Tikhonov regularization with MTRSVD method for solving large-scale discrete ill-posed problems

Regularization is possibly the most popular method for solving discrete ill-posed problems, whose solution is less sensitive to the error in the observed vector in the right hand than the original solution. This paper presents a new modified truncated randomized singular value decomposition (TR-MTRS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 405; S. 113969
Hauptverfasser: Huang, Guangxin, Liu, Yuanyuan, Yin, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.05.2022
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Regularization is possibly the most popular method for solving discrete ill-posed problems, whose solution is less sensitive to the error in the observed vector in the right hand than the original solution. This paper presents a new modified truncated randomized singular value decomposition (TR-MTRSVD) method for large Tikhonov regularization in standard form. The proposed TR-MTRSVD algorithm introduces the idea of randomized algorithm into the improved truncated singular value decomposition (MTSVD) method to solve large Tikhonov regularization problems. The approximation matrix Ãℓ produced by randomized SVD is replaced by the closest matrix Ãk̃ in a unitarily invariant matrix norm with the same spectral condition number. The regularization parameters are determined by the discrepancy principle. Numerical examples show the effectiveness and efficiency of the proposed TR-MTRSVD algorithm for large Tikhonov regularization problems.
AbstractList Regularization is possibly the most popular method for solving discrete ill-posed problems, whose solution is less sensitive to the error in the observed vector in the right hand than the original solution. This paper presents a new modified truncated randomized singular value decomposition (TR-MTRSVD) method for large Tikhonov regularization in standard form. The proposed TR-MTRSVD algorithm introduces the idea of randomized algorithm into the improved truncated singular value decomposition (MTSVD) method to solve large Tikhonov regularization problems. The approximation matrix Ãℓ produced by randomized SVD is replaced by the closest matrix Ãk̃ in a unitarily invariant matrix norm with the same spectral condition number. The regularization parameters are determined by the discrepancy principle. Numerical examples show the effectiveness and efficiency of the proposed TR-MTRSVD algorithm for large Tikhonov regularization problems.
ArticleNumber 113969
Author Huang, Guangxin
Yin, Feng
Liu, Yuanyuan
Author_xml – sequence: 1
  givenname: Guangxin
  orcidid: 0000-0003-3220-3083
  surname: Huang
  fullname: Huang, Guangxin
  email: huangx@cdut.edu.cn
  organization: Geomathematics Key Laboratory of Sichuan, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, PR China
– sequence: 2
  givenname: Yuanyuan
  surname: Liu
  fullname: Liu, Yuanyuan
  email: wuyouxiaoxiaoxin@163.com
  organization: Geomathematics Key Laboratory of Sichuan, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, PR China
– sequence: 3
  givenname: Feng
  surname: Yin
  fullname: Yin, Feng
  email: fyin@suse.edu.cn
  organization: College of Mathematical and statistics, Sichuan University of Science and Engineering, Zigong, 643000, PR China
BookMark eNp9kMtOwzAURC1UJErhA9j5BxJs5-FErFB5SkVIUFhiOfZ16-LElR2K4OtJKSsWXc1mzkhzjtGo8x0gdEZJSgktz1epkm3KCKMppVld1gdoTCteJ5TzaoTGJOM8ITnjR-g4xhUhpKxpPkZvc_u-9J3f4ACLDyeD_Za99R3-tP0SP8yfnl-vcAv90mtsfMDRu43tFnhoLiCJSjrA2kYVoAdsnUvWPoLG6-AbB208QYdGuginfzlBLzfX8-ldMnu8vZ9ezhLFat4nlHBeyiJvtMyNyk0FmjQ144wCU00Npakr2ihTZrrJdG5YkWWQSQZVw2Whi2yC6G5XBR9jACPWwbYyfAlKxFaQWIlBkNgKEjtBA8P_Mcr2v-f7IK3bS17sSBgubSwEEZWFToG2AVQvtLd76B_cqYQn
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105467
crossref_primary_10_1155_2023_5883003
crossref_primary_10_1016_j_apnum_2024_06_010
crossref_primary_10_1109_TCI_2024_3365371
crossref_primary_10_1016_j_eswa_2024_125105
crossref_primary_10_1155_2024_3438237
crossref_primary_10_3390_math12223625
crossref_primary_10_1016_j_eswa_2025_128614
crossref_primary_10_1137_23M1593802
crossref_primary_10_1080_01630563_2025_2517578
crossref_primary_10_1016_j_jmaa_2023_127754
crossref_primary_10_1016_j_carbpol_2023_121497
crossref_primary_10_1016_j_engappai_2024_108617
crossref_primary_10_1016_j_prime_2024_100750
crossref_primary_10_25259_JKSUS_14_2024
crossref_primary_10_1016_j_asoc_2024_112598
crossref_primary_10_1016_j_asoc_2024_111436
crossref_primary_10_3390_app15094778
crossref_primary_10_1155_2022_5188389
crossref_primary_10_1088_1361_6501_ad7eed
crossref_primary_10_1016_j_applthermaleng_2025_127113
crossref_primary_10_1016_j_eswa_2023_120277
crossref_primary_10_1016_j_enganabound_2023_04_013
crossref_primary_10_1007_s10092_023_00549_x
Cites_doi 10.1088/0266-5611/31/8/085008
10.1137/090767911
10.1023/A:1022383005969
10.1137/090771806
10.1016/j.cam.2011.09.039
10.1137/0913066
10.1088/1361-6420/aab92d
10.1137/15M1030200
10.1007/s11075-008-9163-1
10.1088/0266-5611/29/8/085008
10.1002/nla.1938
10.1007/BF01937276
10.1016/j.apnum.2020.08.019
10.1007/s11075-012-9612-8
10.1007/s11075-007-9136-9
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2021.113969
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2021_113969
S0377042721005690
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-10776a54bda4fc4f8ed0b92721e2cb9e6f981bcf63db3d4f2533e3a2e8b7a5d53
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789646800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Tue Nov 18 22:45:28 EST 2025
Sat Nov 29 07:21:44 EST 2025
Fri Feb 23 02:41:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Linear discrete ill-posed problem
Randomized algorithm
Tikhonov regularization
MTSVD
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-10776a54bda4fc4f8ed0b92721e2cb9e6f981bcf63db3d4f2533e3a2e8b7a5d53
ORCID 0000-0003-3220-3083
ParticipantIDs crossref_primary_10_1016_j_cam_2021_113969
crossref_citationtrail_10_1016_j_cam_2021_113969
elsevier_sciencedirect_doi_10_1016_j_cam_2021_113969
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hansen (b15) 1987; 27
Brezinski, Rodriguez, Seatzu (b3) 2008; 49
Noschese, Reichel (b14) 2014; 21
Xiang, Zou (b8) 2013; 29
Avron, Maymounkov, Toledo (b2) 2010; 32
Wei, Xie, Zhang (b10) 2016; 37
Hansen, Sekii, Shibahashi (b11) 1992; 13
Bai, Huang, Lei, Reichel, Yin (b13) 2021; 164
Hansen, Saxild-Hansen (b18) 2012; 236
Calvetti, Golub, Reichel (b6) 1999; 39
Halko, Martinsson, Tropp (b7) 2010; 53
Hansen (b17) 2007; 46
Golub, Van Loan (b16) 2013
Reichel, Rodriguez (b5) 2013; 63
Engl, Hanke, Neubauer (b1) 1996
Kindermann (b4) 2011; 38
Xiang, Zou (b9) 2015; 31
Jia, Yang (b12) 2018; 34
Reichel (10.1016/j.cam.2021.113969_b5) 2013; 63
Hansen (10.1016/j.cam.2021.113969_b17) 2007; 46
Brezinski (10.1016/j.cam.2021.113969_b3) 2008; 49
Engl (10.1016/j.cam.2021.113969_b1) 1996
Golub (10.1016/j.cam.2021.113969_b16) 2013
Hansen (10.1016/j.cam.2021.113969_b11) 1992; 13
Xiang (10.1016/j.cam.2021.113969_b9) 2015; 31
Hansen (10.1016/j.cam.2021.113969_b18) 2012; 236
Bai (10.1016/j.cam.2021.113969_b13) 2021; 164
Halko (10.1016/j.cam.2021.113969_b7) 2010; 53
Noschese (10.1016/j.cam.2021.113969_b14) 2014; 21
Xiang (10.1016/j.cam.2021.113969_b8) 2013; 29
Wei (10.1016/j.cam.2021.113969_b10) 2016; 37
Hansen (10.1016/j.cam.2021.113969_b15) 1987; 27
Avron (10.1016/j.cam.2021.113969_b2) 2010; 32
Jia (10.1016/j.cam.2021.113969_b12) 2018; 34
Kindermann (10.1016/j.cam.2021.113969_b4) 2011; 38
Calvetti (10.1016/j.cam.2021.113969_b6) 1999; 39
References_xml – volume: 37
  start-page: 649
  year: 2016
  end-page: 675
  ident: b10
  article-title: Tikhonov regularization and randomized GSVD
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 236
  start-page: 2167
  year: 2012
  end-page: 2178
  ident: b18
  article-title: AIR tools MATLAB package of algebraic iterative reconstruction methods
  publication-title: J. Comput. Appl. Math.
– volume: 31
  year: 2015
  ident: b9
  article-title: Randomized algorithms for large-scale inverse problems with general Tikhonov regularizations
  publication-title: Inverse Problems
– volume: 63
  start-page: 65
  year: 2013
  end-page: 87
  ident: b5
  article-title: Old and new parameter choice rules for discrete ill-posed problems
  publication-title: Numer. Algorithms
– volume: 38
  start-page: 237
  year: 2011
  end-page: 263
  ident: b4
  article-title: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems
  publication-title: Electron. T. Numer. Ana.
– volume: 13
  start-page: 1142
  year: 1992
  end-page: 1150
  ident: b11
  article-title: The modified truncated SVD method for regularization in general form
  publication-title: SIAM J. Sci. Comput.
– volume: 32
  start-page: 1217
  year: 2010
  end-page: 1236
  ident: b2
  article-title: Blendenpik: supercharging LAPACK’s least-squares solver
  publication-title: SIAM J. Sci. Comput.
– volume: 49
  start-page: 85
  year: 2008
  end-page: 104
  ident: b3
  article-title: Error estimates for linear systems with applications to regularization
  publication-title: Numer. Algorithms
– volume: 39
  start-page: 603
  year: 1999
  end-page: 619
  ident: b6
  article-title: Estimation of the L-curve via lanczos bidiagonalization
  publication-title: BIT
– year: 1996
  ident: b1
  article-title: Regularization of Inverse Problem
– volume: 29
  start-page: 085008
  year: 2013
  end-page: 85030
  ident: b8
  article-title: Regularization with randomized SVD for large-scale discrete inverse problems
  publication-title: Inverse Problems
– volume: 46
  start-page: 189
  year: 2007
  end-page: 194
  ident: b17
  article-title: Regularization tools version 4.0 for Matlab 7.3
  publication-title: Numer. Algorithms
– volume: 34
  year: 2018
  ident: b12
  article-title: Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization
  publication-title: Inverse Problems
– volume: 27
  start-page: 534
  year: 1987
  end-page: 553
  ident: b15
  article-title: The truncated SVD as a method for regularization
  publication-title: BIT
– year: 2013
  ident: b16
  article-title: Matrix Computations
– volume: 164
  start-page: 72
  year: 2021
  end-page: 88
  ident: b13
  article-title: A novel modified TRSVD method for large-scale linear discrete ill-posed problems
  publication-title: Appl. Numer. Math.
– volume: 21
  start-page: 813
  year: 2014
  end-page: 822
  ident: b14
  article-title: A modified truncated singular value decomposition method for discrete ill-posed problems
  publication-title: Numer. Linear. Algebr.
– volume: 53
  start-page: 217
  year: 2010
  end-page: 288
  ident: b7
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
– volume: 38
  start-page: 237
  year: 2011
  ident: 10.1016/j.cam.2021.113969_b4
  article-title: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems
  publication-title: Electron. T. Numer. Ana.
– volume: 31
  year: 2015
  ident: 10.1016/j.cam.2021.113969_b9
  article-title: Randomized algorithms for large-scale inverse problems with general Tikhonov regularizations
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/8/085008
– volume: 32
  start-page: 1217
  year: 2010
  ident: 10.1016/j.cam.2021.113969_b2
  article-title: Blendenpik: supercharging LAPACK’s least-squares solver
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090767911
– year: 1996
  ident: 10.1016/j.cam.2021.113969_b1
– volume: 39
  start-page: 603
  year: 1999
  ident: 10.1016/j.cam.2021.113969_b6
  article-title: Estimation of the L-curve via lanczos bidiagonalization
  publication-title: BIT
  doi: 10.1023/A:1022383005969
– volume: 53
  start-page: 217
  year: 2010
  ident: 10.1016/j.cam.2021.113969_b7
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– volume: 236
  start-page: 2167
  year: 2012
  ident: 10.1016/j.cam.2021.113969_b18
  article-title: AIR tools MATLAB package of algebraic iterative reconstruction methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.09.039
– volume: 13
  start-page: 1142
  year: 1992
  ident: 10.1016/j.cam.2021.113969_b11
  article-title: The modified truncated SVD method for regularization in general form
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0913066
– volume: 34
  year: 2018
  ident: 10.1016/j.cam.2021.113969_b12
  article-title: Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aab92d
– volume: 37
  start-page: 649
  year: 2016
  ident: 10.1016/j.cam.2021.113969_b10
  article-title: Tikhonov regularization and randomized GSVD
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/15M1030200
– volume: 49
  start-page: 85
  year: 2008
  ident: 10.1016/j.cam.2021.113969_b3
  article-title: Error estimates for linear systems with applications to regularization
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9163-1
– volume: 29
  start-page: 085008
  year: 2013
  ident: 10.1016/j.cam.2021.113969_b8
  article-title: Regularization with randomized SVD for large-scale discrete inverse problems
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/8/085008
– volume: 21
  start-page: 813
  year: 2014
  ident: 10.1016/j.cam.2021.113969_b14
  article-title: A modified truncated singular value decomposition method for discrete ill-posed problems
  publication-title: Numer. Linear. Algebr.
  doi: 10.1002/nla.1938
– volume: 27
  start-page: 534
  year: 1987
  ident: 10.1016/j.cam.2021.113969_b15
  article-title: The truncated SVD as a method for regularization
  publication-title: BIT
  doi: 10.1007/BF01937276
– volume: 164
  start-page: 72
  year: 2021
  ident: 10.1016/j.cam.2021.113969_b13
  article-title: A novel modified TRSVD method for large-scale linear discrete ill-posed problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2020.08.019
– year: 2013
  ident: 10.1016/j.cam.2021.113969_b16
– volume: 63
  start-page: 65
  year: 2013
  ident: 10.1016/j.cam.2021.113969_b5
  article-title: Old and new parameter choice rules for discrete ill-posed problems
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-012-9612-8
– volume: 46
  start-page: 189
  year: 2007
  ident: 10.1016/j.cam.2021.113969_b17
  article-title: Regularization tools version 4.0 for Matlab 7.3
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-007-9136-9
SSID ssj0006914
Score 2.4739943
Snippet Regularization is possibly the most popular method for solving discrete ill-posed problems, whose solution is less sensitive to the error in the observed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113969
SubjectTerms Linear discrete ill-posed problem
MTSVD
Randomized algorithm
Tikhonov regularization
Title Tikhonov regularization with MTRSVD method for solving large-scale discrete ill-posed problems
URI https://dx.doi.org/10.1016/j.cam.2021.113969
Volume 405
WOSCitedRecordID wos000789646800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211214
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEJ-iLSAfOFEFZe3Ejo8VlC-pFYIFLRciJ3YgJWRXm91l-feMYztJC4vogUsUWYlj-T3ZM5PxG4QeF4xrUjAZSCEJOCiUBELoMIBBs0xzQilTbbEJfnqaTKfi7Wj0w5-FWVe8rpPNRsz_K9TQBmCbo7OXgLvrFBrgHkCHK8AO138Dvvz2dVbP1oeLtsz8wh20tBHXk8m79x-fu7rRbYohDKaNKVQmJTxoADJt_tqAMbnUh2VVBfNZo42WQFt4ptlizOZtcQgfWGwFYJ15-73ThW16Crkg9Utzsyn7rKBy1W4J0Pxz1dP2k9U5gFn-MgxSgH9r9E3jwVpGOQ9MWY_hwhuF8WDpHIMtaqu2_Laq2wDDGXjsRjuAjJ_2z55X0L6ws3X5hj6V7SyFLlLTRWq7uIJ2CY8FrOi7R6-Pp2-6TZwJKwvvx-1_iLepgRfG8WeTZmCmTG6iGw4SfGR5cQuNdH0bXT_pQbiDPnuG4PMMwYYh2DIEW4ZgYAh2DMEDhmDPENwxBHuG3EUfXhxPnr0KXJmNICeCL2Ej5pzJOMqUjIo8KhKtwkwQTsaa5JnQrBDg2-QFoyqjKioIeAiaSqKTjMtYxfQe2qlntb6PMEuoKoiKJXix4PdrkQuSSK4YDZWMWbaHQj9Tae406E0plCrditAeetK9MrcCLH97OPLTnzoL0lqGKVBp-2v7l_nGAbrWM_wB2lkuVvohupqvl2WzeOR49Asr6pRg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tikhonov+regularization+with+MTRSVD+method+for+solving+large-scale+discrete+ill-posed+problems&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Huang%2C+Guangxin&rft.au=Liu%2C+Yuanyuan&rft.au=Yin%2C+Feng&rft.date=2022-05-15&rft.issn=0377-0427&rft.volume=405&rft.spage=113969&rft_id=info:doi/10.1016%2Fj.cam.2021.113969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2021_113969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon