ident: b0080 article-title: Phase I monitoring of polynomial profiles publication-title: Communications in Statistics-Theory and Methods – year: 2015 ident: b0065 article-title: Scalable gaussian process regression using deep neural networks publication-title: Twenty-fourth international joint conference on artificial intelligence – volume: 17 start-page: 12 year: 2010 end-page: 24 ident: b0085 article-title: Phase II monitoring of autocorrelated polynomial profiles in AR (1) processes publication-title: Scientia Iranica. Transaction E, Industrial Engineering – volume: 32 start-page: 418 year: 2000 end-page: 426 ident: b0075 article-title: On-line monitoring when the process yields a linear profile publication-title: Journal of Quality Technology – year: 2001 ident: b0125 article-title: Introduction to linear regression analysis – volume: 30 start-page: 1035 year: 2014 end-page: 1047 ident: b0050 article-title: On the monitoring of linear profiles in multistage processes publication-title: Quality and Reliability Engineering International – start-page: 1 year: 2012 end-page: 9 ident: b0105 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances In Neural Information Processing Systems – volume: 27 start-page: 281 year: 2011 end-page: 296 ident: b0040 article-title: Phase II monitoring of multivariate multiple linear regression profiles publication-title: Quality and Reliability Engineering International – volume: 27 start-page: 425 year: 2011 end-page: 436 ident: b0140 article-title: Effect of non-normality on the monitoring of simple linear profiles publication-title: Quality and Reliability Engineering International – volume: 64 start-page: 482 year: 2013 end-page: 491 ident: b0025 article-title: A framework for nonparametric profile monitoring publication-title: Computers and Industrial Engineering – volume: 27 start-page: 238 year: 2013 end-page: 250 ident: b0180 article-title: Online monitoring of auto correlated linear profiles via mixed model publication-title: International Journal of Manufacturing Technology and Management – volume: 98 start-page: 543 year: 2016 end-page: 553 ident: b0070 article-title: Phase II profile monitoring based on proportional odds models publication-title: Computers and Industrial Engineering – volume: 38 start-page: 1093 year: 2006 end-page: 1103 ident: b0260 article-title: A control chart based on a change-point model for monitoring linear profiles publication-title: IIE Transactions – volume: 45 start-page: 1252 year: 2009 ident: b0160 article-title: A CUSUM-based method for monitoring simple linear profiles publication-title: The International Journal of Advanced Manufacturing Technology – start-page: 7398 year: 2013 end-page: 7402 ident: b0165 article-title: An investigation of deep neural networks for noise robust speech recognition publication-title: 2013 IEEE international conference on acoustics, speech and signal processing – volume: 29 start-page: 555 year: 2013 end-page: 569 ident: b0005 article-title: A semiparametric mixed model approach to phase I profile monitoring publication-title: Quality and Reliability Engineering International – start-page: 1655 year: 2010 end-page: 1682 ident: b0150 article-title: Control chart for monitoring nonparametric profiles with arbitrary design publication-title: Statistica Sinica – volume: 43 start-page: 530 year: 2014 end-page: 546 ident: b0190 article-title: Monitoring multivariate simple linear profiles in the presence of between profile autocorrelation publication-title: Communications in Statistics - Theory and Methods – volume: 25 start-page: 1163 issue: 4 year: 2008 ident: 10.1016/j.cie.2020.106402_b0020 article-title: Stacked denoising autoencoders publication-title: Journal of Machine Learning Research – ident: 10.1016/j.cie.2020.106402_b0230 – volume: 35 start-page: 204 issue: 1 year: 2019 ident: 10.1016/j.cie.2020.106402_b0235 article-title: Stacked denoising autoencoder-based feature learning for out-of-control source recognition in multivariate manufacturing process publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.2392 – volume: 98 start-page: 543 year: 2016 ident: 10.1016/j.cie.2020.106402_b0070 article-title: Phase II profile monitoring based on proportional odds models publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2015.11.009 – volume: 38 start-page: 1834 issue: 11 year: 2009 ident: 10.1016/j.cie.2020.106402_b0200 article-title: Phase II monitoring of nonlinear profiles publication-title: Communications in Statistics—Theory and Methods doi: 10.1080/03610920802468707 – volume: 30 start-page: 487 issue: 4 year: 2014 ident: 10.1016/j.cie.2020.106402_b0250 article-title: Control charts for monitoring linear profiles with within-profile correlation using gaussian process models publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1502 – volume: November start-page: 82 year: 2012 ident: 10.1016/j.cie.2020.106402_b0060 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – volume: 32 start-page: 443 issue: 2 year: 2016 ident: 10.1016/j.cie.2020.106402_b0095 article-title: Phase II monitoring of general linear profiles in the presence of between-profile autocorrelation publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1762 – start-page: 29 year: 2016 ident: 10.1016/j.cie.2020.106402_b0210 article-title: Human activity recognition in a smart home environment with stacked denoising autoencoders – volume: 2 start-page: 44 issue: 11 year: 2002 ident: 10.1016/j.cie.2020.106402_b0045 article-title: A neural architecture for fast and robust face detection. Object recognition supported by user interaction for service robots publication-title: IEEE – year: 2015 ident: 10.1016/j.cie.2020.106402_b0065 article-title: Scalable gaussian process regression using deep neural networks – volume: 10 start-page: 3373 issue: 7 year: 2017 ident: 10.1016/j.cie.2020.106402_b0245 article-title: Object-based land-cover supervised classification for very-high-resolution UAV images using stacked denoising autoencoders publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2017.2672736 – volume: 64 start-page: 487 issue: 1–4 year: 2013 ident: 10.1016/j.cie.2020.106402_b0100 article-title: Generalized linear mixed model for monitoring autocorrelated logistic regression profiles publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-012-4018-2 – volume: 27 start-page: 238 issue: 4–6 year: 2013 ident: 10.1016/j.cie.2020.106402_b0180 article-title: Online monitoring of auto correlated linear profiles via mixed model publication-title: International Journal of Manufacturing Technology and Management doi: 10.1504/IJMTM.2013.058901 – volume: 187 start-page: 19 year: 2016 ident: 10.1016/j.cie.2020.106402_b0240 article-title: Face detection using representation learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.130 – start-page: 3642 year: 2012 ident: 10.1016/j.cie.2020.106402_b0030 article-title: Multi-column deep neural networks for image classification publication-title: Cvpr – volume: 17 start-page: 12 issue: 1 year: 2010 ident: 10.1016/j.cie.2020.106402_b0085 article-title: Phase II monitoring of autocorrelated polynomial profiles in AR (1) processes publication-title: Scientia Iranica. Transaction E, Industrial Engineering – volume: 26 start-page: 291 issue: 3 year: 2010 ident: 10.1016/j.cie.2020.106402_b0130 article-title: Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1066 – start-page: 1655 year: 2010 ident: 10.1016/j.cie.2020.106402_b0150 article-title: Control chart for monitoring nonparametric profiles with arbitrary design publication-title: Statistica Sinica – volume: 29 start-page: 555 issue: 4 year: 2013 ident: 10.1016/j.cie.2020.106402_b0005 article-title: A semiparametric mixed model approach to phase I profile monitoring publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1405 – volume: 137 start-page: 47 year: 2014 ident: 10.1016/j.cie.2020.106402_b0110 article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.047 – volume: 52 start-page: 265 issue: 3 year: 2010 ident: 10.1016/j.cie.2020.106402_b0145 article-title: Nonparametric profile monitoring by mixed effects modeling publication-title: Technometrics doi: 10.1198/TECH.2010.08188 – ident: 10.1016/j.cie.2020.106402_b0225 – volume: 30 start-page: 1035 issue: 7, SI year: 2014 ident: 10.1016/j.cie.2020.106402_b0050 article-title: On the monitoring of linear profiles in multistage processes publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1531 – volume: 1 start-page: 3 year: 2013 ident: 10.1016/j.cie.2020.106402_b0205 article-title: Sequence-discriminative training of deep neural networks publication-title: Interspeech – volume: 27 start-page: 425 issue: 4 year: 2011 ident: 10.1016/j.cie.2020.106402_b0140 article-title: Effect of non-normality on the monitoring of simple linear profiles publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1125 – volume: 43 start-page: 530 issue: 3 year: 2014 ident: 10.1016/j.cie.2020.106402_b0190 article-title: Monitoring multivariate simple linear profiles in the presence of between profile autocorrelation publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610926.2012.665554 – volume: 27 start-page: 281 issue: 3 year: 2011 ident: 10.1016/j.cie.2020.106402_b0040 article-title: Phase II monitoring of multivariate multiple linear regression profiles publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1119 – volume: 46 start-page: 380 issue: 4 year: 2004 ident: 10.1016/j.cie.2020.106402_b0120 article-title: Phase I analysis of linear profiles with calibration applications publication-title: Technometrics doi: 10.1198/004017004000000455 – start-page: 7398 year: 2013 ident: 10.1016/j.cie.2020.106402_b0165 article-title: An investigation of deep neural networks for noise robust speech recognition – volume: 47 start-page: 1017 issue: 4 year: 2017 ident: 10.1016/j.cie.2020.106402_b0035 article-title: Stacked convolutional denoising auto-encoders for feature representation publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2016.2536638 – start-page: 1 year: 2012 ident: 10.1016/j.cie.2020.106402_b0105 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances In Neural Information Processing Systems – volume: 57 start-page: 1015 issue: 3 year: 2009 ident: 10.1016/j.cie.2020.106402_b0185 article-title: Simple linear profiles monitoring in the presence of within profile autocorrelation publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2009.04.005 – year: 2017 ident: 10.1016/j.cie.2020.106402_b0215 article-title: Feature ensemble learning using stacked denoising autoencoders for induction motor fault diagnosis – volume: 32 start-page: 418 issue: 4 year: 2000 ident: 10.1016/j.cie.2020.106402_b0075 article-title: On-line monitoring when the process yields a linear profile publication-title: Journal of Quality Technology doi: 10.1080/00224065.2000.11980027 – volume: 7 start-page: 53 issue: 14 year: 2014 ident: 10.1016/j.cie.2020.106402_b0090 article-title: Phase-II monitoring of AR (1) auto correlated polynomial profiles publication-title: Journal of Optimization in Industrial Engineering – start-page: 6645 year: 2013 ident: 10.1016/j.cie.2020.106402_b0055 article-title: Speech recognition with deep recurrent neural networks – start-page: 002157 year: 2016 ident: 10.1016/j.cie.2020.106402_b0155 article-title: Nonlinear system modeling with deep neural networks and autoencoders algorithm – volume: 49 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.cie.2020.106402_b0255 article-title: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes publication-title: Technometrics doi: 10.1198/004017007000000164 – start-page: 326 year: 2016 ident: 10.1016/j.cie.2020.106402_b0175 article-title: A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction – volume: 38 start-page: 1093 issue: 12 year: 2006 ident: 10.1016/j.cie.2020.106402_b0260 article-title: A control chart based on a change-point model for monitoring linear profiles publication-title: IIE Transactions doi: 10.1080/07408170600728913 – volume: 58 start-page: 563 issue: 4 year: 2010 ident: 10.1016/j.cie.2020.106402_b0135 article-title: Phase II monitoring of multivariate simple linear profiles publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2009.12.003 – volume: IEEE start-page: 1483 year: 2017 ident: 10.1016/j.cie.2020.106402_b0010 article-title: Deep neural networks for energy load forecasting publication-title: 2017 IEEE 26th international symposium on industrial electronics (ISIE) doi: 10.1109/ISIE.2017.8001465 – volume: 41 start-page: 1816 issue: 10 year: 2012 ident: 10.1016/j.cie.2020.106402_b0115 article-title: The performance of Phase II simple linear profile approaches when parameters are estimated publication-title: Communications in Statistics: Simulation and Computation doi: 10.1080/03610918.2011.621570 – volume: 64 start-page: 482 issue: 1 year: 2013 ident: 10.1016/j.cie.2020.106402_b0025 article-title: A framework for nonparametric profile monitoring publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2012.08.006 – volume: 45 start-page: 1252 issue: 11–12 year: 2009 ident: 10.1016/j.cie.2020.106402_b0160 article-title: A CUSUM-based method for monitoring simple linear profiles publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-009-2063-2 – volume: 23 start-page: 925 issue: 8 year: 2007 ident: 10.1016/j.cie.2020.106402_b0220 article-title: Statistical monitoring of nonlinear product and process quality profiles publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.858 – start-page: 2809 year: 2011 ident: 10.1016/j.cie.2020.106402_b0170 article-title: Traffic sign recognition with multi-scale convolutional networks – volume: 85 start-page: 2839 issue: 14 year: 2015 ident: 10.1016/j.cie.2020.106402_b0015 article-title: Phase I monitoring of generalized linear model-based regression profiles publication-title: Journal of Statistical Computation and Simulation doi: 10.1080/00949655.2014.942864 – year: 2001 ident: 10.1016/j.cie.2020.106402_b0125 – start-page: 383 year: 2015 ident: 10.1016/j.cie.2020.106402_b0195 article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders – volume: 37 start-page: 1671 issue: 10 year: 2008 ident: 10.1016/j.cie.2020.106402_b0080 article-title: Phase I monitoring of polynomial profiles publication-title: Communications in Statistics-Theory and Methods doi: 10.1080/03610920701691714 |
| SSID | ssj0004591 |
| Score | 2.3847423 |
| Snippet | Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring.
[Display omitted]
•DNN is developed for modelling complex profiles.•SDAE is effective... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106402 |
| SubjectTerms | Between-profile autocorrelation Deep learning Multivariate profile Nonlinear profile Stacked denoising autoencoders Within-profile autocorrelation |
| Title | Monitoring of complex profiles based on deep stacked denoising autoencoders |
| URI | https://dx.doi.org/10.1016/j.cie.2020.106402 |
| Volume | 143 |
| WOSCitedRecordID | wos000525872600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004591 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbK49AeaAutCn3Ih55AWTlxEsdHhKiglVClgrS3yPFDZIWS1Wa32p_POHYeIEBw4BIlTjKJ8n0Zj8fjGYR-8lRp23MBeWMaxCIRQaGUCLKQGpYkVKdEtsUm2MVFNp3yv37tSdOWE2BVla3XfP6qUEMbgG2Xzr4A7l4oNMA-gA5bgB22zwLe_aULH83chozr9ZGvzd0c2W5L2SkCpfXcehLgN1ZwUNVl6zYQq2Vtk1sqHxrfpzHw5R-alizlUPFDDxkNh1gBp8z-XYPmK3vFsmopA3ws6sGP793V1-XM5wD3LoiIDAF__dIrElhT7o5ajelIMYZ2xjB6UGc798FsArpsYqVPhmvv5se-12_10YRdoNosBxG5FZE7ERtoK2IJB2W3dXx-Ov09SiPvSil2791Nd7eBf_fe42GDZWSEXH5AO370gI8d6h_RG13tovd-JIG9nm520btRmsk99GegBK4N9pTAHSVwSwlcV9hSAntK4J4SeEyJT-jq1-nlyVngi2gEMuJsGYSUERZRE2uZpVwwGSoeUpUlOi5iSUSkJTQYIjU1cFpnplAkzSKuTKh1UdDPaLOqK_0F4ZQZEQppCBdg50tegG1HY8Eyo40oVLSPSPelAAkXSWILndzkjyK0jw77W-YuvcpTF8fd58-9fejsvhyo9PhtBy95xlf0dmD4N7S5XKz0d7Qt_y_LZvHD8-gWjwWGGg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+complex+profiles+based+on+deep+stacked+denoising+autoencoders&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Chen%2C+Shumei&rft.au=Yu%2C+Jianbo&rft.au=Wang%2C+Shijin&rft.date=2020-05-01&rft.issn=0360-8352&rft.volume=143&rft.spage=106402&rft_id=info:doi/10.1016%2Fj.cie.2020.106402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2020_106402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |