Algorithms for solving linear systems over cyclotomic fields

We consider the problem of solving a linear system A x = b over a cyclotomic field. Cyclotomic fields are special in that we can easily find a prime p for which the minimal polynomial m ( z ) for the field factors into a product of distinct linear factors. This makes it possible to develop fast modu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 45; číslo 9; s. 902 - 917
Hlavní autoři: Chen, Liang, Monagan, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2010
Témata:
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of solving a linear system A x = b over a cyclotomic field. Cyclotomic fields are special in that we can easily find a prime p for which the minimal polynomial m ( z ) for the field factors into a product of distinct linear factors. This makes it possible to develop fast modular algorithms. We give two output sensitive modular algorithms, one using multiple primes and Chinese remaindering, the other using linear p -adic lifting. Both use rational reconstruction to recover the rational coefficients in the solution vector. We also give a third algorithm which computes the solutions as ratios of two determinants modulo m ( z ) using Chinese remaindering only. Because this representation is d = deg m ( z ) times more compact in general, we can compute it the fastest. We have implemented the algorithms in Maple. Our benchmarks show that the third method is fastest on random inputs, but on real inputs arising from problems in computational group theory, the first two methods are faster because the solutions have small rational coefficients.
AbstractList We consider the problem of solving a linear system A x = b over a cyclotomic field. Cyclotomic fields are special in that we can easily find a prime p for which the minimal polynomial m ( z ) for the field factors into a product of distinct linear factors. This makes it possible to develop fast modular algorithms. We give two output sensitive modular algorithms, one using multiple primes and Chinese remaindering, the other using linear p -adic lifting. Both use rational reconstruction to recover the rational coefficients in the solution vector. We also give a third algorithm which computes the solutions as ratios of two determinants modulo m ( z ) using Chinese remaindering only. Because this representation is d = deg m ( z ) times more compact in general, we can compute it the fastest. We have implemented the algorithms in Maple. Our benchmarks show that the third method is fastest on random inputs, but on real inputs arising from problems in computational group theory, the first two methods are faster because the solutions have small rational coefficients.
Author Chen, Liang
Monagan, Michael
Author_xml – sequence: 1
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  email: lchenb@cecm.sfu.ca
– sequence: 2
  givenname: Michael
  surname: Monagan
  fullname: Monagan, Michael
  email: mmonagan@sfu.ca
BookMark eNp9j01LAzEQhoNUsK3-AG_7B3ad2TTNLnopxS8oeFHwFtLspGbZbiQJhf57U-rJgzAwvAzP8D4zNhn9SIzdIlQIuLzrqz6aqoacQVQAeMGmCK0oGyE-J2wKciFLiRKv2CzGHgDaBRdT9rAadj649LWPhfWhiH44uHFXDG4kneMxJsonf6BQmKMZfPJ7ZwrraOjiNbu0eoh087vn7OPp8X39Um7enl_Xq01p6lamMvcAJCMs76Du7NbKBuu2QcstLbnucmstzJZbXIqFxTxNLRrRIudcI275nOH5rwk-xkBWfQe31-GoENRJX_Uq66uTvgKhsn5m5B_GuKST82MK2g3_kvdnkrLSwVFQ0TgaDXUukEmq8-4f-gf_FHb0
CitedBy_id crossref_primary_10_1145_1916461_1916463
Cites_doi 10.1006/jsco.1995.1051
10.1090/S0002-9904-1946-08538-9
10.1016/S0747-7171(86)80021-9
10.1007/BF01459082
10.1016/j.jco.2005.04.002
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jsc.2010.05.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 917
ExternalDocumentID 10_1016_j_jsc_2010_05_001
S0747717110000714
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-10901ec5f3d02dfbf7812981f3fe63ad201a5cb3f1654f14f18258591333a11b3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280618000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Sat Nov 29 02:50:58 EST 2025
Tue Nov 18 22:35:09 EST 2025
Fri Feb 23 02:31:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Linear systems
Cyclotomic polynomials
Modular algorithms
Cyclotomic fields
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-10901ec5f3d02dfbf7812981f3fe63ad201a5cb3f1654f14f18258591333a11b3
OpenAccessLink https://dx.doi.org/10.1016/j.jsc.2010.05.001
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_jsc_2010_05_001
crossref_citationtrail_10_1016_j_jsc_2010_05_001
elsevier_sciencedirect_doi_10_1016_j_jsc_2010_05_001
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of symbolic computation
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dixon (b5) 1982; 40
Storjohann (b16) 2005; 21
Gallian (b8) 2001
Goldstein, Graham (b10) 1974; 1
Chen, Storjohann (b3) 2005
Eberly, Giesbrecht, Giorgi, Storjohann, Villard (b6) 2007
Char, Fee, Geddes, Gonnet, Monagan (b2) 1986; 2
Collins, Encarnacion (b4) 1995; 20
Erdos, Vaughn (b7) 1946; 52
Maier (b13) 1996; vol. 2
Wang (b17) 1981
Huang (b11) 1984
Geddes, Czapor, Labahn (b9) 1992
Cabay (b1) 1971
Koshiba, Y., 1998 On the calculations of the coefficients of the cyclotomic polynomials. Kagoshima Univ. Faculty of Science Report No. 31, 31–44.
Moenck, Carter (b14) 1979; vol. 72
Monagan (b15) 2004
Char (10.1016/j.jsc.2010.05.001_b2) 1986; 2
Wang (10.1016/j.jsc.2010.05.001_b17) 1981
10.1016/j.jsc.2010.05.001_b12
Collins (10.1016/j.jsc.2010.05.001_b4) 1995; 20
Dixon (10.1016/j.jsc.2010.05.001_b5) 1982; 40
Moenck (10.1016/j.jsc.2010.05.001_b14) 1979; vol. 72
Gallian (10.1016/j.jsc.2010.05.001_b8) 2001
Geddes (10.1016/j.jsc.2010.05.001_b9) 1992
Monagan (10.1016/j.jsc.2010.05.001_b15) 2004
Goldstein (10.1016/j.jsc.2010.05.001_b10) 1974; 1
Storjohann (10.1016/j.jsc.2010.05.001_b16) 2005; 21
Cabay (10.1016/j.jsc.2010.05.001_b1) 1971
Chen (10.1016/j.jsc.2010.05.001_b3) 2005
Maier (10.1016/j.jsc.2010.05.001_b13) 1996; vol. 2
Huang (10.1016/j.jsc.2010.05.001_b11) 1984
Erdos (10.1016/j.jsc.2010.05.001_b7) 1946; 52
Eberly (10.1016/j.jsc.2010.05.001_b6) 2007
References_xml – year: 1992
  ident: b9
  article-title: Algorithms for Computer Algebra
– volume: vol. 2
  start-page: 633
  year: 1996
  end-page: 639
  ident: b13
  article-title: The size of the coefficients of cyclotomic polynomials
  publication-title: Analytic Number Theory
– reference: Koshiba, Y., 1998 On the calculations of the coefficients of the cyclotomic polynomials. Kagoshima Univ. Faculty of Science Report No. 31, 31–44.
– start-page: 143
  year: 2007
  end-page: 150
  ident: b6
  article-title: Faster inversion and other black box matrix computation using efficient block projections
  publication-title: Proc. ISSAC ’07
– start-page: 175
  year: 1984
  end-page: 182
  ident: b11
  article-title: Factorization of polynomials over finite fields and factorization of primes in algebraic number fields
  publication-title: Proc. STOC ’84
– year: 2001
  ident: b8
  article-title: Contemporary Abstract Algebra
– volume: 2
  start-page: 179
  year: 1986
  end-page: 200
  ident: b2
  article-title: A tutorial introduction to Maple
  publication-title: J. Symbolic Comput.
– start-page: 92
  year: 2005
  end-page: 99
  ident: b3
  article-title: A BLAS based C library for exact linear algebra on integer matrices
  publication-title: Proc. ISSAC ’05
– volume: 1
  start-page: 394
  year: 1974
  end-page: 395
  ident: b10
  article-title: A Hadamard-type bound on the coefficients of a determinant of polynomials
  publication-title: SIAM Rev.
– volume: 21
  start-page: 605
  year: 2005
  end-page: 650
  ident: b16
  article-title: The shifted number system for fast linear algebra on integer matrices
  publication-title: J. Complexity
– volume: 40
  start-page: 137
  year: 1982
  end-page: 141
  ident: b5
  article-title: Exact solution of linear equations using
  publication-title: Numer. Math.
– start-page: 392
  year: 1971
  end-page: 398
  ident: b1
  article-title: Exact solution of linear equations
  publication-title: Proc. SYMSAC ’71
– volume: vol. 72
  start-page: 65
  year: 1979
  end-page: 72
  ident: b14
  article-title: Approximate algorithms to drive exact solutions to systems of linear equations
  publication-title: Proc. EUROSAM ’79
– volume: 20
  start-page: 287
  year: 1995
  end-page: 297
  ident: b4
  article-title: Efficient rational number reconstruction
  publication-title: J. Symbolic Comput.
– start-page: 212
  year: 1981
  end-page: 217
  ident: b17
  article-title: A
  publication-title: Proc. SYMSAC ’81
– start-page: 243
  year: 2004
  end-page: 249
  ident: b15
  article-title: Maximal quotient rational reconstruction: an almost optimal algorithm for rational reconstruction
  publication-title: Proc. ISSAC ’04
– volume: 52
  start-page: 179
  year: 1946
  end-page: 184
  ident: b7
  article-title: On the coefficients of the cyclotomic polynomials
  publication-title: Bull. Amer. Math. Soc.
– start-page: 143
  year: 2007
  ident: 10.1016/j.jsc.2010.05.001_b6
  article-title: Faster inversion and other black box matrix computation using efficient block projections
– volume: 20
  start-page: 287
  year: 1995
  ident: 10.1016/j.jsc.2010.05.001_b4
  article-title: Efficient rational number reconstruction
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1995.1051
– ident: 10.1016/j.jsc.2010.05.001_b12
– year: 1992
  ident: 10.1016/j.jsc.2010.05.001_b9
– year: 2001
  ident: 10.1016/j.jsc.2010.05.001_b8
– volume: 1
  start-page: 394
  year: 1974
  ident: 10.1016/j.jsc.2010.05.001_b10
  article-title: A Hadamard-type bound on the coefficients of a determinant of polynomials
  publication-title: SIAM Rev.
– start-page: 175
  year: 1984
  ident: 10.1016/j.jsc.2010.05.001_b11
  article-title: Factorization of polynomials over finite fields and factorization of primes in algebraic number fields
– volume: 52
  start-page: 179
  year: 1946
  ident: 10.1016/j.jsc.2010.05.001_b7
  article-title: On the coefficients of the cyclotomic polynomials
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1946-08538-9
– volume: 2
  start-page: 179
  issue: 2
  year: 1986
  ident: 10.1016/j.jsc.2010.05.001_b2
  article-title: A tutorial introduction to Maple
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(86)80021-9
– volume: 40
  start-page: 137
  year: 1982
  ident: 10.1016/j.jsc.2010.05.001_b5
  article-title: Exact solution of linear equations using p-adic expansions
  publication-title: Numer. Math.
  doi: 10.1007/BF01459082
– start-page: 392
  year: 1971
  ident: 10.1016/j.jsc.2010.05.001_b1
  article-title: Exact solution of linear equations
– start-page: 92
  year: 2005
  ident: 10.1016/j.jsc.2010.05.001_b3
  article-title: A BLAS based C library for exact linear algebra on integer matrices
– volume: vol. 2
  start-page: 633
  year: 1996
  ident: 10.1016/j.jsc.2010.05.001_b13
  article-title: The size of the coefficients of cyclotomic polynomials
– start-page: 212
  year: 1981
  ident: 10.1016/j.jsc.2010.05.001_b17
  article-title: A p-adic algorithm for univariate partial fractions
– volume: vol. 72
  start-page: 65
  year: 1979
  ident: 10.1016/j.jsc.2010.05.001_b14
  article-title: Approximate algorithms to drive exact solutions to systems of linear equations
– start-page: 243
  year: 2004
  ident: 10.1016/j.jsc.2010.05.001_b15
  article-title: Maximal quotient rational reconstruction: an almost optimal algorithm for rational reconstruction
– volume: 21
  start-page: 605
  year: 2005
  ident: 10.1016/j.jsc.2010.05.001_b16
  article-title: The shifted number system for fast linear algebra on integer matrices
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2005.04.002
SSID ssj0009435
Score 1.8602177
Snippet We consider the problem of solving a linear system A x = b over a cyclotomic field. Cyclotomic fields are special in that we can easily find a prime p for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 902
SubjectTerms Cyclotomic fields
Cyclotomic polynomials
Linear systems
Modular algorithms
Title Algorithms for solving linear systems over cyclotomic fields
URI https://dx.doi.org/10.1016/j.jsc.2010.05.001
Volume 45
WOSCitedRecordID wos000280618000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BT9swFLYG7MCFMcYEGyAfOFFliuM4jiUuFQIBmhAHkHqLYsfuVpUUkTLBv-c5tpsCKxqHSVVURY3T5Ht6fn7-3vcQ2s9kqY3K04gRbqKUaGIlb0mUyFLBhJYJzcu22QS_uMgHA3Hp-3c2bTsBXtf5w4O4_a9QwzkA25bOvgPu2aBwAr4D6HAE2OH4T8D3x8MJrPh_OaWFHtyszRnYcLIMys1NzzI3e-pRjSdTW5fca5lszYJQtXm8kVY_uCWg3z_fvD_y5R0_wc6GM_ggvh-Wr3j5PrtgN8ZFyC44JwTLjQiWfGTeYzoBSG8ZYs79iTiZm0mFq8p85aRdvmD0Y9Qoz62zeS3SzUhhF_7FRDWjDwZm2qiAIQo7RBEzy85bQisJZwK820r_7Hhw3skvp67VaniasL_dMv1e_I-_RyhzUcfVOlrzGOC-g_kz-qDrDfQptOLA3jN_QYcd6hhQxx517FDHHnVsUccd6tihvomuT46vjk4j3xgjUong08iSaYlWzNAqTiojDYcwTeTEUKMzWlbwMCVTkhpbqmYIfPKEWaFCSmlJiKRf0XI9qfUWwspkUos0phU4ZiK15JIxzaqEEE5llW2jOLyMQnnVeNu8ZFwsBGEbHcwuuXWSKW_9OA1vuPAxn4vlCrCWxZd9e889vqPVzrR30PL07l7voo_qz_R3c7fnTeUJobt3OA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+solving+linear+systems+over+cyclotomic+fields&rft.jtitle=Journal+of+symbolic+computation&rft.au=Chen%2C+Liang&rft.au=Monagan%2C+Michael&rft.date=2010-09-01&rft.issn=0747-7171&rft.volume=45&rft.issue=9&rft.spage=902&rft.epage=917&rft_id=info:doi/10.1016%2Fj.jsc.2010.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2010_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon