On the shrinking projection method for nonexpansive mappings endowed with graphs

Recently, the convergence of a shrinking projection method for a Hadamard space satisfying some properties endowed with a directed graph defined on a nonempty closed convex subset of this space has been studied by many authors. In this work, we define a new graph and consider a Hadamard space endowe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fixed point theory and algorithms for sciences and engineering Ročník 2025; číslo 1; s. 9 - 12
Hlavní autoři: Kimura, Yasunori, Phothi, Supaluk, Tontan, Kittisak
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2730-5422, 2730-5422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recently, the convergence of a shrinking projection method for a Hadamard space satisfying some properties endowed with a directed graph defined on a nonempty closed convex subset of this space has been studied by many authors. In this work, we define a new graph and consider a Hadamard space endowed with our modified graph, we present a theorem on the strong convergence of an iterative sequence generated by the shrinking projection method. In particular, we generalize a result in (Khatoon et al. in Proc. Est. Acad. Sci 71(3):275, 2022 ) to more general setting. The similar result is also deduces to a Hilbert space.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2730-5422
2730-5422
DOI:10.1186/s13663-025-00791-8