Mutual visibility in graphs

Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 419; s. 126850
Hlavní autor: Di Stefano, Gabriele
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.04.2022
Témata:
ISSN:0096-3003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility set. In this paper we start the study about this new invariant and the mutual-visibility sets in undirected graphs. We introduce the Mutual-Visibility problem which asks to find a mutual-visibility set with a size larger than a given number. We show that this problem is NP-complete, whereas, to check whether a given set of points is a mutual-visibility set is solvable in polynomial time. Then we study mutual-visibility sets and mutual-visibility numbers on special classes of graphs, such as block graphs, trees, grids, tori, complete bipartite graphs, cographs. We also provide some relations of the mutual-visibility number of a graph with other invariants.
AbstractList Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility set. In this paper we start the study about this new invariant and the mutual-visibility sets in undirected graphs. We introduce the Mutual-Visibility problem which asks to find a mutual-visibility set with a size larger than a given number. We show that this problem is NP-complete, whereas, to check whether a given set of points is a mutual-visibility set is solvable in polynomial time. Then we study mutual-visibility sets and mutual-visibility numbers on special classes of graphs, such as block graphs, trees, grids, tori, complete bipartite graphs, cographs. We also provide some relations of the mutual-visibility number of a graph with other invariants.
ArticleNumber 126850
Author Di Stefano, Gabriele
Author_xml – sequence: 1
  givenname: Gabriele
  surname: Di Stefano
  fullname: Di Stefano, Gabriele
  email: gabriele.distefano@univaq.it
  organization: University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics, Italy
BookMark eNp9z71OwzAUhmEPRaItXABiyQ0knBNT_4gJVfxJRSwwW86xA47SpLLdSr17WpWJodM3PZ_0zthkGAfP2A1ChYDirqvsmqoaaqywFmoBEzYF0KLkAPySzVLqAEAKvJ-y2_dt3tq-2IUUmtCHvC_CUHxHu_lJV-yitX3y1387Z1_PT5_L13L18fK2fFyVVGuZSwTLhQNJYL3wvJVcadnyZoHoGgLdaEsNOuWdVHzRSqu0EE5JrhUhkeNzhqdfimNK0bdmE8Paxr1BMMci05lDkTkWmVPRwch_hkK2OYxDjjb0Z-XDSfpD0i74aBIFP5B3IXrKxo3hjP4Fq9Jomw
CitedBy_id crossref_primary_10_1016_j_amc_2023_128411
crossref_primary_10_1016_j_procs_2023_08_219
crossref_primary_10_1016_j_ejc_2024_103995
crossref_primary_10_1515_math_2025_0193
crossref_primary_10_1007_s00025_025_02529_9
Cites_doi 10.1007/s00025-021-01438-x
10.1016/0020-0255(94)90060-4
10.1016/S0020-0255(98)10063-4
10.1016/j.akcej.2019.08.008
10.1016/j.ic.2016.09.005
10.3233/FI-2018-1748
10.1016/0095-8956(86)90043-2
10.1016/j.dam.2012.02.021
10.1017/S0004972718000473
10.1137/1.9780898719796
10.1016/j.tcs.2020.10.033
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2021.126850
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_amc_2021_126850
S0096300321009334
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-10a36d07c0ae6e3f73897f3b511dbc09b9acb1d8ed7835f7a8966d87398c1ccd3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 08:12:47 EST 2025
Tue Nov 18 22:19:50 EST 2025
Sun Apr 06 06:53:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mutual visibility
Graph classes
Graph invariant
Computational complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-10a36d07c0ae6e3f73897f3b511dbc09b9acb1d8ed7835f7a8966d87398c1ccd3
ParticipantIDs crossref_primary_10_1016_j_amc_2021_126850
crossref_citationtrail_10_1016_j_amc_2021_126850
elsevier_sciencedirect_doi_10_1016_j_amc_2021_126850
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dudeney (bib0003) 1917
Manuel, Klavžar (bib0014) 2018; 98
Brandstädt, Le, Spinrad (bib0021) 1999
Bandelt, Mulder (bib0023) 1986; 41
Sylvester (bib0001) 1893; 46
Aljohani, Poudel, Sharma (bib0020) 2018
Rosenfeld, Wu (bib0012) 1994; 80
Manuel, Klavžar (bib0016) 2018; 163
Harary (bib0022) 1969
Klavžar, Patkós, Rus, Yero (bib0019) 2021; 76
Adhikary, Bose, Kundu, Sau (bib0011) 2018; vol. 11410
Aljohani, Sharma (bib0006) 2018; 8
Wu, Rosenfeld (bib0013) 1998; 108
Steinberg, Buck, Grünwald, Steenrod (bib0002) 1944; 9
Bhagat (bib0007) 2020; vol. 12049
Hardy, Wright (bib0004) 2008
Chandran, Parthasarathy (bib0015) 2016; 4
Di Luna, Flocchini, Chaudhuri, Poloni, Santoro, Viglietta (bib0005) 2017; 254
Karp (bib0024) 1972
Poudel, Aljohani, Sharma (bib0008) 2021; 850
Di Stefano (bib0025) 2012; 160
Anand, Chandran, Changat, Klavzar, Thomas (bib0017) 2019; 359
Sharma (bib0009) 2018
Poudel, Sharma, Aljohani (bib0010) 2019
Thomas, Chandran (bib0018) 2020; 17
Aljohani (10.1016/j.amc.2021.126850_bib0006) 2018; 8
Klavžar (10.1016/j.amc.2021.126850_bib0019) 2021; 76
Dudeney (10.1016/j.amc.2021.126850_bib0003) 1917
Bhagat (10.1016/j.amc.2021.126850_bib0007) 2020; vol. 12049
Manuel (10.1016/j.amc.2021.126850_bib0016) 2018; 163
Poudel (10.1016/j.amc.2021.126850_bib0008) 2021; 850
Sharma (10.1016/j.amc.2021.126850_bib0009) 2018
Wu (10.1016/j.amc.2021.126850_bib0013) 1998; 108
Brandstädt (10.1016/j.amc.2021.126850_bib0021) 1999
Bandelt (10.1016/j.amc.2021.126850_bib0023) 1986; 41
Thomas (10.1016/j.amc.2021.126850_bib0018) 2020; 17
Di Stefano (10.1016/j.amc.2021.126850_bib0025) 2012; 160
Rosenfeld (10.1016/j.amc.2021.126850_bib0012) 1994; 80
Harary (10.1016/j.amc.2021.126850_bib0022) 1969
Sylvester (10.1016/j.amc.2021.126850_bib0001) 1893; 46
Karp (10.1016/j.amc.2021.126850_bib0024) 1972
Steinberg (10.1016/j.amc.2021.126850_bib0002) 1944; 9
Poudel (10.1016/j.amc.2021.126850_bib0010) 2019
Adhikary (10.1016/j.amc.2021.126850_bib0011) 2018; vol. 11410
Hardy (10.1016/j.amc.2021.126850_bib0004) 2008
Chandran (10.1016/j.amc.2021.126850_bib0015) 2016; 4
Di Luna (10.1016/j.amc.2021.126850_bib0005) 2017; 254
Manuel (10.1016/j.amc.2021.126850_bib0014) 2018; 98
Aljohani (10.1016/j.amc.2021.126850_bib0020) 2018
Anand (10.1016/j.amc.2021.126850_bib0017) 2019; 359
References_xml – volume: 254
  start-page: 392
  year: 2017
  end-page: 418
  ident: bib0005
  article-title: Mutual visibility by luminous robots without collisions
  publication-title: Inf. Comput.
– start-page: 829
  year: 2018
  end-page: 836
  ident: bib0009
  article-title: Mutual visibility for robots with lights tolerating light faults
  publication-title: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops
– volume: 46
  start-page: 156
  year: 1893
  ident: bib0001
  article-title: Mathematical question 11851
  publication-title: Educ. Times
– volume: 17
  start-page: 935
  year: 2020
  end-page: 939
  ident: bib0018
  article-title: Characterization of classes of graphs with large general position number
  publication-title: AKCE Int. J. GraphsComb.
– volume: 359
  start-page: 84
  year: 2019
  end-page: 89
  ident: bib0017
  article-title: Characterization of general position sets and its applications to cographs and bipartite graphs
  publication-title: Appl. Math. Comput.
– volume: 76
  start-page: 123
  year: 2021
  ident: bib0019
  article-title: On general position sets in cartesian products
  publication-title: Results Math.
– volume: 41
  start-page: 182
  year: 1986
  end-page: 208
  ident: bib0023
  article-title: Distance-hereditary graphs
  publication-title: J. Comb. Theory Ser. B
– year: 2008
  ident: bib0004
  article-title: An Introduction to the Theory of Numbers
– start-page: 85
  year: 1972
  end-page: 103
  ident: bib0024
  article-title: Reducibility among combinatorial problems
  publication-title: Proceedings of Complexity of Computer Computations
– volume: 850
  start-page: 116
  year: 2021
  end-page: 134
  ident: bib0008
  article-title: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement
  publication-title: Theor. Comput. Sci.
– start-page: 238
  year: 2019
  end-page: 247
  ident: bib0010
  article-title: Sublinear-time mutual visibility for fat oblivious robots
  publication-title: Proceedings of ICDCN 2019
– year: 1917
  ident: bib0003
  article-title: Amusements in Mathematics
– volume: 163
  start-page: 339
  year: 2018
  end-page: 350
  ident: bib0016
  article-title: The graph theory general position problem on some interconnection networks
  publication-title: Fundam. Inform.
– volume: 80
  start-page: 127
  year: 1994
  end-page: 132
  ident: bib0012
  article-title: Geodesic convexity in discrete spaces
  publication-title: J. Inf. Sci.
– volume: 160
  start-page: 2669
  year: 2012
  end-page: 2680
  ident: bib0025
  article-title: Distance-hereditary comparability graphs
  publication-title: Discrete Appl. Math.
– volume: vol. 12049
  start-page: 31
  year: 2020
  end-page: 42
  ident: bib0007
  article-title: Optimum algorithm for the mutual visibility problem
  publication-title: WALCOM: Algorithms and Computation - 14th International Conference, WALCOM 2020
– volume: 108
  start-page: 5
  year: 1998
  end-page: 12
  ident: bib0013
  article-title: Geodesic visibility in graphs
  publication-title: J. Inf. Sci.
– volume: 4
  start-page: 135
  year: 2016
  end-page: 143
  ident: bib0015
  article-title: The geodesic irredundant sets in graphs
  publication-title: Int. J. Math. Comb.
– year: 1969
  ident: bib0022
  article-title: Graph Theory
– start-page: 733
  year: 2018
  end-page: 742
  ident: bib0020
  article-title: Complete visitability for autonomous robots on graphs
  publication-title: IEEE International Parallel and Distributed Processing Symposium, IPDPS
– volume: vol. 11410
  start-page: 83
  year: 2018
  end-page: 101
  ident: bib0011
  article-title: Mutual visibility by asynchronous robots on infinite grid
  publication-title: Algorithms for Sensor Systems - ALGOSENSORS 2018
– volume: 9
  start-page: 169
  year: 1944
  ident: bib0002
  article-title: Three point collinearity (solution to problem 4065)
  publication-title: Am. Math. Mon.
– volume: 98
  start-page: 177
  year: 2018
  end-page: 187
  ident: bib0014
  article-title: A general position problem in graph theory
  publication-title: Bull. Aust. Math. Soc.
– year: 1999
  ident: bib0021
  article-title: Graph classes: a survey
  publication-title: Monographs on Discrete Mathematics and Applications
– volume: 8
  start-page: 32
  year: 2018
  end-page: 52
  ident: bib0006
  article-title: Complete visibility for mobile robots with lights tolerating faults
  publication-title: Int. J. Netw. Comput.
– volume: vol. 12049
  start-page: 31
  year: 2020
  ident: 10.1016/j.amc.2021.126850_bib0007
  article-title: Optimum algorithm for the mutual visibility problem
– start-page: 829
  year: 2018
  ident: 10.1016/j.amc.2021.126850_bib0009
  article-title: Mutual visibility for robots with lights tolerating light faults
– year: 1917
  ident: 10.1016/j.amc.2021.126850_bib0003
– volume: 9
  start-page: 169
  issue: 3
  year: 1944
  ident: 10.1016/j.amc.2021.126850_bib0002
  article-title: Three point collinearity (solution to problem 4065)
  publication-title: Am. Math. Mon.
– volume: 359
  start-page: 84
  year: 2019
  ident: 10.1016/j.amc.2021.126850_bib0017
  article-title: Characterization of general position sets and its applications to cographs and bipartite graphs
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.amc.2021.126850_bib0006
  article-title: Complete visibility for mobile robots with lights tolerating faults
  publication-title: Int. J. Netw. Comput.
– volume: 76
  start-page: 123
  year: 2021
  ident: 10.1016/j.amc.2021.126850_bib0019
  article-title: On general position sets in cartesian products
  publication-title: Results Math.
  doi: 10.1007/s00025-021-01438-x
– volume: 80
  start-page: 127
  issue: 1–2
  year: 1994
  ident: 10.1016/j.amc.2021.126850_bib0012
  article-title: Geodesic convexity in discrete spaces
  publication-title: J. Inf. Sci.
  doi: 10.1016/0020-0255(94)90060-4
– start-page: 85
  year: 1972
  ident: 10.1016/j.amc.2021.126850_bib0024
  article-title: Reducibility among combinatorial problems
– volume: 108
  start-page: 5
  issue: 1–4
  year: 1998
  ident: 10.1016/j.amc.2021.126850_bib0013
  article-title: Geodesic visibility in graphs
  publication-title: J. Inf. Sci.
  doi: 10.1016/S0020-0255(98)10063-4
– volume: 17
  start-page: 935
  issue: 3
  year: 2020
  ident: 10.1016/j.amc.2021.126850_bib0018
  article-title: Characterization of classes of graphs with large general position number
  publication-title: AKCE Int. J. GraphsComb.
  doi: 10.1016/j.akcej.2019.08.008
– start-page: 238
  year: 2019
  ident: 10.1016/j.amc.2021.126850_bib0010
  article-title: Sublinear-time mutual visibility for fat oblivious robots
– volume: 46
  start-page: 156
  year: 1893
  ident: 10.1016/j.amc.2021.126850_bib0001
  article-title: Mathematical question 11851
  publication-title: Educ. Times
– volume: 254
  start-page: 392
  year: 2017
  ident: 10.1016/j.amc.2021.126850_bib0005
  article-title: Mutual visibility by luminous robots without collisions
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2016.09.005
– volume: 163
  start-page: 339
  issue: 4
  year: 2018
  ident: 10.1016/j.amc.2021.126850_bib0016
  article-title: The graph theory general position problem on some interconnection networks
  publication-title: Fundam. Inform.
  doi: 10.3233/FI-2018-1748
– volume: 41
  start-page: 182
  issue: 2
  year: 1986
  ident: 10.1016/j.amc.2021.126850_bib0023
  article-title: Distance-hereditary graphs
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(86)90043-2
– volume: 160
  start-page: 2669
  issue: 18
  year: 2012
  ident: 10.1016/j.amc.2021.126850_bib0025
  article-title: Distance-hereditary comparability graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2012.02.021
– year: 2008
  ident: 10.1016/j.amc.2021.126850_bib0004
– volume: 98
  start-page: 177
  year: 2018
  ident: 10.1016/j.amc.2021.126850_bib0014
  article-title: A general position problem in graph theory
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972718000473
– start-page: 733
  year: 2018
  ident: 10.1016/j.amc.2021.126850_bib0020
  article-title: Complete visitability for autonomous robots on graphs
– volume: vol. 11410
  start-page: 83
  year: 2018
  ident: 10.1016/j.amc.2021.126850_bib0011
  article-title: Mutual visibility by asynchronous robots on infinite grid
– volume: 4
  start-page: 135
  year: 2016
  ident: 10.1016/j.amc.2021.126850_bib0015
  article-title: The geodesic irredundant sets in graphs
  publication-title: Int. J. Math. Comb.
– year: 1969
  ident: 10.1016/j.amc.2021.126850_bib0022
– year: 1999
  ident: 10.1016/j.amc.2021.126850_bib0021
  article-title: Graph classes: a survey
  doi: 10.1137/1.9780898719796
– volume: 850
  start-page: 116
  year: 2021
  ident: 10.1016/j.amc.2021.126850_bib0008
  article-title: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.10.033
SSID ssj0007614
Score 2.5894015
Snippet Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126850
SubjectTerms Computational complexity
Graph classes
Graph invariant
Mutual visibility
Title Mutual visibility in graphs
URI https://dx.doi.org/10.1016/j.amc.2021.126850
Volume 419
WOSCitedRecordID wos000819909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007614
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagMMCAeIpSQBmYQEFJ7MbxWEF5Sa0YQOoW-RWpiIaqD9SfzzlO0hQogoEliqz4kvizzp-Tu-8QOgN_53MlletFHLtEYOwyhbXLSaA9iYUvlZcVm6DdbtTrsce8hOI4KydA0zSazdjwX6GGNgDbpM7-Ae7SKDTAOYAOR4Adjr8CvjPNUkJM0ngW-Jol9mW61OMqEy3o56DUbR0XOW7D6eL_-eu-CQZLeFal--KWi5HJSq9-L4CtphEmbFZ9IDPRbh6u-kCS-y3rxfwgjKwc7BcHa_f6L5d8YPQfA_9yfu2imPWnRaYM_Suiyl5iMBEbE7E1sYrWAtpk4JnWWvft3kO5ntLQKrQXz138m86i9D49x_fsosIYnrbRVk71nZaFaAet6HQXbXbm472HGhYsZw6W008dC9Y-er5pP13duXm5ClcGjE5gQeM4VB6VHtehxgkFLkgTLIDSKiE9JhiXwleRVuZrW0J5BFtNFVHMIulLqfABqqVvqT5ETujzQBEsklAFhDMmiK-wCqRKiNYk0XXkFa8Zy1zL3ZQUeY2XDm8dnZddhlbI5KeLSTF2cc7ELMOKYR4s73b0l3s00MZ8eh6j2mQ01SdoXb5P-uPRaT4JPgBUF1BU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+visibility+in+graphs&rft.jtitle=Applied+mathematics+and+computation&rft.au=Di+Stefano%2C+Gabriele&rft.date=2022-04-15&rft.issn=0096-3003&rft.volume=419&rft.spage=126850&rft_id=info:doi/10.1016%2Fj.amc.2021.126850&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2021_126850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon