Mutual visibility in graphs
Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility se...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 419; S. 126850 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.04.2022
|
| Schlagworte: | |
| ISSN: | 0096-3003 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility set. In this paper we start the study about this new invariant and the mutual-visibility sets in undirected graphs. We introduce the Mutual-Visibility problem which asks to find a mutual-visibility set with a size larger than a given number. We show that this problem is NP-complete, whereas, to check whether a given set of points is a mutual-visibility set is solvable in polynomial time. Then we study mutual-visibility sets and mutual-visibility numbers on special classes of graphs, such as block graphs, trees, grids, tori, complete bipartite graphs, cographs. We also provide some relations of the mutual-visibility number of a graph with other invariants. |
|---|---|
| AbstractList | Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a mutual-visibility set if its points are pairwise mutually visible. The mutual-visibility number of G is the size of any largest mutual-visibility set. In this paper we start the study about this new invariant and the mutual-visibility sets in undirected graphs. We introduce the Mutual-Visibility problem which asks to find a mutual-visibility set with a size larger than a given number. We show that this problem is NP-complete, whereas, to check whether a given set of points is a mutual-visibility set is solvable in polynomial time. Then we study mutual-visibility sets and mutual-visibility numbers on special classes of graphs, such as block graphs, trees, grids, tori, complete bipartite graphs, cographs. We also provide some relations of the mutual-visibility number of a graph with other invariants. |
| ArticleNumber | 126850 |
| Author | Di Stefano, Gabriele |
| Author_xml | – sequence: 1 givenname: Gabriele surname: Di Stefano fullname: Di Stefano, Gabriele email: gabriele.distefano@univaq.it organization: University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics, Italy |
| BookMark | eNp9z71OwzAUhmEPRaItXABiyQ0knBNT_4gJVfxJRSwwW86xA47SpLLdSr17WpWJodM3PZ_0zthkGAfP2A1ChYDirqvsmqoaaqywFmoBEzYF0KLkAPySzVLqAEAKvJ-y2_dt3tq-2IUUmtCHvC_CUHxHu_lJV-yitX3y1387Z1_PT5_L13L18fK2fFyVVGuZSwTLhQNJYL3wvJVcadnyZoHoGgLdaEsNOuWdVHzRSqu0EE5JrhUhkeNzhqdfimNK0bdmE8Paxr1BMMci05lDkTkWmVPRwch_hkK2OYxDjjb0Z-XDSfpD0i74aBIFP5B3IXrKxo3hjP4Fq9Jomw |
| CitedBy_id | crossref_primary_10_1016_j_amc_2023_128411 crossref_primary_10_1016_j_procs_2023_08_219 crossref_primary_10_1016_j_ejc_2024_103995 crossref_primary_10_1515_math_2025_0193 crossref_primary_10_1007_s00025_025_02529_9 |
| Cites_doi | 10.1007/s00025-021-01438-x 10.1016/0020-0255(94)90060-4 10.1016/S0020-0255(98)10063-4 10.1016/j.akcej.2019.08.008 10.1016/j.ic.2016.09.005 10.3233/FI-2018-1748 10.1016/0095-8956(86)90043-2 10.1016/j.dam.2012.02.021 10.1017/S0004972718000473 10.1137/1.9780898719796 10.1016/j.tcs.2020.10.033 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2021.126850 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2021_126850 S0096300321009334 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-10a36d07c0ae6e3f73897f3b511dbc09b9acb1d8ed7835f7a8966d87398c1ccd3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Nov 29 08:12:47 EST 2025 Tue Nov 18 22:19:50 EST 2025 Sun Apr 06 06:53:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mutual visibility Graph classes Graph invariant Computational complexity |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-10a36d07c0ae6e3f73897f3b511dbc09b9acb1d8ed7835f7a8966d87398c1ccd3 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2021_126850 crossref_citationtrail_10_1016_j_amc_2021_126850 elsevier_sciencedirect_doi_10_1016_j_amc_2021_126850 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Dudeney (bib0003) 1917 Manuel, Klavžar (bib0014) 2018; 98 Brandstädt, Le, Spinrad (bib0021) 1999 Bandelt, Mulder (bib0023) 1986; 41 Sylvester (bib0001) 1893; 46 Aljohani, Poudel, Sharma (bib0020) 2018 Rosenfeld, Wu (bib0012) 1994; 80 Manuel, Klavžar (bib0016) 2018; 163 Harary (bib0022) 1969 Klavžar, Patkós, Rus, Yero (bib0019) 2021; 76 Adhikary, Bose, Kundu, Sau (bib0011) 2018; vol. 11410 Aljohani, Sharma (bib0006) 2018; 8 Wu, Rosenfeld (bib0013) 1998; 108 Steinberg, Buck, Grünwald, Steenrod (bib0002) 1944; 9 Bhagat (bib0007) 2020; vol. 12049 Hardy, Wright (bib0004) 2008 Chandran, Parthasarathy (bib0015) 2016; 4 Di Luna, Flocchini, Chaudhuri, Poloni, Santoro, Viglietta (bib0005) 2017; 254 Karp (bib0024) 1972 Poudel, Aljohani, Sharma (bib0008) 2021; 850 Di Stefano (bib0025) 2012; 160 Anand, Chandran, Changat, Klavzar, Thomas (bib0017) 2019; 359 Sharma (bib0009) 2018 Poudel, Sharma, Aljohani (bib0010) 2019 Thomas, Chandran (bib0018) 2020; 17 Aljohani (10.1016/j.amc.2021.126850_bib0006) 2018; 8 Klavžar (10.1016/j.amc.2021.126850_bib0019) 2021; 76 Dudeney (10.1016/j.amc.2021.126850_bib0003) 1917 Bhagat (10.1016/j.amc.2021.126850_bib0007) 2020; vol. 12049 Manuel (10.1016/j.amc.2021.126850_bib0016) 2018; 163 Poudel (10.1016/j.amc.2021.126850_bib0008) 2021; 850 Sharma (10.1016/j.amc.2021.126850_bib0009) 2018 Wu (10.1016/j.amc.2021.126850_bib0013) 1998; 108 Brandstädt (10.1016/j.amc.2021.126850_bib0021) 1999 Bandelt (10.1016/j.amc.2021.126850_bib0023) 1986; 41 Thomas (10.1016/j.amc.2021.126850_bib0018) 2020; 17 Di Stefano (10.1016/j.amc.2021.126850_bib0025) 2012; 160 Rosenfeld (10.1016/j.amc.2021.126850_bib0012) 1994; 80 Harary (10.1016/j.amc.2021.126850_bib0022) 1969 Sylvester (10.1016/j.amc.2021.126850_bib0001) 1893; 46 Karp (10.1016/j.amc.2021.126850_bib0024) 1972 Steinberg (10.1016/j.amc.2021.126850_bib0002) 1944; 9 Poudel (10.1016/j.amc.2021.126850_bib0010) 2019 Adhikary (10.1016/j.amc.2021.126850_bib0011) 2018; vol. 11410 Hardy (10.1016/j.amc.2021.126850_bib0004) 2008 Chandran (10.1016/j.amc.2021.126850_bib0015) 2016; 4 Di Luna (10.1016/j.amc.2021.126850_bib0005) 2017; 254 Manuel (10.1016/j.amc.2021.126850_bib0014) 2018; 98 Aljohani (10.1016/j.amc.2021.126850_bib0020) 2018 Anand (10.1016/j.amc.2021.126850_bib0017) 2019; 359 |
| References_xml | – volume: 254 start-page: 392 year: 2017 end-page: 418 ident: bib0005 article-title: Mutual visibility by luminous robots without collisions publication-title: Inf. Comput. – start-page: 829 year: 2018 end-page: 836 ident: bib0009 article-title: Mutual visibility for robots with lights tolerating light faults publication-title: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops – volume: 46 start-page: 156 year: 1893 ident: bib0001 article-title: Mathematical question 11851 publication-title: Educ. Times – volume: 17 start-page: 935 year: 2020 end-page: 939 ident: bib0018 article-title: Characterization of classes of graphs with large general position number publication-title: AKCE Int. J. GraphsComb. – volume: 359 start-page: 84 year: 2019 end-page: 89 ident: bib0017 article-title: Characterization of general position sets and its applications to cographs and bipartite graphs publication-title: Appl. Math. Comput. – volume: 76 start-page: 123 year: 2021 ident: bib0019 article-title: On general position sets in cartesian products publication-title: Results Math. – volume: 41 start-page: 182 year: 1986 end-page: 208 ident: bib0023 article-title: Distance-hereditary graphs publication-title: J. Comb. Theory Ser. B – year: 2008 ident: bib0004 article-title: An Introduction to the Theory of Numbers – start-page: 85 year: 1972 end-page: 103 ident: bib0024 article-title: Reducibility among combinatorial problems publication-title: Proceedings of Complexity of Computer Computations – volume: 850 start-page: 116 year: 2021 end-page: 134 ident: bib0008 article-title: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement publication-title: Theor. Comput. Sci. – start-page: 238 year: 2019 end-page: 247 ident: bib0010 article-title: Sublinear-time mutual visibility for fat oblivious robots publication-title: Proceedings of ICDCN 2019 – year: 1917 ident: bib0003 article-title: Amusements in Mathematics – volume: 163 start-page: 339 year: 2018 end-page: 350 ident: bib0016 article-title: The graph theory general position problem on some interconnection networks publication-title: Fundam. Inform. – volume: 80 start-page: 127 year: 1994 end-page: 132 ident: bib0012 article-title: Geodesic convexity in discrete spaces publication-title: J. Inf. Sci. – volume: 160 start-page: 2669 year: 2012 end-page: 2680 ident: bib0025 article-title: Distance-hereditary comparability graphs publication-title: Discrete Appl. Math. – volume: vol. 12049 start-page: 31 year: 2020 end-page: 42 ident: bib0007 article-title: Optimum algorithm for the mutual visibility problem publication-title: WALCOM: Algorithms and Computation - 14th International Conference, WALCOM 2020 – volume: 108 start-page: 5 year: 1998 end-page: 12 ident: bib0013 article-title: Geodesic visibility in graphs publication-title: J. Inf. Sci. – volume: 4 start-page: 135 year: 2016 end-page: 143 ident: bib0015 article-title: The geodesic irredundant sets in graphs publication-title: Int. J. Math. Comb. – year: 1969 ident: bib0022 article-title: Graph Theory – start-page: 733 year: 2018 end-page: 742 ident: bib0020 article-title: Complete visitability for autonomous robots on graphs publication-title: IEEE International Parallel and Distributed Processing Symposium, IPDPS – volume: vol. 11410 start-page: 83 year: 2018 end-page: 101 ident: bib0011 article-title: Mutual visibility by asynchronous robots on infinite grid publication-title: Algorithms for Sensor Systems - ALGOSENSORS 2018 – volume: 9 start-page: 169 year: 1944 ident: bib0002 article-title: Three point collinearity (solution to problem 4065) publication-title: Am. Math. Mon. – volume: 98 start-page: 177 year: 2018 end-page: 187 ident: bib0014 article-title: A general position problem in graph theory publication-title: Bull. Aust. Math. Soc. – year: 1999 ident: bib0021 article-title: Graph classes: a survey publication-title: Monographs on Discrete Mathematics and Applications – volume: 8 start-page: 32 year: 2018 end-page: 52 ident: bib0006 article-title: Complete visibility for mobile robots with lights tolerating faults publication-title: Int. J. Netw. Comput. – volume: vol. 12049 start-page: 31 year: 2020 ident: 10.1016/j.amc.2021.126850_bib0007 article-title: Optimum algorithm for the mutual visibility problem – start-page: 829 year: 2018 ident: 10.1016/j.amc.2021.126850_bib0009 article-title: Mutual visibility for robots with lights tolerating light faults – year: 1917 ident: 10.1016/j.amc.2021.126850_bib0003 – volume: 9 start-page: 169 issue: 3 year: 1944 ident: 10.1016/j.amc.2021.126850_bib0002 article-title: Three point collinearity (solution to problem 4065) publication-title: Am. Math. Mon. – volume: 359 start-page: 84 year: 2019 ident: 10.1016/j.amc.2021.126850_bib0017 article-title: Characterization of general position sets and its applications to cographs and bipartite graphs publication-title: Appl. Math. Comput. – volume: 8 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.amc.2021.126850_bib0006 article-title: Complete visibility for mobile robots with lights tolerating faults publication-title: Int. J. Netw. Comput. – volume: 76 start-page: 123 year: 2021 ident: 10.1016/j.amc.2021.126850_bib0019 article-title: On general position sets in cartesian products publication-title: Results Math. doi: 10.1007/s00025-021-01438-x – volume: 80 start-page: 127 issue: 1–2 year: 1994 ident: 10.1016/j.amc.2021.126850_bib0012 article-title: Geodesic convexity in discrete spaces publication-title: J. Inf. Sci. doi: 10.1016/0020-0255(94)90060-4 – start-page: 85 year: 1972 ident: 10.1016/j.amc.2021.126850_bib0024 article-title: Reducibility among combinatorial problems – volume: 108 start-page: 5 issue: 1–4 year: 1998 ident: 10.1016/j.amc.2021.126850_bib0013 article-title: Geodesic visibility in graphs publication-title: J. Inf. Sci. doi: 10.1016/S0020-0255(98)10063-4 – volume: 17 start-page: 935 issue: 3 year: 2020 ident: 10.1016/j.amc.2021.126850_bib0018 article-title: Characterization of classes of graphs with large general position number publication-title: AKCE Int. J. GraphsComb. doi: 10.1016/j.akcej.2019.08.008 – start-page: 238 year: 2019 ident: 10.1016/j.amc.2021.126850_bib0010 article-title: Sublinear-time mutual visibility for fat oblivious robots – volume: 46 start-page: 156 year: 1893 ident: 10.1016/j.amc.2021.126850_bib0001 article-title: Mathematical question 11851 publication-title: Educ. Times – volume: 254 start-page: 392 year: 2017 ident: 10.1016/j.amc.2021.126850_bib0005 article-title: Mutual visibility by luminous robots without collisions publication-title: Inf. Comput. doi: 10.1016/j.ic.2016.09.005 – volume: 163 start-page: 339 issue: 4 year: 2018 ident: 10.1016/j.amc.2021.126850_bib0016 article-title: The graph theory general position problem on some interconnection networks publication-title: Fundam. Inform. doi: 10.3233/FI-2018-1748 – volume: 41 start-page: 182 issue: 2 year: 1986 ident: 10.1016/j.amc.2021.126850_bib0023 article-title: Distance-hereditary graphs publication-title: J. Comb. Theory Ser. B doi: 10.1016/0095-8956(86)90043-2 – volume: 160 start-page: 2669 issue: 18 year: 2012 ident: 10.1016/j.amc.2021.126850_bib0025 article-title: Distance-hereditary comparability graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2012.02.021 – year: 2008 ident: 10.1016/j.amc.2021.126850_bib0004 – volume: 98 start-page: 177 year: 2018 ident: 10.1016/j.amc.2021.126850_bib0014 article-title: A general position problem in graph theory publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972718000473 – start-page: 733 year: 2018 ident: 10.1016/j.amc.2021.126850_bib0020 article-title: Complete visitability for autonomous robots on graphs – volume: vol. 11410 start-page: 83 year: 2018 ident: 10.1016/j.amc.2021.126850_bib0011 article-title: Mutual visibility by asynchronous robots on infinite grid – volume: 4 start-page: 135 year: 2016 ident: 10.1016/j.amc.2021.126850_bib0015 article-title: The geodesic irredundant sets in graphs publication-title: Int. J. Math. Comb. – year: 1969 ident: 10.1016/j.amc.2021.126850_bib0022 – year: 1999 ident: 10.1016/j.amc.2021.126850_bib0021 article-title: Graph classes: a survey doi: 10.1137/1.9780898719796 – volume: 850 start-page: 116 year: 2021 ident: 10.1016/j.amc.2021.126850_bib0008 article-title: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.10.033 |
| SSID | ssj0007614 |
| Score | 2.5894015 |
| Snippet | Let G=(V,E) be a graph and P⊆V a set of points. Two points are mutually visible if there is a shortest path between them without further points. P is a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126850 |
| SubjectTerms | Computational complexity Graph classes Graph invariant Mutual visibility |
| Title | Mutual visibility in graphs |
| URI | https://dx.doi.org/10.1016/j.amc.2021.126850 |
| Volume | 419 |
| WOSCitedRecordID | wos000819909500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA7qeNCDuKKOSg-elA5t02mSo7iLiuAocytZYQatwywyP9-Xpp3FDRW8lFKatH1fm34vee97CO0bI2Ks6sbXPJB-rJjxmQ7rvsI0EZEwMsijfB-vye0tbTbZXSGC0MvLCZAso8Mh6_wr1HAMwLaps7-Ae9QpHIB9AB22ADtsfwT8zSBPCbFJ43nga57Yl-tS9yaZaEk_n0e6rb0yx60zmF6fP2nZYDDD8yrdh-dcdG1W-uR8AbiaVpiwPp7EKhNZpuIsrSfj4yDAkwNj7AazD4Os8_fbNf5sNSCjsBZGCXXyse-0q-9tv7ZbcCzt1Ek8iyoRqTMYfipHl6fNq9FPkyROhr28j3IBOg_Fe3ehzynEBC1oLKOlgs97Rw6HFTSjs1W0eDM26hqqOkS8MSJeK_McIuvo4ey0cXzhFzUpfBkx0oe_FseJCogMuE40NgQIHzFYAG9VQgZMMC5FqKhWdkrNEE7Bn1SUYEZlKKXCG2gue8n0JvKwoRwzSYyJ7OqzoCbSOLS1xDh8JUJtoaB8zFQWgu22bshTWkbmtVOwTGotkzrLbKGDUZOOUyv57uS4tF1a0C1Ho1IA-utm239rVkUL47dxB831uwO9i-bla7_V6-4Vr8MbiHxMxQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+visibility+in+graphs&rft.jtitle=Applied+mathematics+and+computation&rft.au=Di+Stefano%2C+Gabriele&rft.date=2022-04-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=419&rft_id=info:doi/10.1016%2Fj.amc.2021.126850&rft.externalDocID=S0096300321009334 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |