Monitoring of complex profiles based on deep stacked denoising autoencoders

Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring. [Display omitted] •DNN is developed for modelling complex profiles.•SDAE is effective for feature learning from the profile variables.•Three control charts based on SDAE are developed for profile monitoring.•The results indica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & industrial engineering Ročník 143; s. 106402
Hlavní autoři: Chen, Shumei, Yu, Jianbo, Wang, Shijin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2020
Témata:
ISSN:0360-8352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring. [Display omitted] •DNN is developed for modelling complex profiles.•SDAE is effective for feature learning from the profile variables.•Three control charts based on SDAE are developed for profile monitoring.•The results indicate that the SDAE-based method outperforms other typical methods. Profile monitoring remains an interesting issue in statistical process control (SPC). Although there have been considerable researches devoted to analysis of profile data, the challenges concerning the monitoring of complex profiles (e.g., multivariate profiles, nonlinear profile, autocorrelated profiles) is yet to be addressed well. The high-dimension explanatory variables and autocorrelation generally affect effectiveness of those regular profile monitoring models and could cause many false alarms. Recent years have witnessed remarkable successes of deep learning techniques in visual and acoustic studying fields. In this paper, a deep learning model known as stacked denoising autoencoders (SDAE) is developed for complex profiles modeling and monitoring. Three control charts based on the SDAE model are further developed for abnormal detection of complex profiles. Comparison between the proposed method and other typical methods is implemented to illustrate effectiveness of the proposed method in five representative profiles. Finally, a real dataset is further utilized to demonstrate the effectiveness of the proposed method in agriculture fields. The experimental results illustrate the effectiveness of the SDAE-based method on complex profiles monitoring. This paper provides an inspiration for using deep learning techniques to monitor complex profiles.
AbstractList Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring. [Display omitted] •DNN is developed for modelling complex profiles.•SDAE is effective for feature learning from the profile variables.•Three control charts based on SDAE are developed for profile monitoring.•The results indicate that the SDAE-based method outperforms other typical methods. Profile monitoring remains an interesting issue in statistical process control (SPC). Although there have been considerable researches devoted to analysis of profile data, the challenges concerning the monitoring of complex profiles (e.g., multivariate profiles, nonlinear profile, autocorrelated profiles) is yet to be addressed well. The high-dimension explanatory variables and autocorrelation generally affect effectiveness of those regular profile monitoring models and could cause many false alarms. Recent years have witnessed remarkable successes of deep learning techniques in visual and acoustic studying fields. In this paper, a deep learning model known as stacked denoising autoencoders (SDAE) is developed for complex profiles modeling and monitoring. Three control charts based on the SDAE model are further developed for abnormal detection of complex profiles. Comparison between the proposed method and other typical methods is implemented to illustrate effectiveness of the proposed method in five representative profiles. Finally, a real dataset is further utilized to demonstrate the effectiveness of the proposed method in agriculture fields. The experimental results illustrate the effectiveness of the SDAE-based method on complex profiles monitoring. This paper provides an inspiration for using deep learning techniques to monitor complex profiles.
ArticleNumber 106402
Author Wang, Shijin
Chen, Shumei
Yu, Jianbo
Author_xml – sequence: 1
  givenname: Shumei
  surname: Chen
  fullname: Chen, Shumei
  organization: School of Mechanical Engineering, Tongji University, 4800 CaoAn Road, 201804 Shanghai, PR China
– sequence: 2
  givenname: Jianbo
  surname: Yu
  fullname: Yu, Jianbo
  email: jbyu@tongji.edu.cn
  organization: School of Mechanical Engineering, Tongji University, 4800 CaoAn Road, 201804 Shanghai, PR China
– sequence: 3
  givenname: Shijin
  surname: Wang
  fullname: Wang, Shijin
  organization: School of Economics and Management, Tongji University, 4800 CaoAn Road, 201804 Shanghai, PR China
BookMark eNp9kL1OAzEQhF0EiSTwAHR-gQtr-3I_okIRPxFBNFBbPnuNHC72yTYI3p47hYoi1Wpm91tpZkFmPngk5IrBigGrrvcr7XDFgU-6KoHPyBxEBUUj1vycLFLaA0C5btmcPD0H73KIzr_TYKkOh6HHbzrEYF2PiXYqoaHBU4M40JSV_hi1QR9cmhj1mQN6HQzGdEHOrOoTXv7NJXm7v3vdPBa7l4ft5nZXaN7WuWCihpoLW6JuqlbVmpmWCdOssexKDYqjHg0LGoUd19jYzkDV8NZYhth1Yknq418dQ0oRrdQuq-yCz1G5XjKQUw9yP_oopx7ksYeRZP_IIbqDij8nmZsjg2OkL4dRpvHEazQuos7SBHeC_gXQa3tP
CitedBy_id crossref_primary_10_3390_math12162549
crossref_primary_10_1007_s00521_022_06962_7
crossref_primary_10_1016_j_cie_2021_107531
crossref_primary_10_1002_qre_3254
crossref_primary_10_1016_j_artmed_2023_102689
crossref_primary_10_1016_j_aei_2020_101136
crossref_primary_10_1016_j_artmed_2024_102826
crossref_primary_10_1016_j_eswa_2023_119660
crossref_primary_10_1007_s00500_023_09047_2
crossref_primary_10_1016_j_jmsy_2021_10_007
crossref_primary_10_1016_j_engappai_2023_106463
crossref_primary_10_1109_ACCESS_2021_3107482
crossref_primary_10_1016_j_cie_2025_111258
crossref_primary_10_1007_s00521_021_06575_6
crossref_primary_10_1016_j_cie_2025_110865
crossref_primary_10_1016_j_engappai_2025_111227
crossref_primary_10_1016_j_cie_2025_111407
Cites_doi 10.1002/qre.2392
10.1016/j.cie.2015.11.009
10.1080/03610920802468707
10.1002/qre.1502
10.1109/MSP.2012.2205597
10.1002/qre.1762
10.1109/JSTARS.2017.2672736
10.1007/s00170-012-4018-2
10.1504/IJMTM.2013.058901
10.1016/j.neucom.2015.07.130
10.1002/qre.1066
10.1002/qre.1405
10.1016/j.neucom.2013.03.047
10.1198/TECH.2010.08188
10.1002/qre.1531
10.1002/qre.1125
10.1080/03610926.2012.665554
10.1002/qre.1119
10.1198/004017004000000455
10.1109/TCYB.2016.2536638
10.1016/j.cie.2009.04.005
10.1080/00224065.2000.11980027
10.1198/004017007000000164
10.1080/07408170600728913
10.1016/j.cie.2009.12.003
10.1109/ISIE.2017.8001465
10.1080/03610918.2011.621570
10.1016/j.cie.2012.08.006
10.1007/s00170-009-2063-2
10.1002/qre.858
10.1080/00949655.2014.942864
10.1080/03610920701691714
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106402
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2020_106402
S0360835220301364
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
9JO
AAAKG
AABNK
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c297t-1370723f4ec869a7c1d913d85e4b4c0a2ecd91f0ce3f9a7e8fbd06829df1eebb3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525872600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:03:14 EST 2025
Tue Nov 18 21:16:44 EST 2025
Sat Nov 22 16:51:20 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Within-profile autocorrelation
Multivariate profile
Nonlinear profile
Between-profile autocorrelation
Stacked denoising autoencoders
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-1370723f4ec869a7c1d913d85e4b4c0a2ecd91f0ce3f9a7e8fbd06829df1eebb3
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2020_106402
crossref_primary_10_1016_j_cie_2020_106402
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106402
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Zhao, Sun, Chang (b0065) 2015
Montgomery, Peck, Vinning (b0125) 2001
Mahmoud (b0115) 2012; 41
Koosha, Amiri (b0100) 2013; 64
Noorossana, Eyvazian, Vaghefi (b0135) 2010; 58
Zhang, He, Zhang, Woodall (b0250) 2014; 30
Zhang, Chen, Wang, Wang, Dai (b0245) 2017; 10
Chuang, Hung, Tsai, Yang (b0025) 2013; 64
Graves, Mohamed, Hinton (b0055) 2013
Noorossana, Vaghefi, Dorri (b0140) 2011; 27
Saghaei, Mehrjoo, Amiri (b0160) 2009; 45
Williams, Woodall, Birch (b0220) 2007; 23
Vesely, Ghoshal, Burget, Povey (b0205) 2013; 1
Soleimani, Noorossana (b0190) 2014; 43
Huwang, Wang, Yeh, Huang (b0070) 2016; 98
Wang, Chen, Shang (b0210) 2016
Wang, Sun, Zhao, Chen (b0215) 2017
Vaghefi, Tajbakhsh, Noorossana (b0200) 2009; 38
Amiri, Koosha, Azhdari, Wang (b0015) 2015; 85
Yosinski, J., Clune, J., Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.
Kazemzadeh, Noorossana, Amiri (b0080) 2008; 37
Bengio (b0020) 2008; 25
Kang, Albin (b0075) 2000; 32
Du, Xiong, Wu, Zhang, Zhang, Tao (b0035) 2017; 47
Ciresan, Meier, Schmidhuber (b0030) 2012
Qiu, Zou (b0150) 2010
Amarasinghe, Marino, Manic (b0010) 2017; IEEE
Krizhevsky, Sutskever, Hinton (b0105) 2012
Ghahyazi, Niaki, Soleimani (b0050) 2014; 30
Mahmoud, Woodall (b0120) 2004; 46
Garcia, Delakis (b0045) 2002; 2
Su, Xing, Kong (b0195) 2015
Yu, Zheng, Wang (b0235) 2019; 35
Eyvazian, Noorossana, Saghaei, Amiri (b0040) 2011; 27
Noorossana, Eyvazian, Amiri, Mahmoud (b0130) 2010; 26
Kuremoto, Kimura, Kobayashi, Obayashi (b0110) 2014; 137
Zou, Tsung, Wang (b0255) 2007; 49
Soleimani, Narvand, Raissi (b0180) 2013; 27
Shen, Liang (b0175) 2016
Zou, Zhang, Wang (b0260) 2006; 38
Sermanet, Lecun (b0170) 2011
Yu, D., Seltzer, M. L., Li, J., Huang, J. T., & Seide, F. (2013). Feature learning in deep neural networks - Studies on speech recognition tasks, pp. 1–9.
Keramatpour, Taghi, Niaki, Amiri (b0090) 2014; 7
Qiu, Zou, Wang (b0145) 2010; 52
Zhan, Tao, Li (b0240) 2016; 187
Abdel-Salam, Birch, Jensen (b0005) 2013; 29
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Kingsbury (b0060) 2012; November
Seltzer, Yu, Wang (b0165) 2013
Kazemzadeh, Noorossana, Amiri (b0085) 2010; 17
Khedmati, Niaki (b0095) 2016; 32
Soleimani, Noorossana, Amiri (b0185) 2009; 57
Rosa, Yu, Li (b0155) 2016
Vaghefi (10.1016/j.cie.2020.106402_b0200) 2009; 38
Ghahyazi (10.1016/j.cie.2020.106402_b0050) 2014; 30
Noorossana (10.1016/j.cie.2020.106402_b0130) 2010; 26
Montgomery (10.1016/j.cie.2020.106402_b0125) 2001
Bengio (10.1016/j.cie.2020.106402_b0020) 2008; 25
Ciresan (10.1016/j.cie.2020.106402_b0030) 2012
Hinton (10.1016/j.cie.2020.106402_b0060) 2012; November
Chuang (10.1016/j.cie.2020.106402_b0025) 2013; 64
Mahmoud (10.1016/j.cie.2020.106402_b0120) 2004; 46
Huang (10.1016/j.cie.2020.106402_b0065) 2015
Keramatpour (10.1016/j.cie.2020.106402_b0090) 2014; 7
Soleimani (10.1016/j.cie.2020.106402_b0180) 2013; 27
Sermanet (10.1016/j.cie.2020.106402_b0170) 2011
Kang (10.1016/j.cie.2020.106402_b0075) 2000; 32
Zhang (10.1016/j.cie.2020.106402_b0250) 2014; 30
Amarasinghe (10.1016/j.cie.2020.106402_b0010) 2017; IEEE
10.1016/j.cie.2020.106402_b0230
Zhang (10.1016/j.cie.2020.106402_b0245) 2017; 10
Zhan (10.1016/j.cie.2020.106402_b0240) 2016; 187
Qiu (10.1016/j.cie.2020.106402_b0145) 2010; 52
Yu (10.1016/j.cie.2020.106402_b0235) 2019; 35
Wang (10.1016/j.cie.2020.106402_b0210) 2016
Kazemzadeh (10.1016/j.cie.2020.106402_b0080) 2008; 37
Mahmoud (10.1016/j.cie.2020.106402_b0115) 2012; 41
Amiri (10.1016/j.cie.2020.106402_b0015) 2015; 85
10.1016/j.cie.2020.106402_b0225
Su (10.1016/j.cie.2020.106402_b0195) 2015
Seltzer (10.1016/j.cie.2020.106402_b0165) 2013
Huwang (10.1016/j.cie.2020.106402_b0070) 2016; 98
Garcia (10.1016/j.cie.2020.106402_b0045) 2002; 2
Noorossana (10.1016/j.cie.2020.106402_b0135) 2010; 58
Eyvazian (10.1016/j.cie.2020.106402_b0040) 2011; 27
Abdel-Salam (10.1016/j.cie.2020.106402_b0005) 2013; 29
Koosha (10.1016/j.cie.2020.106402_b0100) 2013; 64
Soleimani (10.1016/j.cie.2020.106402_b0185) 2009; 57
Soleimani (10.1016/j.cie.2020.106402_b0190) 2014; 43
Kazemzadeh (10.1016/j.cie.2020.106402_b0085) 2010; 17
Rosa (10.1016/j.cie.2020.106402_b0155) 2016
Zou (10.1016/j.cie.2020.106402_b0255) 2007; 49
Qiu (10.1016/j.cie.2020.106402_b0150) 2010
Kuremoto (10.1016/j.cie.2020.106402_b0110) 2014; 137
Saghaei (10.1016/j.cie.2020.106402_b0160) 2009; 45
Williams (10.1016/j.cie.2020.106402_b0220) 2007; 23
Krizhevsky (10.1016/j.cie.2020.106402_b0105) 2012
Shen (10.1016/j.cie.2020.106402_b0175) 2016
Zou (10.1016/j.cie.2020.106402_b0260) 2006; 38
Khedmati (10.1016/j.cie.2020.106402_b0095) 2016; 32
Noorossana (10.1016/j.cie.2020.106402_b0140) 2011; 27
Wang (10.1016/j.cie.2020.106402_b0215) 2017
Du (10.1016/j.cie.2020.106402_b0035) 2017; 47
Graves (10.1016/j.cie.2020.106402_b0055) 2013
Vesely (10.1016/j.cie.2020.106402_b0205) 2013; 1
References_xml – volume: 58
  start-page: 563
  year: 2010
  end-page: 570
  ident: b0135
  article-title: Phase II monitoring of multivariate simple linear profiles
  publication-title: Computers and Industrial Engineering
– volume: 187
  start-page: 19
  year: 2016
  end-page: 26
  ident: b0240
  article-title: Face detection using representation learning
  publication-title: Neurocomputing
– start-page: 326
  year: 2016
  end-page: 335
  ident: b0175
  article-title: A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction
  publication-title: International conference on artificial neural networks
– volume: 23
  start-page: 925
  year: 2007
  end-page: 941
  ident: b0220
  article-title: Statistical monitoring of nonlinear product and process quality profiles
  publication-title: Quality and Reliability Engineering International
– volume: 137
  start-page: 47
  year: 2014
  end-page: 56
  ident: b0110
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
– volume: 47
  start-page: 1017
  year: 2017
  end-page: 1027
  ident: b0035
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Transactions on Cybernetics
– volume: 25
  start-page: 1163
  year: 2008
  end-page: 1306
  ident: b0020
  article-title: Stacked denoising autoencoders
  publication-title: Journal of Machine Learning Research
– volume: November
  start-page: 82
  year: 2012
  end-page: 97
  ident: b0060
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Processing Magazine
– start-page: 002157
  year: 2016
  end-page: 002162
  ident: b0155
  article-title: Nonlinear system modeling with deep neural networks and autoencoders algorithm
  publication-title: 2016 IEEE international conference on systems, man, and cybernetics (SMC)
– volume: 30
  start-page: 487
  year: 2014
  end-page: 501
  ident: b0250
  article-title: Control charts for monitoring linear profiles with within-profile correlation using gaussian process models
  publication-title: Quality and Reliability Engineering International
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: b0055
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 2
  start-page: 44
  year: 2002
  end-page: 47
  ident: b0045
  article-title: A neural architecture for fast and robust face detection. Object recognition supported by user interaction for service robots
  publication-title: IEEE
– start-page: 383
  year: 2015
  end-page: 390
  ident: b0195
  article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 32
  start-page: 443
  year: 2016
  end-page: 452
  ident: b0095
  article-title: Phase II monitoring of general linear profiles in the presence of between-profile autocorrelation
  publication-title: Quality and Reliability Engineering International
– volume: 46
  start-page: 380
  year: 2004
  end-page: 391
  ident: b0120
  article-title: Phase I analysis of linear profiles with calibration applications
  publication-title: Technometrics
– reference: Yosinski, J., Clune, J., Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.
– volume: 57
  start-page: 1015
  year: 2009
  end-page: 1021
  ident: b0185
  article-title: Simple linear profiles monitoring in the presence of within profile autocorrelation
  publication-title: Computers & Industrial Engineering
– volume: 38
  start-page: 1834
  year: 2009
  end-page: 1851
  ident: b0200
  article-title: Phase II monitoring of nonlinear profiles
  publication-title: Communications in Statistics—Theory and Methods
– volume: 52
  start-page: 265
  year: 2010
  end-page: 277
  ident: b0145
  article-title: Nonparametric profile monitoring by mixed effects modeling
  publication-title: Technometrics
– year: 2017
  ident: b0215
  article-title: Feature ensemble learning using stacked denoising autoencoders for induction motor fault diagnosis
  publication-title: 2017 prognostics and system health management conference, PHM-Harbin 2017 - proceedings
– volume: IEEE
  start-page: 1483
  year: 2017
  end-page: 1488
  ident: b0010
  article-title: Deep neural networks for energy load forecasting
  publication-title: 2017 IEEE 26th international symposium on industrial electronics (ISIE)
– volume: 26
  start-page: 291
  year: 2010
  end-page: 303
  ident: b0130
  article-title: Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application
  publication-title: Quality and Reliability Engineering International
– start-page: 29
  year: 2016
  end-page: 30
  ident: b0210
  article-title: Human activity recognition in a smart home environment with stacked denoising autoencoders
  publication-title: International conference on web-age information management
– volume: 49
  start-page: 395
  year: 2007
  end-page: 408
  ident: b0255
  article-title: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes
  publication-title: Technometrics
– volume: 35
  start-page: 204
  year: 2019
  end-page: 223
  ident: b0235
  article-title: Stacked denoising autoencoder-based feature learning for out-of-control source recognition in multivariate manufacturing process
  publication-title: Quality and Reliability Engineering International
– reference: Yu, D., Seltzer, M. L., Li, J., Huang, J. T., & Seide, F. (2013). Feature learning in deep neural networks - Studies on speech recognition tasks, pp. 1–9.
– volume: 64
  start-page: 487
  year: 2013
  end-page: 495
  ident: b0100
  article-title: Generalized linear mixed model for monitoring autocorrelated logistic regression profiles
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 10
  start-page: 3373
  year: 2017
  end-page: 3385
  ident: b0245
  article-title: Object-based land-cover supervised classification for very-high-resolution UAV images using stacked denoising autoencoders
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 7
  start-page: 53
  year: 2014
  end-page: 59
  ident: b0090
  article-title: Phase-II monitoring of AR (1) auto correlated polynomial profiles
  publication-title: Journal of Optimization in Industrial Engineering
– start-page: 3642
  year: 2012
  end-page: 3649
  ident: b0030
  article-title: Multi-column deep neural networks for image classification
  publication-title: Cvpr
– volume: 41
  start-page: 1816
  year: 2012
  end-page: 1833
  ident: b0115
  article-title: The performance of Phase II simple linear profile approaches when parameters are estimated
  publication-title: Communications in Statistics: Simulation and Computation
– volume: 1
  start-page: 3
  year: 2013
  end-page: 7
  ident: b0205
  article-title: Sequence-discriminative training of deep neural networks
  publication-title: Interspeech
– start-page: 2809
  year: 2011
  end-page: 2813
  ident: b0170
  article-title: Traffic sign recognition with multi-scale convolutional networks
  publication-title: Proceedings of the international joint conference on neural networks
– volume: 85
  start-page: 2839
  year: 2015
  end-page: 2859
  ident: b0015
  article-title: Phase I monitoring of generalized linear model-based regression profiles
  publication-title: Journal of Statistical Computation and Simulation
– volume: 37
  start-page: 1671
  year: 2008
  end-page: 1686
  ident: b0080
  article-title: Phase I monitoring of polynomial profiles
  publication-title: Communications in Statistics-Theory and Methods
– year: 2015
  ident: b0065
  article-title: Scalable gaussian process regression using deep neural networks
  publication-title: Twenty-fourth international joint conference on artificial intelligence
– volume: 17
  start-page: 12
  year: 2010
  end-page: 24
  ident: b0085
  article-title: Phase II monitoring of autocorrelated polynomial profiles in AR (1) processes
  publication-title: Scientia Iranica. Transaction E, Industrial Engineering
– volume: 32
  start-page: 418
  year: 2000
  end-page: 426
  ident: b0075
  article-title: On-line monitoring when the process yields a linear profile
  publication-title: Journal of Quality Technology
– year: 2001
  ident: b0125
  article-title: Introduction to linear regression analysis
– volume: 30
  start-page: 1035
  year: 2014
  end-page: 1047
  ident: b0050
  article-title: On the monitoring of linear profiles in multistage processes
  publication-title: Quality and Reliability Engineering International
– start-page: 1
  year: 2012
  end-page: 9
  ident: b0105
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances In Neural Information Processing Systems
– volume: 27
  start-page: 281
  year: 2011
  end-page: 296
  ident: b0040
  article-title: Phase II monitoring of multivariate multiple linear regression profiles
  publication-title: Quality and Reliability Engineering International
– volume: 27
  start-page: 425
  year: 2011
  end-page: 436
  ident: b0140
  article-title: Effect of non-normality on the monitoring of simple linear profiles
  publication-title: Quality and Reliability Engineering International
– volume: 64
  start-page: 482
  year: 2013
  end-page: 491
  ident: b0025
  article-title: A framework for nonparametric profile monitoring
  publication-title: Computers and Industrial Engineering
– volume: 27
  start-page: 238
  year: 2013
  end-page: 250
  ident: b0180
  article-title: Online monitoring of auto correlated linear profiles via mixed model
  publication-title: International Journal of Manufacturing Technology and Management
– volume: 98
  start-page: 543
  year: 2016
  end-page: 553
  ident: b0070
  article-title: Phase II profile monitoring based on proportional odds models
  publication-title: Computers and Industrial Engineering
– volume: 38
  start-page: 1093
  year: 2006
  end-page: 1103
  ident: b0260
  article-title: A control chart based on a change-point model for monitoring linear profiles
  publication-title: IIE Transactions
– volume: 45
  start-page: 1252
  year: 2009
  ident: b0160
  article-title: A CUSUM-based method for monitoring simple linear profiles
  publication-title: The International Journal of Advanced Manufacturing Technology
– start-page: 7398
  year: 2013
  end-page: 7402
  ident: b0165
  article-title: An investigation of deep neural networks for noise robust speech recognition
  publication-title: 2013 IEEE international conference on acoustics, speech and signal processing
– volume: 29
  start-page: 555
  year: 2013
  end-page: 569
  ident: b0005
  article-title: A semiparametric mixed model approach to phase I profile monitoring
  publication-title: Quality and Reliability Engineering International
– start-page: 1655
  year: 2010
  end-page: 1682
  ident: b0150
  article-title: Control chart for monitoring nonparametric profiles with arbitrary design
  publication-title: Statistica Sinica
– volume: 43
  start-page: 530
  year: 2014
  end-page: 546
  ident: b0190
  article-title: Monitoring multivariate simple linear profiles in the presence of between profile autocorrelation
  publication-title: Communications in Statistics - Theory and Methods
– volume: 25
  start-page: 1163
  issue: 4
  year: 2008
  ident: 10.1016/j.cie.2020.106402_b0020
  article-title: Stacked denoising autoencoders
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.cie.2020.106402_b0230
– volume: 35
  start-page: 204
  issue: 1
  year: 2019
  ident: 10.1016/j.cie.2020.106402_b0235
  article-title: Stacked denoising autoencoder-based feature learning for out-of-control source recognition in multivariate manufacturing process
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.2392
– volume: 98
  start-page: 543
  year: 2016
  ident: 10.1016/j.cie.2020.106402_b0070
  article-title: Phase II profile monitoring based on proportional odds models
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2015.11.009
– volume: 38
  start-page: 1834
  issue: 11
  year: 2009
  ident: 10.1016/j.cie.2020.106402_b0200
  article-title: Phase II monitoring of nonlinear profiles
  publication-title: Communications in Statistics—Theory and Methods
  doi: 10.1080/03610920802468707
– volume: 30
  start-page: 487
  issue: 4
  year: 2014
  ident: 10.1016/j.cie.2020.106402_b0250
  article-title: Control charts for monitoring linear profiles with within-profile correlation using gaussian process models
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1502
– volume: November
  start-page: 82
  year: 2012
  ident: 10.1016/j.cie.2020.106402_b0060
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 32
  start-page: 443
  issue: 2
  year: 2016
  ident: 10.1016/j.cie.2020.106402_b0095
  article-title: Phase II monitoring of general linear profiles in the presence of between-profile autocorrelation
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1762
– start-page: 29
  year: 2016
  ident: 10.1016/j.cie.2020.106402_b0210
  article-title: Human activity recognition in a smart home environment with stacked denoising autoencoders
– volume: 2
  start-page: 44
  issue: 11
  year: 2002
  ident: 10.1016/j.cie.2020.106402_b0045
  article-title: A neural architecture for fast and robust face detection. Object recognition supported by user interaction for service robots
  publication-title: IEEE
– year: 2015
  ident: 10.1016/j.cie.2020.106402_b0065
  article-title: Scalable gaussian process regression using deep neural networks
– volume: 10
  start-page: 3373
  issue: 7
  year: 2017
  ident: 10.1016/j.cie.2020.106402_b0245
  article-title: Object-based land-cover supervised classification for very-high-resolution UAV images using stacked denoising autoencoders
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2017.2672736
– volume: 64
  start-page: 487
  issue: 1–4
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0100
  article-title: Generalized linear mixed model for monitoring autocorrelated logistic regression profiles
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4018-2
– volume: 27
  start-page: 238
  issue: 4–6
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0180
  article-title: Online monitoring of auto correlated linear profiles via mixed model
  publication-title: International Journal of Manufacturing Technology and Management
  doi: 10.1504/IJMTM.2013.058901
– volume: 187
  start-page: 19
  year: 2016
  ident: 10.1016/j.cie.2020.106402_b0240
  article-title: Face detection using representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.130
– start-page: 3642
  year: 2012
  ident: 10.1016/j.cie.2020.106402_b0030
  article-title: Multi-column deep neural networks for image classification
  publication-title: Cvpr
– volume: 17
  start-page: 12
  issue: 1
  year: 2010
  ident: 10.1016/j.cie.2020.106402_b0085
  article-title: Phase II monitoring of autocorrelated polynomial profiles in AR (1) processes
  publication-title: Scientia Iranica. Transaction E, Industrial Engineering
– volume: 26
  start-page: 291
  issue: 3
  year: 2010
  ident: 10.1016/j.cie.2020.106402_b0130
  article-title: Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1066
– start-page: 1655
  year: 2010
  ident: 10.1016/j.cie.2020.106402_b0150
  article-title: Control chart for monitoring nonparametric profiles with arbitrary design
  publication-title: Statistica Sinica
– volume: 29
  start-page: 555
  issue: 4
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0005
  article-title: A semiparametric mixed model approach to phase I profile monitoring
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1405
– volume: 137
  start-page: 47
  year: 2014
  ident: 10.1016/j.cie.2020.106402_b0110
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.047
– volume: 52
  start-page: 265
  issue: 3
  year: 2010
  ident: 10.1016/j.cie.2020.106402_b0145
  article-title: Nonparametric profile monitoring by mixed effects modeling
  publication-title: Technometrics
  doi: 10.1198/TECH.2010.08188
– ident: 10.1016/j.cie.2020.106402_b0225
– volume: 30
  start-page: 1035
  issue: 7, SI
  year: 2014
  ident: 10.1016/j.cie.2020.106402_b0050
  article-title: On the monitoring of linear profiles in multistage processes
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1531
– volume: 1
  start-page: 3
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0205
  article-title: Sequence-discriminative training of deep neural networks
  publication-title: Interspeech
– volume: 27
  start-page: 425
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2020.106402_b0140
  article-title: Effect of non-normality on the monitoring of simple linear profiles
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1125
– volume: 43
  start-page: 530
  issue: 3
  year: 2014
  ident: 10.1016/j.cie.2020.106402_b0190
  article-title: Monitoring multivariate simple linear profiles in the presence of between profile autocorrelation
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610926.2012.665554
– volume: 27
  start-page: 281
  issue: 3
  year: 2011
  ident: 10.1016/j.cie.2020.106402_b0040
  article-title: Phase II monitoring of multivariate multiple linear regression profiles
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1119
– volume: 46
  start-page: 380
  issue: 4
  year: 2004
  ident: 10.1016/j.cie.2020.106402_b0120
  article-title: Phase I analysis of linear profiles with calibration applications
  publication-title: Technometrics
  doi: 10.1198/004017004000000455
– start-page: 7398
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0165
  article-title: An investigation of deep neural networks for noise robust speech recognition
– volume: 47
  start-page: 1017
  issue: 4
  year: 2017
  ident: 10.1016/j.cie.2020.106402_b0035
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2536638
– start-page: 1
  year: 2012
  ident: 10.1016/j.cie.2020.106402_b0105
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances In Neural Information Processing Systems
– volume: 57
  start-page: 1015
  issue: 3
  year: 2009
  ident: 10.1016/j.cie.2020.106402_b0185
  article-title: Simple linear profiles monitoring in the presence of within profile autocorrelation
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.04.005
– year: 2017
  ident: 10.1016/j.cie.2020.106402_b0215
  article-title: Feature ensemble learning using stacked denoising autoencoders for induction motor fault diagnosis
– volume: 32
  start-page: 418
  issue: 4
  year: 2000
  ident: 10.1016/j.cie.2020.106402_b0075
  article-title: On-line monitoring when the process yields a linear profile
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.2000.11980027
– volume: 7
  start-page: 53
  issue: 14
  year: 2014
  ident: 10.1016/j.cie.2020.106402_b0090
  article-title: Phase-II monitoring of AR (1) auto correlated polynomial profiles
  publication-title: Journal of Optimization in Industrial Engineering
– start-page: 6645
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0055
  article-title: Speech recognition with deep recurrent neural networks
– start-page: 002157
  year: 2016
  ident: 10.1016/j.cie.2020.106402_b0155
  article-title: Nonlinear system modeling with deep neural networks and autoencoders algorithm
– volume: 49
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.cie.2020.106402_b0255
  article-title: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes
  publication-title: Technometrics
  doi: 10.1198/004017007000000164
– start-page: 326
  year: 2016
  ident: 10.1016/j.cie.2020.106402_b0175
  article-title: A time series forecasting model based on deep learning integrated algorithm with stacked autoencoders and SVR for FX prediction
– volume: 38
  start-page: 1093
  issue: 12
  year: 2006
  ident: 10.1016/j.cie.2020.106402_b0260
  article-title: A control chart based on a change-point model for monitoring linear profiles
  publication-title: IIE Transactions
  doi: 10.1080/07408170600728913
– volume: 58
  start-page: 563
  issue: 4
  year: 2010
  ident: 10.1016/j.cie.2020.106402_b0135
  article-title: Phase II monitoring of multivariate simple linear profiles
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2009.12.003
– volume: IEEE
  start-page: 1483
  year: 2017
  ident: 10.1016/j.cie.2020.106402_b0010
  article-title: Deep neural networks for energy load forecasting
  publication-title: 2017 IEEE 26th international symposium on industrial electronics (ISIE)
  doi: 10.1109/ISIE.2017.8001465
– volume: 41
  start-page: 1816
  issue: 10
  year: 2012
  ident: 10.1016/j.cie.2020.106402_b0115
  article-title: The performance of Phase II simple linear profile approaches when parameters are estimated
  publication-title: Communications in Statistics: Simulation and Computation
  doi: 10.1080/03610918.2011.621570
– volume: 64
  start-page: 482
  issue: 1
  year: 2013
  ident: 10.1016/j.cie.2020.106402_b0025
  article-title: A framework for nonparametric profile monitoring
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2012.08.006
– volume: 45
  start-page: 1252
  issue: 11–12
  year: 2009
  ident: 10.1016/j.cie.2020.106402_b0160
  article-title: A CUSUM-based method for monitoring simple linear profiles
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-009-2063-2
– volume: 23
  start-page: 925
  issue: 8
  year: 2007
  ident: 10.1016/j.cie.2020.106402_b0220
  article-title: Statistical monitoring of nonlinear product and process quality profiles
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.858
– start-page: 2809
  year: 2011
  ident: 10.1016/j.cie.2020.106402_b0170
  article-title: Traffic sign recognition with multi-scale convolutional networks
– volume: 85
  start-page: 2839
  issue: 14
  year: 2015
  ident: 10.1016/j.cie.2020.106402_b0015
  article-title: Phase I monitoring of generalized linear model-based regression profiles
  publication-title: Journal of Statistical Computation and Simulation
  doi: 10.1080/00949655.2014.942864
– year: 2001
  ident: 10.1016/j.cie.2020.106402_b0125
– start-page: 383
  year: 2015
  ident: 10.1016/j.cie.2020.106402_b0195
  article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
– volume: 37
  start-page: 1671
  issue: 10
  year: 2008
  ident: 10.1016/j.cie.2020.106402_b0080
  article-title: Phase I monitoring of polynomial profiles
  publication-title: Communications in Statistics-Theory and Methods
  doi: 10.1080/03610920701691714
SSID ssj0004591
Score 2.3847423
Snippet Fig. 4. Schematic diagram of the SDAE-based model for profile monitoring. [Display omitted] •DNN is developed for modelling complex profiles.•SDAE is effective...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106402
SubjectTerms Between-profile autocorrelation
Deep learning
Multivariate profile
Nonlinear profile
Stacked denoising autoencoders
Within-profile autocorrelation
Title Monitoring of complex profiles based on deep stacked denoising autoencoders
URI https://dx.doi.org/10.1016/j.cie.2020.106402
Volume 143
WOSCitedRecordID wos000525872600020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbK49AeaAutCn3Ih55AWTlxEsdHhKiglVClgrS3yPFDZIWS1Wa32p_POHYeIEBw4BIlTjKJ8n0Zj8fjGYR-8lRp23MBeWMaxCIRQaGUCLKQGpYkVKdEtsUm2MVFNp3yv37tSdOWE2BVla3XfP6qUEMbgG2Xzr4A7l4oNMA-gA5bgB22zwLe_aULH83chozr9ZGvzd0c2W5L2SkCpfXcehLgN1ZwUNVl6zYQq2Vtk1sqHxrfpzHw5R-alizlUPFDDxkNh1gBp8z-XYPmK3vFsmopA3ws6sGP793V1-XM5wD3LoiIDAF__dIrElhT7o5ajelIMYZ2xjB6UGc798FsArpsYqVPhmvv5se-12_10YRdoNosBxG5FZE7ERtoK2IJB2W3dXx-Ov09SiPvSil2791Nd7eBf_fe42GDZWSEXH5AO370gI8d6h_RG13tovd-JIG9nm520btRmsk99GegBK4N9pTAHSVwSwlcV9hSAntK4J4SeEyJT-jq1-nlyVngi2gEMuJsGYSUERZRE2uZpVwwGSoeUpUlOi5iSUSkJTQYIjU1cFpnplAkzSKuTKh1UdDPaLOqK_0F4ZQZEQppCBdg50tegG1HY8Eyo40oVLSPSPelAAkXSWILndzkjyK0jw77W-YuvcpTF8fd58-9fejsvhyo9PhtBy95xlf0dmD4N7S5XKz0d7Qt_y_LZvHD8-gWjwWGGg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+complex+profiles+based+on+deep+stacked+denoising+autoencoders&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Chen%2C+Shumei&rft.au=Yu%2C+Jianbo&rft.au=Wang%2C+Shijin&rft.date=2020-05-01&rft.issn=0360-8352&rft.volume=143&rft.spage=106402&rft_id=info:doi/10.1016%2Fj.cie.2020.106402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2020_106402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon