De novo drug design framework based on mathematical programming method and deep learning model

Small‐molecule drugs are of significant importance to human health. The use of efficient model‐based de novo drug design method is an option worth considering for expediting the discovery of drugs with satisfactory properties. In this article, a deep learning model is first developed for identificat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 68; číslo 9
Hlavní autoři: Zhao, Yujing, Liu, Qilei, Wu, Xinyuan, Zhang, Lei, Du, Jian, Meng, Qingwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.09.2022
American Institute of Chemical Engineers
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Small‐molecule drugs are of significant importance to human health. The use of efficient model‐based de novo drug design method is an option worth considering for expediting the discovery of drugs with satisfactory properties. In this article, a deep learning model is first developed for identifications of protein‐ligand complexes with high binding affinity, where the Mol2vec descriptor, the convolutional neural network, and the gate augmentation‐based Attention mechanism are used for the model construction. Then, an optimization‐based de novo drug design framework is established by integrating the deep learning model into a Mixed‐Integer NonLinear Programming (MINLP) model for drug candidate design. The optimal solution of the MINLP model is further verified by the physics‐based methods of molecular docking and molecular dynamics simulation. Finally, two case studies involving the design of anticoagulant and antitumor drug candidates are presented to highlight the wide applicability and effectiveness of the MINLP‐based de novo drug design framework.
AbstractList Small‐molecule drugs are of significant importance to human health. The use of efficient model‐based de novo drug design method is an option worth considering for expediting the discovery of drugs with satisfactory properties. In this article, a deep learning model is first developed for identifications of protein‐ligand complexes with high binding affinity, where the Mol2vec descriptor, the convolutional neural network, and the gate augmentation‐based Attention mechanism are used for the model construction. Then, an optimization‐based de novo drug design framework is established by integrating the deep learning model into a Mixed‐Integer NonLinear Programming (MINLP) model for drug candidate design. The optimal solution of the MINLP model is further verified by the physics‐based methods of molecular docking and molecular dynamics simulation. Finally, two case studies involving the design of anticoagulant and antitumor drug candidates are presented to highlight the wide applicability and effectiveness of the MINLP‐based de novo drug design framework.
Author Liu, Qilei
Meng, Qingwei
Du, Jian
Zhao, Yujing
Zhang, Lei
Wu, Xinyuan
Author_xml – sequence: 1
  givenname: Yujing
  surname: Zhao
  fullname: Zhao, Yujing
  organization: Dalian University of Technology
– sequence: 2
  givenname: Qilei
  orcidid: 0000-0002-3879-1827
  surname: Liu
  fullname: Liu, Qilei
  email: liuqilei@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 3
  givenname: Xinyuan
  surname: Wu
  fullname: Wu, Xinyuan
  organization: Dalian University of Technology
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-7519-2858
  surname: Zhang
  fullname: Zhang, Lei
  organization: Dalian University of Technology
– sequence: 5
  givenname: Jian
  surname: Du
  fullname: Du, Jian
  email: dujian@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 6
  givenname: Qingwei
  orcidid: 0000-0002-1743-2518
  surname: Meng
  fullname: Meng, Qingwei
  organization: Ningbo Institute of Dalian University of Technology
BookMark eNp9kM1OAyEUhYmpiW114RuQuHIxLdCZAsum_jVp4ka3Thi401JnoMLUpm8vtq5MdANc7ncO3DNAPecdIHRNyYgSwsbK6hHlPBdnqE-LnGeFJEUP9QkhNEsX9AINYtykinHB-ujtDrDznx6bsFthA9GuHK6DamHvwzuuVASDvcOt6taQFqtVg7fBrxLSWrfCLXRrb7ByJqlhixtQwR0b3kBzic5r1US4-tmH6PXh_mX-lC2fHxfz2TLTTHKRaV7VJFdS11PBJas0GMZkLRUntDYgQJJKiJwUVS1hqtnETKZUKp0Lwlk6TYbo5uSbvvaxg9iVG78LLj1ZsuSRF0wykajbE6WDjzFAXW6DbVU4lJSU3_GVKb7yGF9ix79Ybbs0v3ddULb5T7G3DRz-ti5ni_lJ8QWFZoNE
CitedBy_id crossref_primary_10_3390_pr11072096
crossref_primary_10_1016_j_seppur_2024_130984
crossref_primary_10_3390_pr12112407
crossref_primary_10_1002_aic_17968
crossref_primary_10_1016_j_coche_2025_101099
crossref_primary_10_1021_acs_jcim_5c00781
crossref_primary_10_1016_j_cjche_2025_02_024
crossref_primary_10_1002_aic_18741
crossref_primary_10_1021_acs_jctc_5c01047
crossref_primary_10_1016_j_cjche_2024_01_021
Cites_doi 10.1016/j.eswa.2019.113082
10.1016/j.compchemeng.2019.01.006
10.1007/s11705-021-2060-z
10.1093/bib/bbab072
10.1016/j.patrec.2005.10.010
10.1039/D1SC04444C
10.1021/jm020017n
10.1038/nchem.1243
10.1016/S0169-409X(96)00423-1
10.1021/ie049328h
10.1002/bkcs.12267
10.2174/1568026013395380
10.1038/nature14119
10.1002/aic.17110
10.1021/acs.accounts.6b00491
10.1021/ie9601920
10.1021/acscentsci.7b00572
10.1109/MCSE.2007.58
10.1186/1758-2946-1-8
10.1021/acs.jmedchem.6b01720
10.1146/annurev.bi.57.070188.004411
10.1093/nar/gkaa1038
10.1039/C9SC01928F
10.1016/j.drudis.2018.01.039
10.1021/jm9602928
10.1016/j.drudis.2007.01.011
10.1016/0010-4655(95)00042-E
10.1093/nar/gkx1037
10.1002/jcc.21256
10.1109/TCBB.2020.3046945
10.1007/s10822-013-9672-4
10.1021/acs.jcim.7b00622
10.1021/acs.jcim.9b00387
10.1021/acs.jcim.7b00650
10.1021/acs.jcim.7b00616
10.1038/s41467-019-13807-w
10.1021/jm050101d
10.1016/j.jhealeco.2016.01.012
10.1126/science.2408149
10.1007/s10107-005-0581-8
10.1109/CVPR.2017.298
ContentType Journal Article
Copyright 2022 American Institute of Chemical Engineers.
2022 American Institute of Chemical Engineers
Copyright_xml – notice: 2022 American Institute of Chemical Engineers.
– notice: 2022 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.17748
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID 10_1002_aic_17748
AIC17748
Genre article
GrantInformation_xml – fundername: the Fundamental Research Funds for the Central Universities
  funderid: DUT20JC41
– fundername: National Natural Science Foundation of China
  funderid: 22078041; 21808025; 22178045
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABJIA
ADMLS
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c2978-c7bf04a9cf68792bced229f9a701fde8e90b88405bf9e6c23d3619ac480726193
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806241100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Mon Nov 10 02:45:16 EST 2025
Sat Nov 29 07:21:11 EST 2025
Tue Nov 18 21:49:14 EST 2025
Wed Jan 22 16:25:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-c7bf04a9cf68792bced229f9a701fde8e90b88405bf9e6c23d3619ac480726193
Notes Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 22078041, 21808025, 22178045; the Fundamental Research Funds for the Central Universities, Grant/Award Number: DUT20JC41
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7519-2858
0000-0002-1743-2518
0000-0002-3879-1827
PQID 2701452928
PQPubID 7879
PageCount 16
ParticipantIDs proquest_journals_2701452928
crossref_primary_10_1002_aic_17748
crossref_citationtrail_10_1002_aic_17748
wiley_primary_10_1002_aic_17748_AIC17748
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2021; 49
2021; 42
1996; 39
2017; 60
2021; 67
1995; 91
2013; 27
2021; 22
1990; 247
2019; 10
2020; 143
2019; 59
1997; 23
2019; 124
1988; 57
2020; 11
2018; 23
2005; 48
1996; 35
2007; 12
2005; 44
2020; 19
2018; 46
2017; 50
2009; 30
2021; 12
2018; 4
2006; 27
2002; 45
2005; 103
2007; 9
2015; 519
2014
2001; 1
2009; 1
2012; 4
2016; 47
2022; 16
2018; 58
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
Kingma DP (e_1_2_8_24_1) 2014
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 4
  start-page: 90
  issue: 2
  year: 2012
  end-page: 98
  article-title: Quantifying the chemical beauty of drugs
  publication-title: Nat Chem
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  end-page: 276
  article-title: Automatic chemical design using a data‐driven continuous representation of molecules
  publication-title: ACS Cent Sci
– volume: 59
  start-page: 3981
  issue: 9
  year: 2019
  end-page: 3988
  article-title: Predicting drug–target interaction using a novel graph neural network with 3D structure‐embedded graph representation
  publication-title: J Chem Inf Model
– volume: 67
  issue: 2
  year: 2021
  article-title: Machine learning‐based atom contribution method for the prediction of surface charge density profiles and solvent design
  publication-title: AIChE J
– volume: 247
  start-page: 1079
  issue: 4946
  year: 1990
  end-page: 1082
  article-title: Tyrosine kinase activity and transformation potency of Bcr‐Abl oncogene products
  publication-title: Science
– volume: 58
  start-page: 287
  issue: 2
  year: 2018
  end-page: 296
  article-title: KDEEP: protein–ligand absolute binding affinity prediction via 3D‐convolutional neural networks
  publication-title: J Chem Inf Model
– volume: 60
  start-page: 7941
  issue: 19
  year: 2017
  end-page: 7957
  article-title: Chromone as a privileged scaffold in drug discovery: recent advances
  publication-title: J Med Chem
– volume: 30
  start-page: 2785
  issue: 16
  year: 2009
  end-page: 2791
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J Comput Chem
– volume: 44
  start-page: 4785
  issue: 13
  year: 2005
  end-page: 4797
  article-title: A new decomposition‐based computer‐aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures
  publication-title: Ind Eng Chem Res
– volume: 49
  start-page: D437
  issue: D1
  year: 2021
  end-page: D451
  article-title: RCSB protein data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences
  publication-title: Nucleic Acids Res
– volume: 23
  start-page: 3
  issue: 1
  year: 1997
  end-page: 25
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
– volume: 45
  start-page: 2615
  issue: 12
  year: 2002
  end-page: 2623
  article-title: Molecular properties that influence the oral bioavailability of drug candidates
  publication-title: J Med Chem
– volume: 16
  start-page: 152
  issue: 2
  year: 2022
  end-page: 167
  article-title: A computational toolbox for molecular property prediction based on quantum mechanics and quantitative structure–property relationship
  publication-title: Front Chem Sci Eng
– volume: 10
  start-page: 8016
  issue: 34
  year: 2019
  end-page: 8024
  article-title: Efficient multi‐objective molecular optimization in a continuous latent space
  publication-title: Chem Sci
– volume: 58
  start-page: 27
  issue: 1
  year: 2018
  end-page: 35
  article-title: Mol2vec: unsupervised machine learning approach with chemical intuition
  publication-title: J Chem Inf Model
– volume: 47
  start-page: 20
  year: 2016
  end-page: 33
  article-title: Innovation in the pharmaceutical industry: new estimates of R&D costs
  publication-title: J Health Econ
– year: 2014
– volume: 91
  start-page: 43
  issue: 1
  year: 1995
  end-page: 56
  article-title: GROMACS: a message‐passing parallel molecular dynamics implementation
  publication-title: Comput Phys Commun
– volume: 48
  start-page: 5900
  issue: 19
  year: 2005
  end-page: 5908
  article-title: Discovery of the novel antithrombotic agent 5‐Chloro‐N‐({(5S)‐2‐oxo‐3‐ [4‐(3‐oxomorpholin‐4‐yl)phenyl]‐1,3‐oxazolidin‐5‐yl}methyl)thiophene‐ 2‐carboxamide (BAY 59‐7939): an Oral, direct factor Xa inhibitor
  publication-title: J Med Chem
– volume: 39
  start-page: 2887
  issue: 15
  year: 1996
  end-page: 2893
  article-title: The properties of known drugs. 1. Molecular frameworks
  publication-title: J Med Chem
– volume: 57
  start-page: 915
  issue: 1
  year: 1988
  end-page: 956
  article-title: Cofactor proteins in the assembly and expression of blood clotting enzyme complexes
  publication-title: Annu Rev Biochem
– volume: 124
  start-page: 285
  year: 2019
  end-page: 301
  article-title: OptCAMD: an optimization‐based framework and tool for molecular and mixture product design
  publication-title: Comput Chem Eng
– volume: 35
  start-page: 3788
  issue: 10
  year: 1996
  end-page: 3794
  article-title: Novel mathematical programming model for computer aided molecular design
  publication-title: Ind Eng Chem Res
– volume: 27
  start-page: 675
  issue: 8
  year: 2013
  end-page: 679
  article-title: Estimation of the size of drug‐like chemical space based on GDB‐17 data
  publication-title: J Comput Aided Mol Des
– volume: 9
  start-page: 10
  issue: 3
  year: 2007
  end-page: 20
  article-title: Python for scientific computing
  publication-title: Comput Sci Eng
– volume: 519
  start-page: 102
  issue: 7541
  year: 2015
  end-page: 105
  article-title: Axitinib effectively inhibits BCR‐ABL1(T315I) with a distinct binding conformation
  publication-title: Nature
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  end-page: 1250
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
– volume: 22
  year: 2021
  article-title: DeepDTAF: a deep learning method to predict protein–ligand binding affinity
  publication-title: Brief Bioinform
– volume: 50
  start-page: 302
  issue: 2
  year: 2017
  end-page: 309
  article-title: Forging the basis for developing protein–ligand interaction scoring functions
  publication-title: Acc Chem Res
– volume: 1
  start-page: 151
  issue: 2
  year: 2001
  end-page: 159
  article-title: Coagulation factor Xa inhibition: biological background and rationale
  publication-title: Curr Top Med Chem
– volume: 12
  start-page: 225
  issue: 5
  year: 2007
  end-page: 233
  article-title: Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches
  publication-title: Drug Discov Today
– volume: 42
  start-page: 744
  issue: 5
  year: 2021
  end-page: 747
  article-title: Effects of pooling operations on prediction of ligand rotation‐dependent protein–ligand binding in 3D graph convolutional network
  publication-title: Bull Korean Chem Soc
– volume: 103
  start-page: 225
  issue: 2
  year: 2005
  end-page: 249
  article-title: A polyhedral branch‐and‐cut approach to global optimization
  publication-title: Math Program
– volume: 143
  year: 2020
  article-title: DSTP‐RNN: a dual‐stage two‐phase attention‐based recurrent neural network for long‐term and multivariate time series prediction
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 13664
  year: 2021
  end-page: 13675
  article-title: Structure‐based de novo drug design using 3D deep generative models
  publication-title: Chem Sci
– volume: 58
  start-page: 252
  issue: 2
  year: 2018
  end-page: 261
  article-title: SCScore: synthetic complexity learned from a reaction corpus
  publication-title: J Chem Inf Model
– volume: 1
  start-page: 8
  issue: 1
  year: 2009
  article-title: Estimation of synthetic accessibility score of drug‐like molecules based on molecular complexity and fragment contributions
  publication-title: J Chem
– volume: 11
  start-page: 10
  issue: 1
  year: 2020
  article-title: De novo generation of hit‐like molecules from gene expression signatures using artificial intelligence
  publication-title: Nat Commun
– volume: 19
  start-page: 407
  year: 2020
  end-page: 417
  article-title: Deep learning in drug design: protein‐ligand binding affinity prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  end-page: D1082
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
– ident: e_1_2_8_19_1
  doi: 10.1016/j.eswa.2019.113082
– ident: e_1_2_8_35_1
  doi: 10.1016/j.compchemeng.2019.01.006
– ident: e_1_2_8_46_1
  doi: 10.1007/s11705-021-2060-z
– ident: e_1_2_8_10_1
  doi: 10.1093/bib/bbab072
– ident: e_1_2_8_25_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_8_14_1
– ident: e_1_2_8_3_1
  doi: 10.1039/D1SC04444C
– ident: e_1_2_8_30_1
  doi: 10.1021/jm020017n
– ident: e_1_2_8_39_1
  doi: 10.1038/nchem.1243
– ident: e_1_2_8_29_1
  doi: 10.1016/S0169-409X(96)00423-1
– ident: e_1_2_8_9_1
  doi: 10.1021/ie049328h
– ident: e_1_2_8_21_1
  doi: 10.1002/bkcs.12267
– ident: e_1_2_8_44_1
  doi: 10.2174/1568026013395380
– ident: e_1_2_8_48_1
  doi: 10.1038/nature14119
– ident: e_1_2_8_38_1
  doi: 10.1002/aic.17110
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.accounts.6b00491
– ident: e_1_2_8_34_1
  doi: 10.1021/ie9601920
– ident: e_1_2_8_6_1
  doi: 10.1021/acscentsci.7b00572
– ident: e_1_2_8_27_1
  doi: 10.1109/MCSE.2007.58
– ident: e_1_2_8_36_1
  doi: 10.1186/1758-2946-1-8
– volume-title: A method for stochastic optimization
  year: 2014
  ident: e_1_2_8_24_1
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jmedchem.6b01720
– ident: e_1_2_8_43_1
  doi: 10.1146/annurev.bi.57.070188.004411
– ident: e_1_2_8_47_1
  doi: 10.1093/nar/gkaa1038
– ident: e_1_2_8_5_1
  doi: 10.1039/C9SC01928F
– ident: e_1_2_8_8_1
  doi: 10.1016/j.drudis.2018.01.039
– ident: e_1_2_8_31_1
  doi: 10.1021/jm9602928
– ident: e_1_2_8_33_1
  doi: 10.1016/j.drudis.2007.01.011
– ident: e_1_2_8_42_1
  doi: 10.1016/0010-4655(95)00042-E
– ident: e_1_2_8_28_1
  doi: 10.1093/nar/gkx1037
– ident: e_1_2_8_41_1
  doi: 10.1002/jcc.21256
– ident: e_1_2_8_13_1
  doi: 10.1109/TCBB.2020.3046945
– ident: e_1_2_8_16_1
– ident: e_1_2_8_4_1
  doi: 10.1007/s10822-013-9672-4
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.jcim.7b00622
– ident: e_1_2_8_18_1
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.jcim.9b00387
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.jcim.7b00650
– ident: e_1_2_8_15_1
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.jcim.7b00616
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-019-13807-w
– ident: e_1_2_8_45_1
  doi: 10.1021/jm050101d
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jhealeco.2016.01.012
– ident: e_1_2_8_23_1
– ident: e_1_2_8_49_1
  doi: 10.1126/science.2408149
– ident: e_1_2_8_40_1
  doi: 10.1007/s10107-005-0581-8
– ident: e_1_2_8_20_1
  doi: 10.1109/CVPR.2017.298
– ident: e_1_2_8_26_1
SSID ssj0012782
Score 2.496206
Snippet Small‐molecule drugs are of significant importance to human health. The use of efficient model‐based de novo drug design method is an option worth considering...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
binding affinity
chemical product design
Deep learning
Design
Design optimization
drug design
Drug development
Drug discovery
Drugs
Mathematical programming
mathematical programming method
Molecular docking
Molecular dynamics
Neural networks
Nonlinear programming
Title De novo drug design framework based on mathematical programming method and deep learning model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17748
https://www.proquest.com/docview/2701452928
Volume 68
WOSCitedRecordID wos000806241100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU89BKbbJImi6fSWhRKEbHQkyHZhxRsUvr6_c7m1QoKgrfAzi5hdib7TXbmG4A7m0YIRNG_lWUrw1EhNRiPlGFK5olI2K5UKc_swBsO_fGYvVTgoaiFyfghyh9u2jPS77V28DBatDakoeGE31sIXvwdqFG0W7cKtd5rfzQoLxGo52dk4RgxI1KwCmIhk7bKyd-Pow3G3Eaq6VHTP_zXSx7BQY4wSScziWOoyPgE9rd4B0_hvSdJnKwTIuarDyLSJA6iijQtok82QZKYTEtOV1wwz-Sa4gok6ztNwljgbDkjee8JHNCNdc5g1H986z4ZeaMFg1MdRXIvUqYTMq7avsdoxKWglCkWeqalhPQlMyMfI0E3Uky2ObWFjXFXyHU5uo7A7HOoxkksL4AgwHGYYzmSSumEFmcYD1q87biKUcWpU4dmoe-A5yzkuhnGZ5DxJ9MAVRakKqvDbSk6y6g3fhJqFJsW5N63CNAcLH2hTHG4mW7P7wsEnedu-nD5d9Er2KO6CiJNNWtAdTlfyWvY5evlZDG_yc3wC3_r4AU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60CurBt_ioGsSDl7W7s2l3A17EWhRrEVHw5LKbhwi6LbX19zvZVysoCN4WMglLMpP5Jpl8A3DsY0JAlOzbeL5xuInRETIxjqtFoBLlN7XJeGa7Qa8XPj2Juxk4K9_C5PwQ1YGbtYxsv7YGbg-kGxPW0PhVnnqEXsJZmOOkRqTfc-37zmO3ukXAIMzZwilkJqjglcxCLjaqzt_90QRkTkPVzNd0Vv73l6uwXGBMdp4rxRrM6HQdlqaYBzfgua1Z2v_sMzUcvzCVpXEwUyZqMevbFOun7L1idaUBi1yudxqB5ZWnWZwq6q0HrKg-QQ22tM4mPHYuHy6unKLUgiPRxpEySIzLYyFNKwwEJlIrRGFEHLieUTrUwk1CigWbiRG6JdFXPkVesbQP0m0M5m9BLe2nehsYQRwuuMc1as1jTwqKCD3Z4k0j0EjkO3BSTngkCx5yWw7jLcoZlDGiKYuyKduBo0p0kJNv_CRUL1ctKuzvI8LAXpeiQGo-ydbn9wGi8-uL7GP376KHsHD1cNuNute9mz1YRPsmIks8q0NtNBzrfZiXn6PXj-FBoZNf8OTj9Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32J9LuKhl9hksm2y4EWsQbEUEQs9GZJ9iKBJ6ev3u5uXCgqCt8DuDmF2J_NNduYbgHMXYw1EtX0rx1UWVRFajMfKsiXzRCzcjlQZz2zfGwz80Yg91OCyrIXJ-SGqH27GMrLvtTFwORaq_ckaGr3yC0ejF38JGtQ0kalDo_cYDPvVLQJ6fs4WrkNmDRWcklnIxna1-Ls_-gSZX6Fq5muCjf-95SasFxiTXOWHYgtqMtmGtS_Mgzvw3JMkSRcpEZP5CxFZGgdRZaIWMb5NkDQh7xWrqxZY5HK9awkk7zxNokTo1XJMiu4TesC01tmFYXDzdH1rFa0WLI4mjuRerGwaMa66vscw5lIgMsUiz3aUkL5kduzrWLATKya7HF3h6sgr4qYg3cRg7h7UkzSR-0A0xKGMOlSilDRyONMRocO7tKMYKo60Ca1S4SEveMhNO4y3MGdQxlCrLMxU1oSzauo4J9_4adJRuWthYX_TED1zXYoM9XAr25_fBYRXd9fZw8Hfp57CykMvCPt3g_tDWEVTEpHlnR1BfTaZy2NY5ovZ63RyUhzJD6UI43A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+drug+design+framework+based+on+mathematical+programming+method+and+deep+learning+model&rft.jtitle=AIChE+journal&rft.au=Zhao%2C+Yujing&rft.au=Liu%2C+Qilei&rft.au=Wu%2C+Xinyuan&rft.au=Zhang%2C+Lei&rft.date=2022-09-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=68&rft.issue=9&rft_id=info:doi/10.1002%2Faic.17748&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_17748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon