A multi-stage stochastic programming approach for supply chain risk mitigation via product substitution
•A case of pharmaceutical supply chains for livestock drug distribution is studied.•Partial product substitution is used for dealing with demand disruptions.•A multi-stage stochastic programming model is proposed to tackle the problem.•An improved progressive hedging algorithm is proposed to solve l...
Saved in:
| Published in: | Computers & industrial engineering Vol. 149; p. 106786 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2020
|
| Subjects: | |
| ISSN: | 0360-8352, 1879-0550 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A case of pharmaceutical supply chains for livestock drug distribution is studied.•Partial product substitution is used for dealing with demand disruptions.•A multi-stage stochastic programming model is proposed to tackle the problem.•An improved progressive hedging algorithm is proposed to solve large instances.•Results shows the applicability of the method for dealing with demand disruption.
Trends like globalization, shorter product life-cycles, and cost reduction strategies in the global business environment have exposed many supply chains to various risks. Disruptions are one of the supply chain risks that can interrupt product flow, delay customer deliveries, and reduce supply chain revenues considerably. Prior planning for disruptions could greatly alleviate these consequences. A method to cope with disruptions is to use product substitution in the case of a product shortage. In this research, the supply chain of a livestock-drug distribution company in Iran, facing demand disruptions, has been chosen as a case study. For this purpose, a multi-stage stochastic integer programming model is proposed and solved using a customized progressive hedging algorithm. Moreover, the effect of uncertainty on the supply chain performance is measured using the value of the stochastic solution (VSS) and the expected value of perfect information (EVPI) metrics. Based on the different instances of the problem solved, the VSS metric shows that modeling and solving the proposed stochastic model could enhance the company profit by about 3.27 percent on average. In addition, the EVPI metric demonstrates that planning and investing in proactive demand management could enhance the profit up to 9.42 percent. Finally, analyses indicate that when dealing with increased demand uncertainty levels, the importance of using the proposed method increases as the profitability of the company decreases. |
|---|---|
| AbstractList | •A case of pharmaceutical supply chains for livestock drug distribution is studied.•Partial product substitution is used for dealing with demand disruptions.•A multi-stage stochastic programming model is proposed to tackle the problem.•An improved progressive hedging algorithm is proposed to solve large instances.•Results shows the applicability of the method for dealing with demand disruption.
Trends like globalization, shorter product life-cycles, and cost reduction strategies in the global business environment have exposed many supply chains to various risks. Disruptions are one of the supply chain risks that can interrupt product flow, delay customer deliveries, and reduce supply chain revenues considerably. Prior planning for disruptions could greatly alleviate these consequences. A method to cope with disruptions is to use product substitution in the case of a product shortage. In this research, the supply chain of a livestock-drug distribution company in Iran, facing demand disruptions, has been chosen as a case study. For this purpose, a multi-stage stochastic integer programming model is proposed and solved using a customized progressive hedging algorithm. Moreover, the effect of uncertainty on the supply chain performance is measured using the value of the stochastic solution (VSS) and the expected value of perfect information (EVPI) metrics. Based on the different instances of the problem solved, the VSS metric shows that modeling and solving the proposed stochastic model could enhance the company profit by about 3.27 percent on average. In addition, the EVPI metric demonstrates that planning and investing in proactive demand management could enhance the profit up to 9.42 percent. Finally, analyses indicate that when dealing with increased demand uncertainty levels, the importance of using the proposed method increases as the profitability of the company decreases. |
| ArticleNumber | 106786 |
| Author | Zegordi, Seyed Hessameddin Ghorashi Khalilabadi, Seyed Mahdi Nikbakhsh, Ehsan |
| Author_xml | – sequence: 1 givenname: Seyed Mahdi surname: Ghorashi Khalilabadi fullname: Ghorashi Khalilabadi, Seyed Mahdi email: m.ghorashi@modares.ac.ir – sequence: 2 givenname: Seyed Hessameddin orcidid: 0000-0002-0844-4947 surname: Zegordi fullname: Zegordi, Seyed Hessameddin email: zegordi@modares.ac.ir – sequence: 3 givenname: Ehsan orcidid: 0000-0002-5872-9756 surname: Nikbakhsh fullname: Nikbakhsh, Ehsan email: nikbakhsh@modares.ac.ir |
| BookMark | eNp9kMtqwzAUREVJoUnaD-hOP-BUD9uy6SqEviDQTbsW17LkKPULSQ7k7ys3XXXR1WW4cwZmVmjRD71G6J6SDSU0fzhulNUbRtisc1HkV2hJC1EmJMvIAi0Jz0lS8IzdoJX3R0JImpV0iZot7qY22MQHaDT2YVAH8MEqPLqhcdB1tm8wjFGBOmAzOOyncWzPOPpsj531X7izwTYQ7NDjk4WZrCcVorGKSWGaH7fo2kDr9d3vXaPP56eP3Wuyf3952233iWKlCAllhQZu6oLVJWSCVxzqtGI1oabKykoVpgLCWKYFiKowPOVagTBMEZYyDSVfI3rJVW7w3mkjR2c7cGdJiZyXkkcZl5LzUvKyVGTEH0bZ8FMnOLDtv-TjhdSx0slqJ3209ErX1mkVZD3Yf-hva0GIgQ |
| CitedBy_id | crossref_primary_10_1080_21681015_2024_2400991 crossref_primary_10_2478_fcds_2023_0015 crossref_primary_10_1007_s10696_024_09562_w crossref_primary_10_3390_electronics12122552 crossref_primary_10_1080_23302674_2023_2258778 crossref_primary_10_1016_j_cie_2021_107914 crossref_primary_10_1080_00207543_2022_2128462 crossref_primary_10_1016_j_renene_2021_08_076 crossref_primary_10_3390_logistics8010032 crossref_primary_10_3390_su141811596 crossref_primary_10_1016_j_jii_2025_100843 crossref_primary_10_3390_math11183955 crossref_primary_10_33271_nvngu_2021_3_142 crossref_primary_10_1007_s11280_024_01280_5 crossref_primary_10_1007_s10479_024_05870_4 crossref_primary_10_1016_j_ins_2024_121854 crossref_primary_10_1002_mde_3990 |
| Cites_doi | 10.1016/j.cie.2016.09.004 10.1080/00207543.2019.1686189 10.1080/00207543.2019.1687954 10.1111/j.1937-5956.2004.tb00144.x 10.1007/s12667-015-0184-2 10.1111/j.1540-5915.2007.00151.x 10.1016/j.ejor.2016.11.041 10.1287/opre.49.5.646.10603 10.1080/00207540903055727 10.1287/trsc.1040.0097 10.1016/j.cie.2017.09.015 10.1080/00207543.2018.1504246 10.1016/j.trb.2010.09.005 10.1007/s10479-017-2499-y 10.1016/j.cie.2018.09.039 10.1016/j.cie.2018.10.039 10.1016/j.cie.2019.05.011 10.1016/j.bushor.2014.03.003 10.1016/j.cie.2017.09.043 10.1287/mnsc.29.3.352 10.1016/j.cie.2016.10.025 10.1016/j.fss.2017.03.019 10.1016/j.tre.2018.08.008 10.1016/j.cie.2017.04.032 10.1007/s11067-008-9062-y 10.1016/j.trb.2016.09.004 10.1016/j.cie.2018.06.016 10.1016/j.dss.2013.01.012 10.3390/su8070676 10.1016/j.cie.2018.05.026 10.1016/j.cnsns.2017.07.003 10.1016/j.apm.2017.03.031 10.1016/j.cie.2018.05.041 10.1016/j.tre.2018.01.015 10.1016/j.aei.2014.12.002 10.1007/s10287-010-0125-4 10.1109/HICSS.2006.380 10.1016/S0377-2217(01)00021-2 10.1016/j.jclepro.2018.06.246 10.1016/j.cie.2018.10.043 10.1287/moor.16.1.119 10.1007/s12532-012-0036-1 10.1080/10466690902932551 10.1137/1.9780898718799 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2020.106786 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2020_106786 S0360835220304952 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-128ea3fd82d9a573b3ad4b2d01fb59bc8fba0225e7a7b8f343eca7f2c0242ea93 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582320000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Tue Nov 18 22:32:07 EST 2025 Sat Nov 29 07:20:17 EST 2025 Sun Apr 21 12:55:43 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supply chain Progressive hedging algorithm Disruption Multi-stage stochastic integer programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-128ea3fd82d9a573b3ad4b2d01fb59bc8fba0225e7a7b8f343eca7f2c0242ea93 |
| ORCID | 0000-0002-0844-4947 0000-0002-5872-9756 |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2020_106786 crossref_citationtrail_10_1016_j_cie_2020_106786 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106786 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ivanov (b0090) 2019; 127 Pariazar, Sir (b0155) 2018; 121 Bugert, Lasch (b0025) 2018; 124 Fattahi, Govindan (b0055) 2018; 118 Li, Liu, Shen, Cheng (b0110) 2017; 47 Mahajan, Van Ryzin (b0130) 2001; 49 Rajagopal, Prasanna Venkatesan, Goh (b0170) 2017; 113 Rezapour, Farahani, Pourakbar (b0180) 2017; 259 Stecke, Kumar (b0195) 2009; 16 Bradley (b0020) 2014; 57 Felfel, Ayadi, Masmoudi (b0060) 2016; 102 Ganesh, Raghunathan, Rajendran (b0065) 2014; 58 Poudel, S. R., Quddus, M. A., Marufuzzaman, M., Bian, L., & Burch V, R. F. (2017). Managing congestion in a multi-modal transportation network under biomass supply uncertainty. Annals of Operations Research, 1–43. Jabbarzadeh, Fahimnia, Sheu, Moghadam (b0095) 2016; 94 Giri, Sarker (b0070) 2015 Sawik (b0190) 2019; 57 Fan, Liu (b0040) 2010; 10 Zanjani, Nourelfath, Ait-Kadi (b0240) 2010; 48 Mohammadzadeh, Zegordi (b0140) 2016; 101 Huang, Wang (b0085) 2018; 62 Watson, Woodruff, Hart (b0210) 2012; 4 Craighead, Blackhurst, Rungtusanatham, Handfield (b0030) 2007; 38 Rajaram, Tang (b0175) 2001; 135 Helseth (b0080) 2016; 7 Rahmani, Yavari (b0165) 2019; 127 Woodruff, D. L., & Voß, S. (2006). Planning for a big bang in a supply chain: Fast hedging for production indicators. Proceedings of the Annual Hawaii International Conference on System Sciences, 2(C), 1–6. Birge, Louveaux (b0010) 2011 Miller, Rice (b0135) 1983; 29 Xie, F., & Huang, Y. (2018). A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties. Transportation Research Part E: Logistics and Transportation Review, 111(December 2017), 130–148. Zahiri, B., Torabi, S. A., Mohammadi, M., & Aghabegloo, M. (2018). A multi-stage stochastic programming approach for blood supply chain planning. Computers & Industrial Engineering, 122(September 2017), 1–14. Bottani, Murino, Schiavo, Akkerman (b0015) 2019; 135 Kraiselburd, Narayanan, Raman (b0105) 2009; 13 Watson, Woodruff (b0205) 2011; 8 Kim, Wu, Huang (b0100) 2014; 29 Listes, Dekker (b0120) 2005; 39 Gupta, Ivanov (b0075) 2019; 58 Yan, Lu, Wu (b0230) 2016; 8 Yan, Jin, Liu, Yang (b0225) 2018; 55 Wallace, W., & Ziemba, W. (2005). Applications of stochastic Programmig. 396–405. Pacheco, E. de O., Cannella, S., Lüders, R., & Barbosa-Povoa, A. P. (2017). Order-up-to-level policy update procedure for a supply chain subject to market demand uncertainty. Computers & Industrial Engineering, 113, 347–355. Darom, Hishamuddin, Ramli, Mat Nopiah (b0035) 2018; 197 Li, Zhang (b0115) 2018; 126 Farahani, Shavandi, Rahmani (b0045) 2017; 108 Bier, Lange, Glock (b0005) 2020; 58 Lu, Huang, Shen (b0125) 2011; 45 Rockafellar, R. T., & Wets, R. (1991). Scenario And policy aggregation in optimization under uncertainty. Farrokh, Azar, Jandaghi, Ahmadi (b0050) 2018; 341 Rajaram (10.1016/j.cie.2020.106786_b0175) 2001; 135 10.1016/j.cie.2020.106786_b0160 Rajagopal (10.1016/j.cie.2020.106786_b0170) 2017; 113 Bottani (10.1016/j.cie.2020.106786_b0015) 2019; 135 Darom (10.1016/j.cie.2020.106786_b0035) 2018; 197 Giri (10.1016/j.cie.2020.106786_b0070) 2015 Craighead (10.1016/j.cie.2020.106786_b0030) 2007; 38 Stecke (10.1016/j.cie.2020.106786_b0195) 2009; 16 Yan (10.1016/j.cie.2020.106786_b0225) 2018; 55 10.1016/j.cie.2020.106786_b0215 Jabbarzadeh (10.1016/j.cie.2020.106786_b0095) 2016; 94 Lu (10.1016/j.cie.2020.106786_b0125) 2011; 45 Sawik (10.1016/j.cie.2020.106786_b0190) 2019; 57 10.1016/j.cie.2020.106786_b0235 Gupta (10.1016/j.cie.2020.106786_b0075) 2019; 58 Yan (10.1016/j.cie.2020.106786_b0230) 2016; 8 Mohammadzadeh (10.1016/j.cie.2020.106786_b0140) 2016; 101 Pariazar (10.1016/j.cie.2020.106786_b0155) 2018; 121 Bugert (10.1016/j.cie.2020.106786_b0025) 2018; 124 Mahajan (10.1016/j.cie.2020.106786_b0130) 2001; 49 Rezapour (10.1016/j.cie.2020.106786_b0180) 2017; 259 Fan (10.1016/j.cie.2020.106786_b0040) 2010; 10 Ivanov (10.1016/j.cie.2020.106786_b0090) 2019; 127 10.1016/j.cie.2020.106786_b0150 Li (10.1016/j.cie.2020.106786_b0110) 2017; 47 Watson (10.1016/j.cie.2020.106786_b0210) 2012; 4 Zanjani (10.1016/j.cie.2020.106786_b0240) 2010; 48 Li (10.1016/j.cie.2020.106786_b0115) 2018; 126 Listes (10.1016/j.cie.2020.106786_b0120) 2005; 39 Farrokh (10.1016/j.cie.2020.106786_b0050) 2018; 341 Helseth (10.1016/j.cie.2020.106786_b0080) 2016; 7 Rahmani (10.1016/j.cie.2020.106786_b0165) 2019; 127 Miller (10.1016/j.cie.2020.106786_b0135) 1983; 29 Bradley (10.1016/j.cie.2020.106786_b0020) 2014; 57 Farahani (10.1016/j.cie.2020.106786_b0045) 2017; 108 Watson (10.1016/j.cie.2020.106786_b0205) 2011; 8 Kraiselburd (10.1016/j.cie.2020.106786_b0105) 2009; 13 Bier (10.1016/j.cie.2020.106786_b0005) 2020; 58 Ganesh (10.1016/j.cie.2020.106786_b0065) 2014; 58 Birge (10.1016/j.cie.2020.106786_b0010) 2011 Fattahi (10.1016/j.cie.2020.106786_b0055) 2018; 118 10.1016/j.cie.2020.106786_b0185 10.1016/j.cie.2020.106786_b0200 Kim (10.1016/j.cie.2020.106786_b0100) 2014; 29 10.1016/j.cie.2020.106786_b0220 Felfel (10.1016/j.cie.2020.106786_b0060) 2016; 102 Huang (10.1016/j.cie.2020.106786_b0085) 2018; 62 |
| References_xml | – volume: 58 start-page: 1835 year: 2020 end-page: 1856 ident: b0005 article-title: March 18. Methods for mitigating disruptions in complex supply chain structures: A systematic literature review publication-title: International Journal of Production Research – volume: 8 start-page: 676 year: 2016 ident: b0230 article-title: Contract coordination strategy of supply chain with substitution under supply disruption and stochastic demand publication-title: Sustainability – reference: Xie, F., & Huang, Y. (2018). A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties. Transportation Research Part E: Logistics and Transportation Review, 111(December 2017), 130–148. – volume: 341 start-page: 69 year: 2018 end-page: 91 ident: b0050 article-title: A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty publication-title: Fuzzy Sets and Systems – volume: 38 start-page: 131 year: 2007 end-page: 156 ident: b0030 article-title: The severity of supply chain disruptions: Design characteristics and mitigation capabilities publication-title: Decision Sciences – volume: 45 start-page: 1251 year: 2011 end-page: 1265 ident: b0125 article-title: Product substitution and dual sourcing under random supply failures publication-title: Transportation Research Part B: Methodological – volume: 29 start-page: 352 year: 1983 end-page: 362 ident: b0135 article-title: Discrete approximations of probability distributions publication-title: Management Science – reference: Wallace, W., & Ziemba, W. (2005). Applications of stochastic Programmig. 396–405. – reference: Rockafellar, R. T., & Wets, R. (1991). Scenario And policy aggregation in optimization under uncertainty. – volume: 7 start-page: 585 year: 2016 end-page: 600 ident: b0080 article-title: Stochastic network constrained hydro-thermal scheduling using a linearized progressive hedging algorithm publication-title: Energy Systems – volume: 197 start-page: 1011 year: 2018 end-page: 1021 ident: b0035 article-title: An inventory model of supply chain disruption recovery with safety stock and carbon emission consideration publication-title: Journal of Cleaner Production – volume: 101 start-page: 194 year: 2016 end-page: 215 ident: b0140 article-title: Coordination in a triple sourcing supply chain using a cooperative mechanism under disruption publication-title: Computers & Industrial Engineering – volume: 102 start-page: 268 year: 2016 end-page: 279 ident: b0060 article-title: Multi-objective stochastic multi-site supply chain planning under demand uncertainty considering downside risk publication-title: Computers & Industrial Engineering – volume: 127 start-page: 558 year: 2019 end-page: 570 ident: b0090 article-title: Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods publication-title: Computers and Industrial Engineering – volume: 57 start-page: 4502 year: 2019 end-page: 4518 ident: b0190 article-title: Two-period vs. multi-period model for supply chain disruption management publication-title: International Journal of Production Research – year: 2015 ident: b0070 article-title: Coordinating a two-echelon supply chain with price and service level publication-title: Operational Research – volume: 10 start-page: 193 year: 2010 end-page: 208 ident: b0040 article-title: Solving stochastic transportation network protection problems using the progressive hedging-based method publication-title: Networks and Spatial Economics – volume: 39 start-page: 367 year: 2005 end-page: 382 ident: b0120 article-title: A scenario aggregation-based approach for determining a robust airline fleet composition for dynamic capacity allocation publication-title: Transportation Science – reference: Zahiri, B., Torabi, S. A., Mohammadi, M., & Aghabegloo, M. (2018). A multi-stage stochastic programming approach for blood supply chain planning. Computers & Industrial Engineering, 122(September 2017), 1–14. – year: 2011 ident: b0010 article-title: Introduction to stochastic programming – volume: 121 start-page: 113 year: 2018 end-page: 130 ident: b0155 article-title: A multi-objective approach for supply chain design considering disruptions impacting supply availability and quality publication-title: Computers & Industrial Engineering – reference: Poudel, S. R., Quddus, M. A., Marufuzzaman, M., Bian, L., & Burch V, R. F. (2017). Managing congestion in a multi-modal transportation network under biomass supply uncertainty. Annals of Operations Research, 1–43. – volume: 55 start-page: 206 year: 2018 end-page: 224 ident: b0225 article-title: Decision on risk-averse dual-channel supply chain under demand disruption publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 94 start-page: 121 year: 2016 end-page: 149 ident: b0095 article-title: Designing a supply chain resilient to major disruptions and supply/demand interruptions publication-title: Transportation Research Part B: Methodological – volume: 47 start-page: 189 year: 2017 end-page: 207 ident: b0110 article-title: An improved stochastic programming model for supply chain planning of MRO spare parts publication-title: Applied Mathematical Modelling – volume: 4 start-page: 109 year: 2012 end-page: 149 ident: b0210 article-title: PySP: Modeling and solving stochastic programs in Python publication-title: Mathematical Programming Computation – volume: 58 start-page: 291 year: 2019 end-page: 307 ident: b0075 article-title: Dual sourcing under supply disruption with risk-averse suppliers in the sharing economy publication-title: International Journal of Production Research – volume: 127 start-page: 493 year: 2019 end-page: 510 ident: b0165 article-title: Pricing policies for a dual-channel green supply chain under demand disruptions publication-title: Computers & Industrial Engineering – volume: 58 start-page: 79 year: 2014 end-page: 94 ident: b0065 article-title: The value of information sharing in a multi-product, multi-level supply chain: Impact of product substitution, demand correlation, and partial information sharing publication-title: Decision Support Systems – volume: 8 start-page: 355 year: 2011 end-page: 370 ident: b0205 article-title: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems publication-title: Computational Management Science – volume: 113 start-page: 646 year: 2017 end-page: 682 ident: b0170 article-title: Decision-making models for supply chain risk mitigation: A review publication-title: Computers & Industrial Engineering – volume: 13 start-page: 46 year: 2009 end-page: 62 ident: b0105 article-title: Contracting in a supply chain with stochastic demand and substitute products publication-title: Production and Operations Management – volume: 62 start-page: 70 year: 2018 end-page: 83 ident: b0085 article-title: Demand disruptions, pricing and production decisions in a closed-loop supply chain with technology licensing Yanting publication-title: Journal of Cleaner Production – volume: 49 start-page: 646 year: 2001 end-page: 657 ident: b0130 article-title: Inventory competition under dynamic consumer choice publication-title: Operations Research – volume: 108 start-page: 213 year: 2017 end-page: 224 ident: b0045 article-title: A location-inventory model considering a strategy to mitigate disruption risk in supply chain by substitutable products publication-title: Computers & Industrial Engineering – volume: 135 start-page: 582 year: 2001 end-page: 601 ident: b0175 article-title: The impact of product substitution on retail merchandising publication-title: European Journal of Operational Research – volume: 259 start-page: 1017 year: 2017 end-page: 1035 ident: b0180 article-title: Resilient supply chain network design under competition: A case study publication-title: European Journal of Operational Research – volume: 48 start-page: 4701 year: 2010 end-page: 4723 ident: b0240 article-title: A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand publication-title: International Journal of Production Research – reference: Woodruff, D. L., & Voß, S. (2006). Planning for a big bang in a supply chain: Fast hedging for production indicators. Proceedings of the Annual Hawaii International Conference on System Sciences, 2(C), 1–6. – volume: 57 start-page: 483 year: 2014 end-page: 495 ident: b0020 article-title: An improved method for managing catastrophic supply chain disruptions publication-title: Business Horizons – volume: 135 start-page: 177 year: 2019 end-page: 198 ident: b0015 article-title: Resilient food supply chain design: Modelling framework and metaheuristic solution approach publication-title: Computers & Industrial Engineering – volume: 16 start-page: 193 year: 2009 end-page: 226 ident: b0195 article-title: Sources of supply chain disruptions, factors that breed vulnerability, and mitigating strategies publication-title: Journal of Marketing Channels – volume: 29 start-page: 139 year: 2014 end-page: 145 ident: b0100 article-title: Optimal inventory control in a multi-period newsvendor problem with non-stationary demand publication-title: Advanced Engineering Informatics – volume: 118 start-page: 534 year: 2018 end-page: 567 ident: b0055 article-title: A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 124 start-page: 304 year: 2018 end-page: 315 ident: b0025 article-title: Effectiveness of responsive pricing in the face of supply chain disruptions publication-title: Computers & Industrial Engineering – reference: Pacheco, E. de O., Cannella, S., Lüders, R., & Barbosa-Povoa, A. P. (2017). Order-up-to-level policy update procedure for a supply chain subject to market demand uncertainty. Computers & Industrial Engineering, 113, 347–355. – volume: 126 start-page: 243 year: 2018 end-page: 251 ident: b0115 article-title: A sample average approximation approach for supply chain network design with facility disruptions publication-title: Computers & Industrial Engineering. Pergamon – volume: 101 start-page: 194 year: 2016 ident: 10.1016/j.cie.2020.106786_b0140 article-title: Coordination in a triple sourcing supply chain using a cooperative mechanism under disruption publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.09.004 – volume: 58 start-page: 291 issue: 1 year: 2019 ident: 10.1016/j.cie.2020.106786_b0075 article-title: Dual sourcing under supply disruption with risk-averse suppliers in the sharing economy publication-title: International Journal of Production Research doi: 10.1080/00207543.2019.1686189 – volume: 58 start-page: 1835 year: 2020 ident: 10.1016/j.cie.2020.106786_b0005 article-title: March 18. Methods for mitigating disruptions in complex supply chain structures: A systematic literature review publication-title: International Journal of Production Research doi: 10.1080/00207543.2019.1687954 – volume: 13 start-page: 46 issue: 1 year: 2009 ident: 10.1016/j.cie.2020.106786_b0105 article-title: Contracting in a supply chain with stochastic demand and substitute products publication-title: Production and Operations Management doi: 10.1111/j.1937-5956.2004.tb00144.x – volume: 7 start-page: 585 issue: 4 year: 2016 ident: 10.1016/j.cie.2020.106786_b0080 article-title: Stochastic network constrained hydro-thermal scheduling using a linearized progressive hedging algorithm publication-title: Energy Systems doi: 10.1007/s12667-015-0184-2 – volume: 38 start-page: 131 issue: 1 year: 2007 ident: 10.1016/j.cie.2020.106786_b0030 article-title: The severity of supply chain disruptions: Design characteristics and mitigation capabilities publication-title: Decision Sciences doi: 10.1111/j.1540-5915.2007.00151.x – volume: 259 start-page: 1017 issue: 3 year: 2017 ident: 10.1016/j.cie.2020.106786_b0180 article-title: Resilient supply chain network design under competition: A case study publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.11.041 – volume: 49 start-page: 646 issue: 5 year: 2001 ident: 10.1016/j.cie.2020.106786_b0130 article-title: Inventory competition under dynamic consumer choice publication-title: Operations Research doi: 10.1287/opre.49.5.646.10603 – volume: 48 start-page: 4701 issue: 16 year: 2010 ident: 10.1016/j.cie.2020.106786_b0240 article-title: A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand publication-title: International Journal of Production Research doi: 10.1080/00207540903055727 – volume: 39 start-page: 367 issue: 3 year: 2005 ident: 10.1016/j.cie.2020.106786_b0120 article-title: A scenario aggregation-based approach for determining a robust airline fleet composition for dynamic capacity allocation publication-title: Transportation Science doi: 10.1287/trsc.1040.0097 – ident: 10.1016/j.cie.2020.106786_b0150 doi: 10.1016/j.cie.2017.09.015 – volume: 57 start-page: 4502 issue: 14 year: 2019 ident: 10.1016/j.cie.2020.106786_b0190 article-title: Two-period vs. multi-period model for supply chain disruption management publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1504246 – volume: 45 start-page: 1251 issue: 8 year: 2011 ident: 10.1016/j.cie.2020.106786_b0125 article-title: Product substitution and dual sourcing under random supply failures publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2010.09.005 – year: 2011 ident: 10.1016/j.cie.2020.106786_b0010 – ident: 10.1016/j.cie.2020.106786_b0160 doi: 10.1007/s10479-017-2499-y – volume: 126 start-page: 243 year: 2018 ident: 10.1016/j.cie.2020.106786_b0115 article-title: A sample average approximation approach for supply chain network design with facility disruptions publication-title: Computers & Industrial Engineering. Pergamon doi: 10.1016/j.cie.2018.09.039 – volume: 127 start-page: 493 year: 2019 ident: 10.1016/j.cie.2020.106786_b0165 article-title: Pricing policies for a dual-channel green supply chain under demand disruptions publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.10.039 – volume: 135 start-page: 177 year: 2019 ident: 10.1016/j.cie.2020.106786_b0015 article-title: Resilient food supply chain design: Modelling framework and metaheuristic solution approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.05.011 – volume: 57 start-page: 483 issue: 4 year: 2014 ident: 10.1016/j.cie.2020.106786_b0020 article-title: An improved method for managing catastrophic supply chain disruptions publication-title: Business Horizons doi: 10.1016/j.bushor.2014.03.003 – volume: 113 start-page: 646 issue: January year: 2017 ident: 10.1016/j.cie.2020.106786_b0170 article-title: Decision-making models for supply chain risk mitigation: A review publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.09.043 – volume: 29 start-page: 352 issue: 3 year: 1983 ident: 10.1016/j.cie.2020.106786_b0135 article-title: Discrete approximations of probability distributions publication-title: Management Science doi: 10.1287/mnsc.29.3.352 – volume: 102 start-page: 268 year: 2016 ident: 10.1016/j.cie.2020.106786_b0060 article-title: Multi-objective stochastic multi-site supply chain planning under demand uncertainty considering downside risk publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.10.025 – volume: 341 start-page: 69 year: 2018 ident: 10.1016/j.cie.2020.106786_b0050 article-title: A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2017.03.019 – volume: 118 start-page: 534 year: 2018 ident: 10.1016/j.cie.2020.106786_b0055 article-title: A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2018.08.008 – volume: 108 start-page: 213 year: 2017 ident: 10.1016/j.cie.2020.106786_b0045 article-title: A location-inventory model considering a strategy to mitigate disruption risk in supply chain by substitutable products publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.04.032 – volume: 10 start-page: 193 issue: 2 year: 2010 ident: 10.1016/j.cie.2020.106786_b0040 article-title: Solving stochastic transportation network protection problems using the progressive hedging-based method publication-title: Networks and Spatial Economics doi: 10.1007/s11067-008-9062-y – volume: 94 start-page: 121 year: 2016 ident: 10.1016/j.cie.2020.106786_b0095 article-title: Designing a supply chain resilient to major disruptions and supply/demand interruptions publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2016.09.004 – volume: 124 start-page: 304 year: 2018 ident: 10.1016/j.cie.2020.106786_b0025 article-title: Effectiveness of responsive pricing in the face of supply chain disruptions publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.06.016 – volume: 58 start-page: 79 issue: 1 year: 2014 ident: 10.1016/j.cie.2020.106786_b0065 article-title: The value of information sharing in a multi-product, multi-level supply chain: Impact of product substitution, demand correlation, and partial information sharing publication-title: Decision Support Systems doi: 10.1016/j.dss.2013.01.012 – volume: 8 start-page: 676 issue: 7 year: 2016 ident: 10.1016/j.cie.2020.106786_b0230 article-title: Contract coordination strategy of supply chain with substitution under supply disruption and stochastic demand publication-title: Sustainability doi: 10.3390/su8070676 – volume: 121 start-page: 113 year: 2018 ident: 10.1016/j.cie.2020.106786_b0155 article-title: A multi-objective approach for supply chain design considering disruptions impacting supply availability and quality publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.05.026 – year: 2015 ident: 10.1016/j.cie.2020.106786_b0070 article-title: Coordinating a two-echelon supply chain with price and service level publication-title: Operational Research – volume: 55 start-page: 206 year: 2018 ident: 10.1016/j.cie.2020.106786_b0225 article-title: Decision on risk-averse dual-channel supply chain under demand disruption publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2017.07.003 – volume: 47 start-page: 189 year: 2017 ident: 10.1016/j.cie.2020.106786_b0110 article-title: An improved stochastic programming model for supply chain planning of MRO spare parts publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2017.03.031 – ident: 10.1016/j.cie.2020.106786_b0235 doi: 10.1016/j.cie.2018.05.041 – ident: 10.1016/j.cie.2020.106786_b0220 doi: 10.1016/j.tre.2018.01.015 – volume: 62 start-page: 70 issue: 1 year: 2018 ident: 10.1016/j.cie.2020.106786_b0085 article-title: Demand disruptions, pricing and production decisions in a closed-loop supply chain with technology licensing Yanting publication-title: Journal of Cleaner Production – volume: 29 start-page: 139 issue: 1 year: 2014 ident: 10.1016/j.cie.2020.106786_b0100 article-title: Optimal inventory control in a multi-period newsvendor problem with non-stationary demand publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2014.12.002 – volume: 8 start-page: 355 issue: 4 year: 2011 ident: 10.1016/j.cie.2020.106786_b0205 article-title: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems publication-title: Computational Management Science doi: 10.1007/s10287-010-0125-4 – ident: 10.1016/j.cie.2020.106786_b0215 doi: 10.1109/HICSS.2006.380 – volume: 135 start-page: 582 issue: 3 year: 2001 ident: 10.1016/j.cie.2020.106786_b0175 article-title: The impact of product substitution on retail merchandising publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(01)00021-2 – volume: 197 start-page: 1011 year: 2018 ident: 10.1016/j.cie.2020.106786_b0035 article-title: An inventory model of supply chain disruption recovery with safety stock and carbon emission consideration publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.06.246 – volume: 127 start-page: 558 year: 2019 ident: 10.1016/j.cie.2020.106786_b0090 article-title: Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2018.10.043 – ident: 10.1016/j.cie.2020.106786_b0185 doi: 10.1287/moor.16.1.119 – volume: 4 start-page: 109 issue: 2 year: 2012 ident: 10.1016/j.cie.2020.106786_b0210 article-title: PySP: Modeling and solving stochastic programs in Python publication-title: Mathematical Programming Computation doi: 10.1007/s12532-012-0036-1 – volume: 16 start-page: 193 issue: 3 year: 2009 ident: 10.1016/j.cie.2020.106786_b0195 article-title: Sources of supply chain disruptions, factors that breed vulnerability, and mitigating strategies publication-title: Journal of Marketing Channels doi: 10.1080/10466690902932551 – ident: 10.1016/j.cie.2020.106786_b0200 doi: 10.1137/1.9780898718799 |
| SSID | ssj0004591 |
| Score | 2.4793198 |
| Snippet | •A case of pharmaceutical supply chains for livestock drug distribution is studied.•Partial product substitution is used for dealing with demand disruptions.•A... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106786 |
| SubjectTerms | Disruption Multi-stage stochastic integer programming Progressive hedging algorithm Supply chain |
| Title | A multi-stage stochastic programming approach for supply chain risk mitigation via product substitution |
| URI | https://dx.doi.org/10.1016/j.cie.2020.106786 |
| Volume | 149 |
| WOSCitedRecordID | wos000582320000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjQd44DJAjJv8wBPIVS5NHD9WqGiAVCFtSH2LnNhZsks2LaXafsf-8M7xJQnjIkDiJa3cuK58vvocO9_5DiFveKrSSFUZ4ypOGXjogIky1kyFswRAFKVRlZliE3y5zFYr8WUyufa5MJsT3rbZ5aU4_6-mhjYwNqbO_oW5-y-FBngPRocrmB2uf2T4uSUJMgj7DlE-9qysJYoxeyrWqUlLdFLihmXYYWXPK8wBxuQW5JqfNlZ6A6CxaST2RFlYuLGw1AJvTC9x4EpDdAZIzVANRA9qhz3RpwbQdXXz7nMNWwDAoFSGULCvrzRSPmrV9IfZmD4z_nQP67WA-1ZND-llc1zI47ozp0OL2lOM3DkGbFrD784x-gSbgc1kk7oChkGidVd2jc64YEFi9Wr7RdwKn_7gEOzZxNEUFsopjjpFybzb4tvGne_jWCYexafFIgG_vh3xRMBSuT3_uFh9GonQ20KM_rf5h-WGNnhroJ-HO6MQ5uAhue_2HnRuMfOITHS7Qx64fQh1q3y3Q-6NRCofk8M5HQGKDoCiI0BRDygKgKIWUNQAiiKg6AAoCoCiDlB0DKgn5OuHxcH7PebKc7AyEnzNILLRMq5UFikhEx4XsVSzIlJBWBWJKMqsKiREiInmkhdZFc9iXUpeRSWGhVqK-CnZas9a_YzQWaBxxQhKTHVOA5npQpZhAvcLeA3DXRL4WcxLp12PJVROck9SPIJ2nePE53bid8nbvsu5FW753c0zb5rcRZ42oswBR7_u9vzfur0gd4c_wEuytb74pl-RO-Vm3XQXrx3abgAmO61f |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-stage+stochastic+programming+approach+for+supply+chain+risk+mitigation+via+product+substitution&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ghorashi+Khalilabadi%2C+Seyed+Mahdi&rft.au=Zegordi%2C+Seyed+Hessameddin&rft.au=Nikbakhsh%2C+Ehsan&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=149&rft_id=info:doi/10.1016%2Fj.cie.2020.106786&rft.externalDocID=S0360835220304952 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |