Combating Spurious Correlations in Loose‐fitting Garment Animation Through Joint‐Specific Feature Learning
We address the 3D animation of loose‐fitting garments from a sequence of body motions. State‐of‐the‐art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1....
Saved in:
| Published in: | Computer graphics forum Vol. 42; no. 7 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.10.2023
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We address the 3D animation of loose‐fitting garments from a sequence of body motions. State‐of‐the‐art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint‐wise manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity. In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint‐specific pose space deformation (PSD) to decompose the high‐dimensional displacements as the combination of dynamic details caused by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover, garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness of our approach. The code is available at https://github.com/qiji77/JointNet. |
|---|---|
| AbstractList | We address the 3D animation of loose‐fitting garments from a sequence of body motions. State‐of‐the‐art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint‐wise manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity. In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint‐specific pose space deformation (PSD) to decompose the high‐dimensional displacements as the combination of dynamic details caused by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover, garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness of our approach. The code is available at
https://github.com/qiji77/JointNet
. We address the 3D animation of loose‐fitting garments from a sequence of body motions. State‐of‐the‐art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint‐wise manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity. In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint‐specific pose space deformation (PSD) to decompose the high‐dimensional displacements as the combination of dynamic details caused by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover, garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness of our approach. The code is available at https://github.com/qiji77/JointNet. |
| Author | Diao, Junqi Jiang, Haiyong Xiao, Jun He, Yihong |
| Author_xml | – sequence: 1 givenname: Junqi orcidid: 0000-0001-7031-7706 surname: Diao fullname: Diao, Junqi organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Jun orcidid: 0000-0002-1799-3948 surname: Xiao fullname: Xiao, Jun email: xiaojun@ucas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Yihong orcidid: 0000-0001-8694-7649 surname: He fullname: He, Yihong email: xiaojun@ucas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Haiyong orcidid: 0000-0001-7348-5844 surname: Jiang fullname: Jiang, Haiyong email: haiyong.jiang@ucas.ac.cn organization: University of Chinese Academy of Sciences |
| BookMark | eNp1kLFOwzAQhi0EEm1h4A0sMTGktZPYsccqogUUiaFljhzjtK5SO9iJUDcegWfkSTBpJwRezjp9353uH4NzY40C4AajKQ5vJjf1FKc84WdghFOaRYwSfg5GCId_hgi5BGPvdwihNKNkBExu95XotNnAVds7bXsPc-ucakLTGg-1gYW1Xn19fNa6G8ClcHtlOjg3ej9QcL11tt9s4ZPVpgvkqlVS11rChRJd7xQslHAmuFfgohaNV9enOgEvi_t1_hAVz8vHfF5EMuYZj4hEcRqnQiRZHTPMVVWJRCIebqm4JAKRV84pq7IME8ZimqKaMCQEZZLGlMhkAm6Pc1tn33rlu3Jne2fCyjJmPBiUMhyo2ZGSznrvVF1K3Q0XdU7opsSo_Am1DKGWQ6jBuPtltC6E4A5_sqfp77pRh__BMl8ujsY396qKzQ |
| CitedBy_id | crossref_primary_10_1016_j_gmod_2025_101273 crossref_primary_10_1109_TVCG_2024_3478852 |
| Cites_doi | 10.1109/CVPR52688.2022.00797 10.1145/3450626.3459787 10.1109/3DV53792.2021.00096 10.1145/1187112.1187158 10.1162/neco.1990.2.4.490 10.1109/CVPR.2018.00875 10.1007/978-3-030-58571-6_36 10.1145/3072959.2990496 10.1007/978-3-030-58539-6_36 10.1145/3528223.3530085 10.1145/3355089.3356512 10.1109/ICCV.2019.00883 10.1145/2816795.2818013 10.1109/CVPR46437.2021.00291 10.1109/CVPR42600.2020.00739 10.1109/TPAMI.2020.3010886 10.1007/978-3-7091-6874-5_13 10.1109/CVPR46437.2021.01159 10.1145/2461912.2462020 10.1145/2366145.2366218 10.1109/CVPR.2017.492 10.1109/ICCV48922.2021.00542 10.1109/CVPR52729.2023.01627 10.1145/2185520.2185531 10.1145/3272127.3275005 10.1007/978-3-030-58565-5_21 10.1109/ICCVW54120.2021.00163 10.1109/ICCV48922.2021.01139 10.1145/1275808.1276438 10.1145/3550454.3555469 10.1145/3450626.3459840 10.1111/cgf.14337 10.1145/3430025 10.1109/CVPR52688.2022.01978 10.1016/j.jvcir.2007.01.005 10.1145/280814.280821 10.1109/CVPR52729.2023.00055 10.1109/TVCG.2008.79 10.1145/3478513.3480479 10.1145/3414685.3417763 10.1109/TVCG.2021.3106429 10.1145/37401.37427 10.1109/ICCV.2019.00233 10.1145/344779.344862 10.1109/WACV56688.2023.00445 |
| ContentType | Journal Article |
| Copyright | 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. 2023 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. – notice: 2023 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.14939 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_cgf_14939 CGF14939 |
| Genre | article |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2022T150639; 2021M703162 – fundername: State Key Laboratory of Robotics and Systems (HIT) funderid: SKLRS‐2022‐KF‐11 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: U2003109; U21A20515; 62102393; 62206263; 62271467 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2979-5c02424aa37f2819ebba3c09659b9c5a05d9968b7715882640f580aa68c6265c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001099629000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Tue Aug 12 18:15:38 EDT 2025 Sat Nov 29 03:41:23 EST 2025 Tue Nov 18 21:08:37 EST 2025 Thu Sep 25 07:34:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2979-5c02424aa37f2819ebba3c09659b9c5a05d9968b7715882640f580aa68c6265c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7031-7706 0000-0001-7348-5844 0000-0002-1799-3948 0000-0001-8694-7649 |
| PQID | 2898266681 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2898266681 crossref_citationtrail_10_1111_cgf_14939 crossref_primary_10_1111_cgf_14939 wiley_primary_10_1111_cgf_14939_CGF14939 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2015; 34 2007; 18 2021; 27 2020; 40 1998 2020; 39 1997 2019; 38 2008; 15 2007 2022; 41 2005 2020; 33 2012; 31 2001; 20 1990; 2 2023 2022 2017; 36 2013; 32 2000 2021 2020 1987 2019 2018 2017 2020; 44 2021; 40 2018; 37 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_11_2 Vassilev T. (e_1_2_7_43_2) 2001 e_1_2_7_47_2 e_1_2_7_49_2 e_1_2_7_28_2 Tancik M. (e_1_2_7_40_2) 2020; 33 e_1_2_7_50_2 Deng B. (e_1_2_7_10_2) 2020 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_2 e_1_2_7_37_2 Santesteban I. (e_1_2_7_31_2) 2019 e_1_2_7_39_2 Wang T. Y. (e_1_2_7_48_2) 2019; 38 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 Kim D. (e_1_2_7_19_2) 2013; 32 Wang H. (e_1_2_7_45_2) 2021; 40 e_1_2_7_16_2 Tang M. (e_1_2_7_41_2) 2018; 37 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_46_2 Vidaurre R. (e_1_2_7_44_2) 2020 Osman A. A. (e_1_2_7_26_2) 2020 e_1_2_7_27_2 Provot X. (e_1_2_7_29_2) 1997 Jin N. (e_1_2_7_18_2) 2020 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 Bertiche H. (e_1_2_7_3_2) 2020 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 e_1_2_7_38_2 |
| References_xml | – start-page: 177 year: 1997 end-page: 189 article-title: Collision and self-collision handling in cloth model dedicated to design garments – volume: 36 start-page: 1 issue: 3 year: 2017 end-page: 16 article-title: Quasi-newton methods for real-time simulation of hyperelastic materials publication-title: Acm Transactions on Graphics (TOG) – start-page: 165 year: 2000 end-page: 172 – volume: 40 start-page: 1 issue: 6 year: 2021 end-page: 15 article-title: Dynamic neural garments publication-title: ACM Transactions on Graphics (TOG) – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 14 article-title: Anisotropic elastoplasticity for cloth, knit and hair frictional contact publication-title: ACM Transactions on Graphics (TOG) – volume: 34 start-page: 248:1 issue: 6 year: 2015 end-page: 248:16 article-title: SMPL: A skinned multi-person linear model publication-title: ACM Trans. Graphics (Proc. SIGGRAPH Asia) – year: 2021 – start-page: 612 year: 2020 end-page: 628 article-title: Nasa neural articulated shape approximation – start-page: 11594 year: 2021 end-page: 11604 – start-page: 16965 year: 2023 end-page: 16974 – start-page: 1416 year: 2021 end-page: 1426 – volume: 38 start-page: 1 issue: 6 year: 2019 end-page: 12 article-title: Learning an intrinsic garment space for interactive authoring of garment animation publication-title: ACM Transactions on Graphics (TOG) – start-page: 43 year: 1998 end-page: 54 – volume: 39 start-page: 1 issue: 6 year: 2020 end-page: 15 article-title: P-cloth: interactive complex cloth simulation on multi-gpu systems using dynamic matrix assembly and pipelined implicit integrators publication-title: ACM Transactions on Graphics (TOG) – start-page: 7365 year: 2020 end-page: 7375 – volume: 27 start-page: 4107 issue: 11 year: 2021 end-page: 4118 article-title: Agentdress: Realtime clothing synthesis for virtual agents using plausible deformations publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 8387 year: 2018 end-page: 8397 – volume: 40 start-page: 1 issue: 4 year: 2021 end-page: 14 article-title: Gpu-based simulation of cloth wrinkles at submillimeter levels publication-title: ACM Transactions on Graphics (TOG) – volume: 39 start-page: 135 year: 2020 end-page: 144 article-title: A pixel-based framework for data-driven clothing – start-page: 491 year: 2023 end-page: 500 – start-page: 49 year: 2007 end-page: es – volume: 41 start-page: 1 issue: 4 year: 2022 end-page: 14 article-title: A gpu-based multilevel additive schwarz preconditioner for cloth and deformable body simulation publication-title: ACM Transactions on Graphics (TOG) – start-page: 20427 year: 2022 end-page: 20437 – start-page: 5471 year: 2021 end-page: 5480 – start-page: 598 year: 2020 end-page: 613 article-title: Star: Sparse trained articulated human body regressor – volume: 20 start-page: 260 year: 2001 end-page: 267 article-title: Fast cloth animation on walking avatars – volume: 33 start-page: 7537 year: 2020 end-page: 7547 article-title: Fourier features let networks learn high frequency functions in low dimensional domains publication-title: Advances in Neural Information Processing Systems – start-page: 8739 year: 2019 end-page: 8748 – start-page: 344 year: 2020 end-page: 359 article-title: Cloth3d: clothed 3d humans – volume: 31 start-page: 1 issue: 6 year: 2012 end-page: 10 article-title: Smooth skinning decomposition with rigid bones publication-title: ACM Transactions on Graphics (TOG) – volume: 44 start-page: 181 issue: 1 year: 2020 end-page: 195 article-title: Garnet++: Improving fast and accurate static 3d cloth draping by curvature loss publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 39 year: 2005 end-page: es – volume: 2 start-page: 490 issue: 4 year: 1990 end-page: 501 article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories publication-title: Neural computation – start-page: 1 year: 2022 end-page: 10 – volume: 38 start-page: 355 year: 2019 end-page: 366 article-title: Learning-based animation of clothing for virtual try-on – start-page: 2242 year: 2019 end-page: 2251 – start-page: 4472 year: 2023 end-page: 4481 – start-page: 2886 year: 2021 end-page: 2897 – volume: 39 start-page: 145 year: 2020 end-page: 156 article-title: Fully convolutional graph neural networks for parametric virtual try-on – start-page: 11763 year: 2021 end-page: 11773 – volume: 40 start-page: 1 issue: 1 year: 2020 end-page: 18 article-title: A safe and fast repulsion method for gpu-based cloth self collisions publication-title: ACM Transactions on Graphics (TOG) – start-page: 879 year: 2021 end-page: 888 article-title: Physxnet: A customizable approach for learning cloth dynamics on dressed people – volume: 18 start-page: 109 issue: 2 year: 2007 end-page: 118 article-title: Position based dynamics publication-title: Journal of Visual Communication and Image Representation – start-page: 8140 year: 2022 end-page: 8150 – volume: 41 start-page: 1 issue: 6 year: 2022 end-page: 12 article-title: Motion guided deep dynamic 3d garments publication-title: ACM Transactions on Graphics (TOG) – volume: 31 start-page: 1 issue: 4 year: 2012 end-page: 10 article-title: Drape: Dressing any person publication-title: ACM Transactions on Graphics (ToG) – year: 2023 – volume: 37 start-page: 1 issue: 6 year: 2018 end-page: 10 article-title: I-cloth: Incremental collision handling for gpu-based interactive cloth simulation publication-title: ACM Transactions on Graphics (TOG) – volume: 32 start-page: 1 issue: 4 year: 2013 end-page: 8 article-title: Near-exhaustive precomputation of secondary cloth effects publication-title: ACM Transactions on Graphics (TOG) – volume: 15 start-page: 339 issue: 2 year: 2008 end-page: 350 article-title: Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction publication-title: IEEE transactions on visualization and computer graphics – year: 2017 – volume: 40 start-page: 198 issue: 6 year: 2021 article-title: Pbns: Physically based neural simulation for unsupervised garment pose space deformation publication-title: ACM Transactions on Graphics – start-page: 205 year: 1987 end-page: 214 – ident: e_1_2_7_32_2 doi: 10.1109/CVPR52688.2022.00797 – ident: e_1_2_7_16_2 – volume: 40 start-page: 1 issue: 4 year: 2021 ident: e_1_2_7_45_2 article-title: Gpu-based simulation of cloth wrinkles at submillimeter levels publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3450626.3459787 – ident: e_1_2_7_33_2 doi: 10.1109/3DV53792.2021.00096 – start-page: 145 volume-title: Computer Graphics Forum year: 2020 ident: e_1_2_7_44_2 – ident: e_1_2_7_52_2 doi: 10.1145/1187112.1187158 – ident: e_1_2_7_47_2 doi: 10.1162/neco.1990.2.4.490 – ident: e_1_2_7_2_2 doi: 10.1109/CVPR.2018.00875 – start-page: 612 volume-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16 year: 2020 ident: e_1_2_7_10_2 doi: 10.1007/978-3-030-58571-6_36 – ident: e_1_2_7_20_2 doi: 10.1145/3072959.2990496 – start-page: 260 volume-title: Computer Graphics Forum year: 2001 ident: e_1_2_7_43_2 – start-page: 598 volume-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 year: 2020 ident: e_1_2_7_26_2 doi: 10.1007/978-3-030-58539-6_36 – ident: e_1_2_7_49_2 doi: 10.1145/3528223.3530085 – volume: 38 start-page: 1 issue: 6 year: 2019 ident: e_1_2_7_48_2 article-title: Learning an intrinsic garment space for interactive authoring of garment animation publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3355089.3356512 – ident: e_1_2_7_13_2 doi: 10.1109/ICCV.2019.00883 – ident: e_1_2_7_23_2 doi: 10.1145/2816795.2818013 – ident: e_1_2_7_36_2 doi: 10.1109/CVPR46437.2021.00291 – ident: e_1_2_7_27_2 doi: 10.1109/CVPR42600.2020.00739 – ident: e_1_2_7_12_2 doi: 10.1109/TPAMI.2020.3010886 – start-page: 177 volume-title: Computer Animation and Simulation'97: Proceedings of the Eurographics Workshop in Budapest, Hungary, September 2–3, 1997 year: 1997 ident: e_1_2_7_29_2 doi: 10.1007/978-3-7091-6874-5_13 – ident: e_1_2_7_35_2 doi: 10.1109/CVPR46437.2021.01159 – volume: 32 start-page: 1 issue: 4 year: 2013 ident: e_1_2_7_19_2 article-title: Near-exhaustive precomputation of secondary cloth effects publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/2461912.2462020 – ident: e_1_2_7_22_2 doi: 10.1145/2366145.2366218 – ident: e_1_2_7_42_2 doi: 10.1109/CVPR.2017.492 – ident: e_1_2_7_5_2 doi: 10.1109/ICCV48922.2021.00542 – ident: e_1_2_7_7_2 – ident: e_1_2_7_11_2 doi: 10.1109/CVPR52729.2023.01627 – ident: e_1_2_7_15_2 doi: 10.1145/2185520.2185531 – volume: 37 start-page: 1 issue: 6 year: 2018 ident: e_1_2_7_41_2 article-title: I-cloth: Incremental collision handling for gpu-based interactive cloth simulation publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3272127.3275005 – start-page: 344 volume-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16 year: 2020 ident: e_1_2_7_3_2 doi: 10.1007/978-3-030-58565-5_21 – ident: e_1_2_7_37_2 doi: 10.1109/ICCVW54120.2021.00163 – ident: e_1_2_7_9_2 doi: 10.1109/ICCV48922.2021.01139 – ident: e_1_2_7_14_2 doi: 10.1145/1275808.1276438 – ident: e_1_2_7_51_2 doi: 10.1145/3550454.3555469 – ident: e_1_2_7_17_2 doi: 10.1145/3450626.3459840 – volume: 33 start-page: 7537 year: 2020 ident: e_1_2_7_40_2 article-title: Fourier features let networks learn high frequency functions in low dimensional domains publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_7_54_2 doi: 10.1111/cgf.14337 – ident: e_1_2_7_50_2 doi: 10.1145/3430025 – ident: e_1_2_7_8_2 doi: 10.1109/CVPR52688.2022.01978 – ident: e_1_2_7_25_2 doi: 10.1016/j.jvcir.2007.01.005 – ident: e_1_2_7_6_2 doi: 10.1145/280814.280821 – ident: e_1_2_7_53_2 doi: 10.1109/CVPR52729.2023.00055 – start-page: 355 volume-title: Computer Graphics Forum year: 2019 ident: e_1_2_7_31_2 – ident: e_1_2_7_34_2 doi: 10.1109/TVCG.2008.79 – start-page: 135 volume-title: Computer Graphics Forum year: 2020 ident: e_1_2_7_18_2 – ident: e_1_2_7_4_2 doi: 10.1145/3478513.3480479 – ident: e_1_2_7_24_2 doi: 10.1145/3414685.3417763 – ident: e_1_2_7_46_2 doi: 10.1109/TVCG.2021.3106429 – ident: e_1_2_7_39_2 doi: 10.1145/37401.37427 – ident: e_1_2_7_30_2 doi: 10.1109/ICCV.2019.00233 – ident: e_1_2_7_21_2 doi: 10.1145/344779.344862 – ident: e_1_2_7_28_2 – ident: e_1_2_7_38_2 doi: 10.1109/WACV56688.2023.00445 |
| SSID | ssj0004765 |
| Score | 2.404133 |
| Snippet | We address the 3D animation of loose‐fitting garments from a sequence of body motions. State‐of‐the‐art approaches treat all body joints as a whole to encode... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Animation Apexes CCS Concepts Computing methodologies → Procedural animation Correlation Garments |
| Title | Combating Spurious Correlations in Loose‐fitting Garment Animation Through Joint‐Specific Feature Learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14939 https://www.proquest.com/docview/2898266681 |
| Volume | 42 |
| WOSCitedRecordID | wos001099629000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MzYMe_C1OpwTx4KWwtU3T4mlMO5ExRDfYrSRZKgVpR7t59k_wb_QvMa8_tgkKgrccXtOQ5CXfS16-D-CKIuZWihuUTaVhh6ZlCLzkZUKYtiNcwad2LjbBhkN3MvEea3BTvYUp-CGWB27oGfl6jQ7ORbbm5PIl1G7uWd4GNEw9b-06NG6f_PFg9SySObSi9kbSmJJYCBN5lh9_345WGHMdqeZbjb_7r0buwU6JMEm3mBL7UFPxAWyv8Q4eQqxXAcEx4Zk8zxYppsGSHsp0lIlxJIrJIEky9fn-EUZ5ZjTp8xQPEkk3jorXjmRUSPyQhySK59oyl7IPI0kQVi5SRUru1pcjGPt3o969UQovGNL0mGdQiTu3zbnFQrxoU0JwSyJPjCc8SXmbTnWY5ArGOlQjdMduh9Rtc-64UsdHVFrHUI-TWJ0AsVxHIQSgnOnAi0mhlxhlUV2YdkwV2k24rvo_kCUrOYpjvAZVdKK7MMi7sAmXS9NZQcXxk1GrGsSg9MYs0EGlbqXjuB39u3y4fq8g6PX9vHD6d9Mz2EIV-iLHrwX1ebpQ57Ap3-ZRll6U0_ILPTbnhg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3MTVAf_BanU4P44EthW5umBV_GdJs6h-gGvpUkTUdButFtPvsT_I3-EnP7sU1QEHzLw20aktzk3OTmHIALiphbKW5Q5kvDCuqmIfCSlwlRt2zhCO5bidgE6_Wclxf3sQBX-VuYlB9ifuCGnpGs1-jgeCC95OVyGGg_d013BUqWnka0CKXrp9agu3gXyWyac3sja0zGLISZPPOPv-9HC5C5DFWTvaa19b9WbsNmhjFJI50UO1BQ0S5sLDEP7kGk1wHBMeWZPI9nMSbCkiYKdWSpcSSMSHc0mqjP948gTHKjSZvHeJRIGlGYvnck_VTkh9yNwmiqLRMx-yCUBIHlLFYkY28d7sOgddNvdoxMesGQdZe5BpW4d1ucmyzAqzYlBDclMsW4wpWUV6mvAyVHMFajGqPbVjWgTpVz25E6QqLSPIBiNIrUIRDTsRWCAMqZDr2YFHqRUSbVBb9WV4FVhst8ADyZ8ZKjPMarl8cnugu9pAvLcD43HadkHD8ZVfJR9DJ_nHg6rNSttG2npn-XjNfvFXjNdispHP3d9AzWOv2Hrte97d0fwzpq0qcZfxUoTuOZOoFV-TYNJ_FpNke_ABi463Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBu3g3iA--FLa2aVrwZWzW2xiiDvZWkjQdBelGt_nsT_A3-kvMadM5QUHwLQ-naUhyku8kJ98HcE4RcyvFLcpiabmJ7VgCL3mZELbrCV_w2C3EJlin4_d6wcMcXFZvYUp-iOmBG3pGsV6jg6thnMx4uewn2s8DJ5iHRZcGnnbLxdZj2G1_vYtkHq24vZE1xjALYSbP9OPv-9EXyJyFqsVeE67_r5UbsGYwJmmUk2IT5lS2BaszzIPbkOl1QHBMeSZPw0mOibCkiUIdJjWOpBlpDwYj9fH2nqRFbjS55jkeJZJGlpbvHclzKfJD7gZpNtaWhZh9kkqCwHKSK2LYW_s70A2vnps3lpFesKQdsMCiEvdul3OHJXjVpoTgjkSmmEAEkvIajXWg5AvG6lRjdM-tJdSvce75UkdIVDq7sJANMrUHxPE9hSCAcqZDLyaFXmSUQ3UhrtsqcffhohqASBpecpTHeImq-ER3YVR04T6cTU2HJRnHT0ZH1ShGxh9HkQ4rdSs9z6_r3xXj9XsFUfM6LAoHfzc9heWHVhi1bzv3h7CCkvRlwt8RLIzziTqGJfk6Tkf5iZmin8K16vE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+Spurious+Correlations+in+Loose%E2%80%90fitting+Garment+Animation+Through+Joint%E2%80%90Specific+Feature+Learning&rft.jtitle=Computer+graphics+forum&rft.au=Diao%2C+Junqi&rft.au=Xiao%2C+Jun&rft.au=He%2C+Yihong&rft.au=Jiang%2C+Haiyong&rft.date=2023-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=42&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcgf.14939&rft.externalDBID=10.1111%252Fcgf.14939&rft.externalDocID=CGF14939 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |