The Diamond Laplace for Polygonal and Polyhedral Meshes

We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as polyhedral volume meshes. The main idea is to associate the gradient of functions defined at vertices of the mesh with diamonds: the region spanned by a dual edge togeth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 40; číslo 5; s. 217 - 230
Hlavní autoři: Bunge, A., Botsch, M., Alexa, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.08.2021
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as polyhedral volume meshes. The main idea is to associate the gradient of functions defined at vertices of the mesh with diamonds: the region spanned by a dual edge together with its corresponding primal element — an edge for surface meshes and a face for volumetric meshes. We call the operator resulting from taking the divergence of the gradient Diamond Laplacian. Additional vertices used for the construction are represented as affine combinations of the original vertices, so that the Laplacian operator maps from values at vertices to values at vertices, as is common in geometry processing applications. The construction is local, exactly the same for all types of meshes, and results in a symmetric negative definite operator with linear precision. We show that the accuracy of the Diamond Laplacian is similar or better compared to other discretizations. The greater versatility and generally good behavior come at the expense of an increase in the number of non‐zero coefficients that depends on the degree of the mesh elements.
AbstractList We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as polyhedral volume meshes. The main idea is to associate the gradient of functions defined at vertices of the mesh with diamonds: the region spanned by a dual edge together with its corresponding primal element — an edge for surface meshes and a face for volumetric meshes. We call the operator resulting from taking the divergence of the gradient Diamond Laplacian. Additional vertices used for the construction are represented as affine combinations of the original vertices, so that the Laplacian operator maps from values at vertices to values at vertices, as is common in geometry processing applications. The construction is local, exactly the same for all types of meshes, and results in a symmetric negative definite operator with linear precision. We show that the accuracy of the Diamond Laplacian is similar or better compared to other discretizations. The greater versatility and generally good behavior come at the expense of an increase in the number of non‐zero coefficients that depends on the degree of the mesh elements.
We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as polyhedral volume meshes. The main idea is to associate the gradient of functions defined at vertices of the mesh with diamonds: the region spanned by a dual edge together with its corresponding primal element — an edge for surface meshes and a face for volumetric meshes. We call the operator resulting from taking the divergence of the gradient Diamond Laplacian. Additional vertices used for the construction are represented as affine combinations of the original vertices, so that the Laplacian operator maps from values at vertices to values at vertices, as is common in geometry processing applications. The construction is local, exactly the same for all types of meshes, and results in a symmetric negative definite operator with linear precision. We show that the accuracy of the Diamond Laplacian is similar or better compared to other discretizations. The greater versatility and generally good behavior come at the expense of an increase in the number of non‐zero coefficients that depends on the degree of the mesh elements.
Author Bunge, A.
Botsch, M.
Alexa, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Bunge
  fullname: Bunge, A.
  organization: TU Dortmund
– sequence: 2
  givenname: M.
  orcidid: 0000-0001-9954-120X
  surname: Botsch
  fullname: Botsch, M.
  organization: TU Dortmund
– sequence: 3
  givenname: M.
  orcidid: 0000-0002-9854-8466
  surname: Alexa
  fullname: Alexa, M.
  organization: TU Berlin
BookMark eNp9UD1PwzAQtVCRaAsD_yASE0Pac-KPeESFFqQiGMpsOY7dpErjYqdC_fd1KRMS3HL39D50eiM06FxnELrFMMFxpnptJ5jkTFygISaMpwWjYoCGgOPNgdIrNAphAwCEMzpEfFWb5LFRW9dVyVLtWqVNYp1P3l17WLtOtYmKzAnVpvIRvppQm3CNLq1qg7n52WP0MX9azZ7T5dviZfawTHUmuEgpw2BLbQmxhhUKqLBYk4orTCjNdCQspbxgtiqgJCURmcmAlJmwrOJEVfkY3Z1zd9597k3o5cbtfXwryIyynEIBnEXV_VmlvQvBGyt3vtkqf5AY5KkXGXuR371E7fSXVje96hvX9V417X-Or6Y1h7-j5WwxPzuOd510Ug
CitedBy_id crossref_primary_10_1016_j_cagd_2023_102170
crossref_primary_10_1111_cgf_15133
crossref_primary_10_1145_3618387
crossref_primary_10_1111_cgf_15025
crossref_primary_10_1145_3528223_3530137
crossref_primary_10_1111_cgf_14777
Cites_doi 10.1051/m2an:2005047
10.1016/j.finel.2007.05.009
10.1111/j.1467-8659.2008.01292.x
10.1007/BF02187870
10.1142/S0218202514400065
10.1111/cgf.12709
10.1016/j.jcp.2009.05.002
10.1145/3414685.3417776
10.1111/j.1467-8659.2007.01058.x
10.21236/ADA081688
10.1007/978-3-662-05105-4_2
10.1145/3072959.3073666
10.1145/3313797
10.1145/2010324.1964997
10.1142/S0218202505000832
10.1201/9781315153452
10.1145/2516971.2516977
10.1093/imanum/drr046
10.1145/1391989.1391995
10.1137/120874746
10.1080/10586458.1993.10504266
10.1145/311535.311576
10.1007/s10483-009-1003-3
10.1111/cgf.13931
10.1006/jcph.2000.6466
10.1515/cmam-2013-0011
10.1137/100786046
10.1111/j.1467-8659.2008.01293.x
10.1145/3243651
10.1142/S0218202514400041
10.1111/cgf.14068
ContentType Journal Article
Copyright 2021 The Author(s) Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2021 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 The Author(s) Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2021 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.14369
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 230
ExternalDocumentID 10_1111_cgf_14369
CGF14369
Genre article
GrantInformation_xml – fundername: The Berlin Mathematics Research Center MATH+
  funderid: EXC-2046/1
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2979-5610fbcf44fe68a059f1c4d7a14552ccf4f55786fd80b4b492e204b29f6d74ad3
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687373500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Jul 25 05:48:05 EDT 2025
Sat Nov 29 03:41:20 EST 2025
Tue Nov 18 22:14:14 EST 2025
Wed Jan 22 16:57:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2979-5610fbcf44fe68a059f1c4d7a14552ccf4f55786fd80b4b492e204b29f6d74ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9854-8466
0000-0001-9954-120X
PQID 2563508076
PQPubID 30877
PageCount 14
ParticipantIDs proquest_journals_2563508076
crossref_primary_10_1111_cgf_14369
crossref_citationtrail_10_1111_cgf_14369
wiley_primary_10_1111_cgf_14369_CGF14369
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 34
1987; 2
2020; 39
2011; 30
2019; 38
2011; 33
2007
2008; 35
2014; 24
2003
1993; 2
2012; 32
2016; 35
1979
1999
2009; 30
2013; 32
2017; 36
2013; 13
2013; 51
2008; 27
2000; 160
2019
2017
2014
2005; 15
2009; 228
2007; 43
2005; 39
2007; 26
1988
e_1_2_11_31_2
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_35_2
e_1_2_11_12_2
e_1_2_11_34_2
e_1_2_11_11_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
Dziuk G. (e_1_2_11_21_2) 1988
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_36_2
e_1_2_11_37_2
Goes F. (e_1_2_11_14_2) 2020; 39
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_18_2
e_1_2_11_39_2
Goes F. (e_1_2_11_15_2) 2016; 35
References_xml – volume: 32
  start-page: 152:1
  issue: 5
  year: 2013
  end-page: 152:11
  article-title: Geodesics in heat: A new approach to computing distance based on heat flow
  publication-title: ACM Transactions on Graphics
– volume: 39
  issue: 4
  year: 2020
  article-title: Discrete differential operators on polygonal meshes
  publication-title: ACM Transactions on Graphics
– volume: 160
  start-page: 481
  issue: 2
  year: 2000
  end-page: 499
  article-title: A finite volume method for the approximation of diffusion operators on distorted meshes
  publication-title: J. Comput. Phys.
– volume: 35
  issue: 3
  year: 2008
  article-title: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate
  publication-title: ACM Trans. Math. Softw.
– volume: 32
  start-page: 1574
  issue: 4
  year: 2012
  end-page: 1603
  article-title: On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality
  publication-title: IMA Journal of Numerical Analysis
– volume: 43
  start-page: 847
  issue: 11
  year: 2007
  end-page: 860
  article-title: An n‐sided polygonal smoothed finite element method (nSFEM) for solid mechanics
  publication-title: Finite Elements in Analysis and Design
– volume: 27
  start-page: 1521
  issue: 5
  year: 2008
  end-page: 1529
  article-title: Polyhedral finite elements using harmonic basis functions
  publication-title: Computer Graphics Forum
– volume: 38
  issue: 3
  year: 2019
  article-title: Poly‐spline finite‐element method
  publication-title: ACM Transactions on Graphics
– year: 2003
– start-page: 33
  year: 2007
  end-page: 37
– volume: 27
  start-page: 1513
  issue: 5
  year: 2008
  end-page: 1520
  article-title: Maximum entropy coordinates for arbitrary polytopes
  publication-title: Computer Graphics Forum
– volume: 2
  start-page: 49
  issue: 1
  year: 1987
  end-page: 64
  article-title: A criterion for the affine equivalence of cell complexes in ℝ and convex polyhedra in ℝ
  publication-title: Discrete Comput. Geom.
– volume: 30
  year: 2009
  article-title: A novel virtual node method for polygonal elements
  publication-title: Applied Mathematics and Mechanics
– year: 1979
– volume: 39
  start-page: 1203
  issue: 6
  year: 2005
  end-page: 1249
  article-title: A finite volume method for the Laplace equation on almost arbitrary two‐dimensional grids
  publication-title: Math. Model. Numer. Anal. (M2AN)
– year: 2014
– volume: 36
  issue: 4
  year: 2017
  article-title: Robust extended finite elements for complex cutting of deformables
  publication-title: ACM Transactions on Graphics
– volume: 13
  start-page: 369
  issue: 4
  year: 2013
  end-page: 410
  article-title: On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems
  publication-title: Computational Methods in Applied Mathematics
– volume: 228
  start-page: 5763
  issue: 16
  year: 2009
  end-page: 5786
  article-title: A finite volume method for approximating 3D diffusion operators on general meshes
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 355
  issue: 3
  year: 2007
  end-page: 364
  article-title: A finite element method on convex polyhedra
  publication-title: Computer Graphics Forum
– volume: 39
  start-page: 303
  issue: 2
  year: 2020
  end-page: 313
  article-title: Polygon Laplacian made simple
  publication-title: Computer Graphics Forum
– volume: 24
  start-page: 1665
  issue: 8
  year: 2014
  end-page: 1699
  article-title: Sukumar: New perspectives on polygonal and polyhedral finite element methods
  publication-title: Mathematical Methods Models and Sciences
– volume: 39
  issue: 6
  year: 2020
  article-title: Conforming weighted Delaunay triangulations
  publication-title: ACM Transactions on Graphics
– volume: 34
  start-page: 211
  issue: 5
  year: 2015
  end-page: 218
  article-title: Perfect Laplacians for polygon meshes
  publication-title: Computer Graphics Forum
– volume: 30
  start-page: 102:1
  issue: 4
  year: 2011
  end-page: 102:10
  article-title: Discrete Laplacians on general polygonal meshes
  publication-title: ACM Transactions on Graphics
– start-page: 142
  year: 1988
  end-page: 155
– volume: 15
  start-page: 1533
  issue: 10
  year: 2005
  end-page: 1551
  article-title: A family of mimetic finite difference methods on polygonal and polyhedral meshes
  publication-title: Mathematical Models and Methods in Applied Sciences
– volume: 33
  start-page: 1739
  issue: 4
  year: 2011
  end-page: 1764
  article-title: A 3D discrete duality finite volume method for nonlinear elliptic equations
  publication-title: SIAMJ. Sci. Comput.
– volume: 39
  issue: 5
  year: 2020
  article-title: Properties of Laplace operators for tetrahedral meshes
  publication-title: Computer Graphics Forum
– volume: 35
  start-page: 133:1
  issue: 4
  year: 2016
  end-page: 133:11
  article-title: Subdivision exterior calculus for geometry processing
  publication-title: ACM Transactions on Graphics
– start-page: 35
  year: 2003
  end-page: 57
  article-title: Discrete differential‐geometry operators for triangulated 2‐manifolds
– start-page: 317
  year: 1999
  end-page: 324
– volume: 38
  issue: 3
  year: 2019
  article-title: The vector heat method
  publication-title: ACM Transactions on Graphics
– year: 2017
– volume: 2
  start-page: 15
  year: 1993
  end-page: 36
  article-title: Computing discrete minimal surfaces and their conjugates
  publication-title: Experim. Math.
– year: 2019
– volume: 51
  start-page: 794
  issue: 2
  year: 2013
  end-page: 812
  article-title: Virtual elements for linear elasticity problems
  publication-title: SIAM J. Numer. Anal.
– volume: 24
  start-page: 1575
  issue: 08
  year: 2014
  end-page: 1619
  article-title: Finite volume schemes for diffusion equations: Introduction to and review of modern methods
  publication-title: Mathematical Models and Methods in Applied Sciences
– ident: e_1_2_11_34_2
– ident: e_1_2_11_18_2
  doi: 10.1051/m2an:2005047
– ident: e_1_2_11_16_2
  doi: 10.1016/j.finel.2007.05.009
– ident: e_1_2_11_27_2
  doi: 10.1111/j.1467-8659.2008.01292.x
– ident: e_1_2_11_6_2
  doi: 10.1007/BF02187870
– ident: e_1_2_11_32_2
  doi: 10.1142/S0218202514400065
– ident: e_1_2_11_26_2
  doi: 10.1111/cgf.12709
– ident: e_1_2_11_24_2
  doi: 10.1016/j.jcp.2009.05.002
– ident: e_1_2_11_5_2
  doi: 10.1145/3414685.3417776
– ident: e_1_2_11_38_2
  doi: 10.1111/j.1467-8659.2007.01058.x
– ident: e_1_2_11_22_2
  doi: 10.21236/ADA081688
– ident: e_1_2_11_30_2
  doi: 10.1007/978-3-662-05105-4_2
– ident: e_1_2_11_29_2
  doi: 10.1145/3072959.3073666
– ident: e_1_2_11_25_2
– ident: e_1_2_11_35_2
  doi: 10.1145/3313797
– ident: e_1_2_11_7_2
  doi: 10.1145/2010324.1964997
– ident: e_1_2_11_9_2
  doi: 10.1142/S0218202505000832
– ident: e_1_2_11_28_2
  doi: 10.1201/9781315153452
– start-page: 142
  volume-title: Finite Elements for the Beltrami operator on arbitrary surfaces
  year: 1988
  ident: e_1_2_11_21_2
– ident: e_1_2_11_13_2
  doi: 10.1145/2516971.2516977
– ident: e_1_2_11_3_2
  doi: 10.1093/imanum/drr046
– ident: e_1_2_11_10_2
  doi: 10.1145/1391989.1391995
– ident: e_1_2_11_20_2
  doi: 10.1137/120874746
– ident: e_1_2_11_33_2
  doi: 10.1080/10586458.1993.10504266
– ident: e_1_2_11_17_2
  doi: 10.1145/311535.311576
– ident: e_1_2_11_37_2
  doi: 10.1007/s10483-009-1003-3
– ident: e_1_2_11_39_2
– ident: e_1_2_11_8_2
  doi: 10.1111/cgf.13931
– ident: e_1_2_11_23_2
  doi: 10.1006/jcph.2000.6466
– ident: e_1_2_11_2_2
  doi: 10.1515/cmam-2013-0011
– ident: e_1_2_11_11_2
  doi: 10.1137/100786046
– volume: 39
  issue: 4
  year: 2020
  ident: e_1_2_11_14_2
  article-title: Discrete differential operators on polygonal meshes
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_11_31_2
  doi: 10.1111/j.1467-8659.2008.01293.x
– ident: e_1_2_11_12_2
– ident: e_1_2_11_36_2
  doi: 10.1145/3243651
– ident: e_1_2_11_19_2
  doi: 10.1142/S0218202514400041
– volume: 35
  start-page: 133:1
  issue: 4
  year: 2016
  ident: e_1_2_11_15_2
  article-title: Subdivision exterior calculus for geometry processing
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_11_4_2
  doi: 10.1111/cgf.14068
SSID ssj0004765
Score 2.3750117
Snippet We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as polyhedral volume meshes....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Apexes
CCS Concepts
Computer graphics
Computing methodologies → Mesh models
DDFV
Diamonds
Discrete Differential Geometry
Discrete Laplace Operator
Divergence
Mathematics of computing → Discretization
Operators (mathematics)
Polygons
Title The Diamond Laplace for Polygonal and Polyhedral Meshes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14369
https://www.proquest.com/docview/2563508076
Volume 40
WOSCitedRecordID wos000687373500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_m5oM--C1OpxTxwZfClqVpg0-yWX2YY4iTvZUkTdxgbLJOwf_eS9ZuExQE3xpy_eByl_ul3P0O4AohrZFRZHxVl9SnjGlfBEL7hEkpMBzowNXCvHTCbjcaDHivBDdFLcyCH2L5w816htuvrYMLma05uXo16OZNxjegQtBuaRkq7ae431mVRYYsKKi9LWlMTixkE3mWN38PRyuMuY5UXaiJd__1kXuwkyNM73ZhEvtQ0pMD2F7jHTyEEI3Da49so6HU6wiXl-UhevV60_Hnq8XmnsAZOxrqdIbDR50NdXYE_fjuufXg5x0UfEV4yH0LjoxUhlKjWSQQSpmGomkoLD05UThhAnRZZtIIl0pSTjSpU0m4YWlIRdo8hvJkOtEn4BlG0wbnxlXfGo5ITePexJSxFHtKNqpwXSgyUTm9uO1yMU6KYwbqInG6qMLlUvRtwanxk1CtWI0kd6ssQXzWRERZDxm-zun99wckrfvYXZz-XfQMtojNWXEJfjUoz2fv-hw21cd8lM0ucvv6Am6O0OY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJqgPfovTqUV88KWwdWnagC-yOSd2Y8gmeytpmmyDsck6Bf97L1m7TVAQfGvI9YPLXe7XcPc7gBuEtCryfWWLckRsQqm0ucul7dAo4hgOpGtqYV4Dr932-33WycFdVguz4IdYHrhpzzD7tXZwfSC95uVioNDPq5RtQIGgGbl5KNRfGr1gVRfpUTfj9tasMSmzkM7kWd78PR6tQOY6VDWxprH3v6_ch90UY1r3C6M4gJycHMLOGvPgEXhoHlZ9pFsNxVbATWaWhfjV6kzHnwONzi2OM3o0lPEMhy2ZDGVyDL3GQ7fWtNMeCrZwmMdsDY9UJBQhSlKfI5hSFUFij2uCckfghHLRaamKfVysiDBHOmUSOUzR2CM8rp5AfjKdyFOwFCVxhTFl6m8VQ6wmcXeiQmmSPRFVinCbaTIUKcG47nMxDrMfDdRFaHRRhOul6NuCVeMnoVK2HGHqWEmICK2KmLLsUXydUfzvDwhrjw1zcfZ30SvYanZbQRg8tZ_PYdvRGSwm3a8E-fnsXV7ApviYj5LZZWpsXwH_1NY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mJqIP_hanU4v44Eth69K0AV9ksyrWMcTJ3kqaJttgbGOdgv-9l6zdJigIvjUk_cElX-5LufsO4AoprYp9X9miGhObUCpt7nJpOzSOOboD6ZpcmLfQa7X8bpe1C3CT58LM9SEWP9w0Msx-rQEuJ4laQbnoKcR5nbI1KBGXUYRlqfkSdMJlXqRH3VzbW6vGZMpCOpJncfN3f7QkmatU1fiaYOd_X7kL2xnHtG7ni2IPCnK0D1sryoMH4OHysJoDXWoosUJuIrMs5K9Wezz87Gl2bnHs0a2-TKbYfJZpX6aH0AnuXhsPdlZDwRYO85it6ZGKhSJESepzJFOqJkjicS1Q7gjsUC6ClqrEx8mKCXOkUyWxwxRNPMKT-hEUR-ORPAZLUZLUGFMm_1Yx5GoSdycqlBbZE3GtDNe5JSORCYzrOhfDKD9ooC0iY4syXC6GTuaqGj8NquTTEWXASiNkaHXklFWP4uuM4X9_QNS4D8zFyd-HXsBGuxlE4WPr6RQ2HR3AYqL9KlCcTd_lGayLj9kgnZ5na-0Ly3DUUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Diamond+Laplace+for+Polygonal+and+Polyhedral+Meshes&rft.jtitle=Computer+graphics+forum&rft.au=Bunge%2C+A.&rft.au=Botsch%2C+M.&rft.au=Alexa%2C+M.&rft.date=2021-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=40&rft.issue=5&rft.spage=217&rft.epage=230&rft_id=info:doi/10.1111%2Fcgf.14369&rft.externalDBID=10.1111%252Fcgf.14369&rft.externalDocID=CGF14369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon