Inverse design of reflective metasurface antennas using deep learning from small‐scale statistically random pico‐cells
A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process involves discretization, coding, data selection, simulation, feature representation, training, prediction, and metasurface design. Unlike conven...
Uloženo v:
| Vydáno v: | Microwave and optical technology letters Ročník 66; číslo 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Wiley Subscription Services, Inc
01.02.2024
|
| Témata: | |
| ISSN: | 0895-2477, 1098-2760 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process involves discretization, coding, data selection, simulation, feature representation, training, prediction, and metasurface design. Unlike conventional method that selects the training data empirically after simulation from a large quantity of unit cells, the proposed statistically random data filtering (SRDF) method selects the training data set randomly before simulation by leveraging the geometric‐coding statistics of the unit cells. The advantages of the proposed data‐selection method include lower simulation cost (due to fewer simulations needed), improved generality, and higher design accuracy simultaneously. The design process starts from the discretization of a unit cell into a grid array of binaurally‐coded pico‐cells. Afterwards, the proposed SRDF method selects 0.01% of all the possible unit cells for simulation. With the simulated results, a deep‐convolutional‐variational‐autoencoder network is trained, leading to an accurate and bidirectional prediction of both the geometry and reflection phase of a unit cell in seconds. The proposed data‐selection method is validated by designing two reflective MAs with the predicted unit cells, each pointing a pencil beam off the boresight by 30° and 60°, respectively. Experiments are in line with full‐wave simulations. |
|---|---|
| AbstractList | A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process involves discretization, coding, data selection, simulation, feature representation, training, prediction, and metasurface design. Unlike conventional method that selects the training data
empirically after simulation
from a large quantity of unit cells, the proposed statistically random data filtering (SRDF) method selects the training data set
randomly before simulation
by leveraging the geometric‐coding statistics of the unit cells. The advantages of the proposed data‐selection method include lower simulation cost (due to fewer simulations needed), improved generality, and higher design accuracy simultaneously. The design process starts from the discretization of a unit cell into a grid array of binaurally‐coded pico‐cells. Afterwards, the proposed SRDF method selects 0.01% of all the possible unit cells for simulation. With the simulated results, a deep‐convolutional‐variational‐autoencoder network is trained, leading to an accurate and bidirectional prediction of both the geometry and reflection phase of a unit cell in seconds. The proposed data‐selection method is validated by designing two reflective MAs with the predicted unit cells, each pointing a pencil beam off the boresight by 30° and 60°, respectively. Experiments are in line with full‐wave simulations. A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process involves discretization, coding, data selection, simulation, feature representation, training, prediction, and metasurface design. Unlike conventional method that selects the training data empirically after simulation from a large quantity of unit cells, the proposed statistically random data filtering (SRDF) method selects the training data set randomly before simulation by leveraging the geometric‐coding statistics of the unit cells. The advantages of the proposed data‐selection method include lower simulation cost (due to fewer simulations needed), improved generality, and higher design accuracy simultaneously. The design process starts from the discretization of a unit cell into a grid array of binaurally‐coded pico‐cells. Afterwards, the proposed SRDF method selects 0.01% of all the possible unit cells for simulation. With the simulated results, a deep‐convolutional‐variational‐autoencoder network is trained, leading to an accurate and bidirectional prediction of both the geometry and reflection phase of a unit cell in seconds. The proposed data‐selection method is validated by designing two reflective MAs with the predicted unit cells, each pointing a pencil beam off the boresight by 30° and 60°, respectively. Experiments are in line with full‐wave simulations. A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process involves discretization, coding, data selection, simulation, feature representation, training, prediction, and metasurface design. Unlike conventional method that selects the training data empirically after simulation from a large quantity of unit cells, the proposed statistically random data filtering (SRDF) method selects the training data set randomly before simulation by leveraging the geometric‐coding statistics of the unit cells. The advantages of the proposed data‐selection method include lower simulation cost (due to fewer simulations needed), improved generality, and higher design accuracy simultaneously. The design process starts from the discretization of a unit cell into a grid array of binaurally‐coded pico‐cells. Afterwards, the proposed SRDF method selects 0.01% of all the possible unit cells for simulation. With the simulated results, a deep‐convolutional‐variational‐autoencoder network is trained, leading to an accurate and bidirectional prediction of both the geometry and reflection phase of a unit cell in seconds. The proposed data‐selection method is validated by designing two reflective MAs with the predicted unit cells, each pointing a pencil beam off the boresight by 30° and 60°, respectively. Experiments are in line with full‐wave simulations. |
| Author | Lin, Feng Han You, Xi Chong |
| Author_xml | – sequence: 1 givenname: Xi Chong orcidid: 0000-0001-8839-841X surname: You fullname: You, Xi Chong organization: ShanghaiTech University – sequence: 2 givenname: Feng Han orcidid: 0000-0002-4964-0063 surname: Lin fullname: Lin, Feng Han email: linfh@shanghaitech.edu.cn organization: ShanghaiTech University |
| BookMark | eNp9kM1KxDAURoMoOI4ufIOAKxedSdKmbZYy-AfKuNB1SdMbiaRJTTrKuPIRfEafxIzjStDV5cL5vss9B2jXeQcIHVMyo4Swee-HWV6Qst5BE0pEnbGqJLtoQmrBM1ZU1T46iPGJEJJXFZugt2v3AiEC7iCaR4e9xgG0BTWaF8A9jDKugpYKsHQjOCcjXkXjHhMPA7Ygg9tsOvgex15a-_n-EZW0gOMoRxNHkxa7xkG6LiGDUT4RCqyNh2hPSxvh6GdO0cPF-f3iKrtZXl4vzm4yxURVZ4JpJSkTbZEXmue8k3lJRFe1WjAqdNdqxoEBFy0pqoITLmsCtM1pqYToOM-n6GTbOwT_vII4Nk9-FVw62TCR06LktCSJOt1SKvgYk4NmCKaXYd1Q0mzUNklt8602sfNfrDKbb70bgzT2v8SrsbD-u7q5Xd5tE1_CjJDR |
| CitedBy_id | crossref_primary_10_3390_app15062883 crossref_primary_10_1109_TAP_2024_3511089 crossref_primary_10_1016_j_optlastec_2025_113723 crossref_primary_10_1088_1361_6463_add543 crossref_primary_10_1002_cpe_8276 crossref_primary_10_1109_JIOT_2025_3560682 crossref_primary_10_1016_j_compositesb_2024_111946 |
| Cites_doi | 10.1002/mop.33284 10.1109/TAP.2021.3111280 10.1109/TAP.2023.3262969 10.1109/MM.2021.3086541 10.1002/adts.201800132 10.1109/TAP.2016.2590559 10.1109/LAWP.2022.3227881 10.1109/TEMC.2023.3325438 10.1109/TAP.1963.1138112 10.1021/acs.nanolett.8b03171 10.1109/MM.2021.3061394 10.1007/11494669_93 10.1109/LAWP.2013.2270934 10.1109/TAP.2021.3138517 10.1002/jnm.2746 10.1002/mop.32656 10.1109/APS/URSI47566.2021.9704279 10.2528/PIER22062201 10.1109/TAP.2010.2103006 10.1109/TAP.2003.817983 10.1109/TAP.2022.3155204 10.1002/mop.32156 10.1109/TKDE.2009.191 10.1109/ACCESS.2023.3254204 10.1214/aoms/1177729694 10.1002/mop.32649 10.1109/TAP.2017.2671036 10.1109/TAP.2018.2860121 10.1038/s41467-021-23087-y 10.1109/TAP.2018.2854366 10.1109/TAP.2022.3226343 10.1109/TAP.2021.3060142 10.1002/mop.30769 10.1109/APS/URSI47566.2021.9703937 10.1109/TAP.2018.2806401 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1002/mop.34068 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-2760 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_mop_34068 MOP34068 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Lingang Laboratory funderid: LG‐QS‐202202‐05 – fundername: National Key Research and Development Program of China funderid: 2022YFB2902800 – fundername: National Natural Science Foundation of China funderid: 62101330 – fundername: NVIDIA Academic Hardware Grant Program |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X 7SP 8FD F28 FR3 L7M |
| ID | FETCH-LOGICAL-c2978-92fca129b434f535da3609d7bf9219fdbf25e2e59b0474505a80e1b316c99d553 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001159063500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0895-2477 |
| IngestDate | Fri Jul 25 10:20:51 EDT 2025 Sat Nov 29 06:14:45 EST 2025 Tue Nov 18 22:32:16 EST 2025 Wed Aug 20 07:26:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2978-92fca129b434f535da3609d7bf9219fdbf25e2e59b0474505a80e1b316c99d553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4964-0063 0000-0001-8839-841X |
| PQID | 2931465160 |
| PQPubID | 1006447 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2931465160 crossref_primary_10_1002_mop_34068 crossref_citationtrail_10_1002_mop_34068 wiley_primary_10_1002_mop_34068_MOP34068 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Microwave and optical technology letters |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 69 2022; 175 2023; 11 2022; 70 2020; 63 2020; 62 2017; 65 2008; 19 2008; 9 1951; 22 2006 2005 2022; 64 2011; 59 2020; 33 2018; 66 2003; 51 2010; 22 2018; 18 2018; 2 2023; 22 2021; 12 1963; 11 2017; 59 2023 2021 2013; 12 2016; 64 2021; 41 2023; 71 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 Studio M (e_1_2_9_32_1) 2008; 19 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 Maaten LV (e_1_2_9_37_1) 2008; 9 e_1_2_9_5_1 Balanis CA (e_1_2_9_30_1) 2005 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 59 start-page: 904 issue: 3 year: 2011 end-page: 913 article-title: Dispersion characteristics of a metamaterial‐based parallel‐plate ridge gap waveguide realized by bed of nails publication-title: IEEE Trans Antennas Propag – volume: 11 start-page: 24175 year: 2023 end-page: 24184 article-title: Rapid design of 3D reflectarray antennas by inverse surrogate modeling and regularization publication-title: IEEE Access – volume: 22 start-page: 1345 issue: 10 year: 2010 end-page: 1359 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng – volume: 69 start-page: 5725 issue: 9 year: 2021 end-page: 5739 article-title: A generative machine learning‐based approach for inverse design of multilayer metasurfaces publication-title: IEEE Trans Antennas Propag – year: 2005 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 article-title: Visualizing data using t‐SNE publication-title: J Mach Learn Res – volume: 11 start-page: 645 issue: 6 year: 1963 end-page: 651 article-title: The reflectarray antenna publication-title: IEEE Trans Antennas Propag – volume: 41 start-page: 78 issue: 4 year: 2021 end-page: 83 article-title: Rome to Milan, AMD continues its tour of Italy publication-title: IEEE Micro – volume: 59 start-page: 2575 issue: 10 year: 2017 end-page: 2580 article-title: A bandwidth‐enhanced metasurface antenna for wireless applications publication-title: Microwave Opt Technol Lett – volume: 66 start-page: 1894 issue: 4 year: 2018 end-page: 1902 article-title: A method of suppressing higher‐order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis publication-title: IEEE Trans Antennas Propag – volume: 66 start-page: 5043 issue: 10 year: 2018 end-page: 5051 article-title: Truncated impedance‐sheet model for low‐profile broadband nonresonant‐cell metasurface antennas using characteristic mode analysis publication-title: IEEE Trans Antennas Propag – volume: 63 start-page: 1207 issue: 4 year: 2020 end-page: 1212 article-title: Low‐profile wideband dual‐circularly polarized orbital angular momentum antenna array using metasurface publication-title: Microwave Opt Technol Lett – volume: 71 start-page: 1578 issue: 2 year: 2023 end-page: 1589 article-title: Knowledge‐guided active‐base‐element modeling in machine‐learning‐assisted antenna‐array design publication-title: IEEE Trans Antennas Propag – volume: 71 start-page: 5422 issue: 6 year: 2023 end-page: 5427 article-title: A novel wideband tightly coupled dual‐polarized reflectarray antenna publication-title: IEEE Trans Antennas Propag – volume: 64 start-page: 3896 issue: 9 year: 2016 end-page: 3906 article-title: Flat optics for leaky‐waves on modulated metasurfaces: adiabatic Floquet‐wave analysis publication-title: IEEE Trans Antennas Propag – volume: 22 start-page: 79 issue: 1 year: 1951 end-page: 86 article-title: On information and sufficiency publication-title: Ann Math Stat – start-page: 863 year: 2021 end-page: 864 – volume: 70 start-page: 846 issue: 2 year: 2022 end-page: 855 article-title: Single‐fed triple‐mode wideband circularly polarized microstrip antennas using characteristic mode analysis publication-title: IEEE Trans Antennas Propag – volume: 19 year: 2008 article-title: CST‐computer simulation technology publication-title: Bad Nuheimer Str – volume: 12 start-page: 737 issue: 5 year: 2013 end-page: 740 article-title: A 0.7–20‐GHz strip‐fed bilateral tapered slot antenna with low cross polarization publication-title: IEEE Antennas Wirel Propag Lett – volume: 65 start-page: 1706 issue: 4 year: 2017 end-page: 1713 article-title: Low‐profile wideband metasurface antennas using characteristic mode analysis publication-title: IEEE Trans Antennas Propag – volume: 175 start-page: 91 year: 2022 end-page: 104 article-title: Low‐profile high‐gain wideband multi‐resonance microstrip‐fed slot antenna with anisotropic metasurface publication-title: Progr Electromagn Res – volume: 66 start-page: 5620 issue: 10 year: 2018 end-page: 5624 article-title: A dual‐band metasurface antenna using characteristic mode analysis publication-title: IEEE Trans Antennas Propag – volume: 62 start-page: 1366 issue: 3 year: 2020 end-page: 1373 article-title: Broadband graphene‐based metasurface solar absorber publication-title: Microwave Opt Technol Lett – volume: 64 start-page: 1339 issue: 8 year: 2022 end-page: 1346 article-title: Design of paper‐based bandpass frequency selective surface using slotlines publication-title: Microwave Opt Technol Lett – volume: 18 start-page: 6570 issue: 10 year: 2018 end-page: 6576 article-title: Generative model for the inverse design of metasurfaces publication-title: Nano Lett – volume: 12 start-page: 2974 issue: 1 year: 2021 article-title: Phase‐to‐pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning publication-title: Nat Commun – volume: 22 start-page: 898 issue: 4 year: 2023 end-page: 902 article-title: Low‐profile wideband circular polarization metasurface antenna with characteristic mode analysis and mode suppression publication-title: IEEE Antennas Wirel Propag Lett – year: 2006 – volume: 70 start-page: 5078 issue: 7 year: 2022 end-page: 5093 article-title: Towards efficient reflectarray digital twins—an EM‐driven machine learning perspective publication-title: IEEE Trans Antennas Propag – year: 2023 – volume: 70 start-page: 5024 issue: 7 year: 2022 end-page: 5034 article-title: Prior‐knowledge‐guided deep‐learning‐enabled synthesis for broadband and large phase shift range metacells in metalens antenna publication-title: IEEE Trans Antennas Propag – volume: 51 start-page: 2936 issue: 10 year: 2003 end-page: 2946 article-title: Microstrip antennas integrated with electromagnetic band‐gap (EBG) structures: a low mutual coupling design for array applications publication-title: IEEE Trans Antennas Propag – volume: 41 start-page: 29 issue: 2 year: 2021 end-page: 35 article-title: Nvidia A100 tensor core GPU: performance and innovation publication-title: IEEE Micro – start-page: 758 year: 2005 end-page: 770 – volume: 62 start-page: 638 issue: 2 year: 2020 end-page: 646 article-title: Wideband high‐gain multiresonance antenna based on polarization‐dependent metasurface publication-title: Microw Opt Technol Lett – volume: 2 issue: 2 year: 2018 article-title: Machine‐learning designs of anisotropic digital coding metasurfaces publication-title: Adv Theory Simul – volume: 33 start-page: 2746 issue: 6 year: 2020 article-title: Artificial neural network application for novel 3D printed nonuniform ceramic reflectarray antenna publication-title: Int J Numer Modell Electr Netw Dev Fields – start-page: 103 year: 2021 end-page: 104 – ident: e_1_2_9_16_1 doi: 10.1002/mop.33284 – ident: e_1_2_9_9_1 doi: 10.1109/TAP.2021.3111280 – ident: e_1_2_9_31_1 – ident: e_1_2_9_13_1 doi: 10.1109/TAP.2023.3262969 – ident: e_1_2_9_33_1 doi: 10.1109/MM.2021.3086541 – ident: e_1_2_9_20_1 doi: 10.1002/adts.201800132 – ident: e_1_2_9_15_1 doi: 10.1109/TAP.2016.2590559 – ident: e_1_2_9_3_1 doi: 10.1109/LAWP.2022.3227881 – ident: e_1_2_9_17_1 doi: 10.1109/TEMC.2023.3325438 – ident: e_1_2_9_40_1 doi: 10.1109/TAP.1963.1138112 – ident: e_1_2_9_23_1 doi: 10.1021/acs.nanolett.8b03171 – ident: e_1_2_9_34_1 doi: 10.1109/MM.2021.3061394 – ident: e_1_2_9_36_1 doi: 10.1007/11494669_93 – ident: e_1_2_9_38_1 doi: 10.1109/LAWP.2013.2270934 – ident: e_1_2_9_29_1 doi: 10.1109/TAP.2021.3138517 – ident: e_1_2_9_22_1 doi: 10.1002/jnm.2746 – ident: e_1_2_9_11_1 doi: 10.1002/mop.32656 – ident: e_1_2_9_39_1 doi: 10.1109/APS/URSI47566.2021.9704279 – ident: e_1_2_9_8_1 doi: 10.2528/PIER22062201 – ident: e_1_2_9_14_1 doi: 10.1109/TAP.2010.2103006 – ident: e_1_2_9_18_1 doi: 10.1109/TAP.2003.817983 – volume-title: Antenna Theory: Analysis and Design year: 2005 ident: e_1_2_9_30_1 – ident: e_1_2_9_27_1 doi: 10.1109/TAP.2022.3155204 – ident: e_1_2_9_12_1 doi: 10.1002/mop.32156 – ident: e_1_2_9_25_1 doi: 10.1109/TKDE.2009.191 – ident: e_1_2_9_19_1 doi: 10.1109/ACCESS.2023.3254204 – ident: e_1_2_9_35_1 doi: 10.1214/aoms/1177729694 – ident: e_1_2_9_7_1 doi: 10.1002/mop.32649 – ident: e_1_2_9_2_1 doi: 10.1109/TAP.2017.2671036 – volume: 9 start-page: 2579 year: 2008 ident: e_1_2_9_37_1 article-title: Visualizing data using t‐SNE publication-title: J Mach Learn Res – ident: e_1_2_9_10_1 doi: 10.1109/TAP.2018.2860121 – volume: 19 year: 2008 ident: e_1_2_9_32_1 article-title: CST‐computer simulation technology publication-title: Bad Nuheimer Str – ident: e_1_2_9_24_1 doi: 10.1038/s41467-021-23087-y – ident: e_1_2_9_4_1 doi: 10.1109/TAP.2018.2854366 – ident: e_1_2_9_26_1 doi: 10.1109/TAP.2022.3226343 – ident: e_1_2_9_28_1 doi: 10.1109/TAP.2021.3060142 – ident: e_1_2_9_5_1 doi: 10.1002/mop.30769 – ident: e_1_2_9_21_1 doi: 10.1109/APS/URSI47566.2021.9703937 – ident: e_1_2_9_6_1 doi: 10.1109/TAP.2018.2806401 |
| SSID | ssj0003772 |
| Score | 2.447183 |
| Snippet | A small‐scale data‐selection method is proposed for deep‐learning‐based inverse design of reflective metasurface antennas (MAs). The overall design process... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Antennas Boresights Coding deep convolutional variational autoencoder (DCVAE) Deep learning Discretization Inverse design Machine learning metasurface antennas (MAs) Metasurfaces Pencil beams Simulation statistically‐random data filtering (SRDF) Unit cell |
| Title | Inverse design of reflective metasurface antennas using deep learning from small‐scale statistically random pico‐cells |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmop.34068 https://www.proquest.com/docview/2931465160 |
| Volume | 66 |
| WOSCitedRecordID | wos001159063500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2760 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003772 issn: 0895-2477 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5tXxIcoA8QCwVZqIdeojp-bGJxQsCKA7QVolJvkcd29rKbXW1KpXLiJ_Ab-SWMney2SFRC4hZFk8Ty2OPPzsz3ARxZ5N5xiVmBBN-UU2WG3udZVBxFLZRE0YlNFKen5eWlOR_Am1UtTMcPsT5wizMjxes4wS22J7ekobM5bdhpOSo3YCsWVdHOa-v9l_HFp3UglkXSbuKl0ZlQRbEiFuLiZP3wn8vRLca8i1TTUjN-_F-N3IVHPcJkb7shsQeD0OzDwzu8g_uwk_I-XXsA3yPPxrINzKdMDjavGbVx2kVBNgtX8QSxti6w6IGmsS2LmfITsg8L1ktOTFgsUmHtzE6nv378bMntgcVKpUQCTTdvGK2InkwWNO7IIv4taJ_AxfjD13cfs16OIXMi7jWNqJ0leIBKqlpL7a0cceMLrA2FvdpjLXQQQRvkqlCErGzJQ44yHzljvNbyKWw28yY8A-YCAZ1CYtS4VkJwiyGXqNGizq0zoyEcr7xSuZ6rPEpmTKuOZVlU1LFV6tghvF6bLjqCjr8ZHa5cW_VztK0I6ORRCX7E6XPJife_oPp8dp4unv-76Qt4IAgBdSneh7B5tfwWXsK2u6beX77qB-tvmbTw7Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VbRH0AKWAKBSwEAcuUR1_xLHEpQJWrbpdKtRKvUX-Si-72dWmIMGJn8Bv7C_p2MluiwQSErcomiSWx555dsbvAbw1lnpHuc2URfgmnCgz632eRcVRK5nglnViE2o8Ls_P9ckavF-ehen4IVYbbnFmpHgdJ3jckN67YQ2dznDFjvmovAProuCqHMD6xy_Ds9EqEnOVxJtoqWXGhFJLZiHK9lYP_56PbkDmbaiacs3w4f-1cgse9BiT7HeD4hGshWYbNm8xD27D3VT56drH8CMybSzaQHyq5SCzmmAjJ10cJNNwGfcQa-MCiT5oGtOSWCt_gfZhTnrRiQsSj6mQdmomk6ufv1p0fCDxrFKigcab3wnmRI8mcxx5aBH_F7RP4Gz46fTDQdYLMmSOxdWmZrUzCBCs4KKWXHrDC6q9srXGwFd7WzMZWJDaUqEEYitT0pBbnhdOay8lfwqDZtaEZ0BcQKijuI0q14IxamzIuZXWWJkbp4sdeLd0S-V6tvIomjGpOp5lVmHHVqljd-DNynTeUXT8yWh36duqn6VthVAnj1rwBcXPJS_-_QXV8eeTdPH8301fw72D0-NRNTocH72A-wzxUFfwvQuDy8XX8BI23Df0xOJVP3KvAfwe9N0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RpUVwgJYWAaWtVfXQS4Tjj00scUGFFVVhu6qKxC3yV7jsZlcbQIITP4Hf2F_SsZNdQKISUm9RNEksjz3z7IzfA_iiDXWWcpNkBuGbsCJPjHNpEhRHjWSCG9aITWT9fn52pgYLsDc7C9PwQ8w33MLMiPE6THA_ceXuPWvoaIwrdsxH-QtYFFJJ0YHFg1-90-N5JOZZFG-iuZIJE1k2YxaibHf-8ON8dA8yH0LVmGt6a__Xytew2mJMst8Mijew4Kt1WHnAPLgOr2Llp63fwk1g2pjWnrhYy0HGJcFGDps4SEb-Iuwhltp6EnxQVbomoVb-HO39hLSiE-ckHFMh9UgPh39u72p0vCfhrFKkgcab1wRzokOTCY48tAj_C-p3cNo7_P3tKGkFGRLLwmpTsdJqBAhGcFFKLp3mXapcZkqFga90pmTSMy-VoSITiK10Tn1qeNq1Sjkp-QZ0qnHlN4FYj1An4yaoXAvGqDY-5UYabWSqrepuwdeZWwrbspUH0Yxh0fAsswI7togduwWf56aThqLjKaOdmW-LdpbWBUKdNGjBdyl-Lnrx3y8oTn4O4sX2800_wdLgoFccf-__eA_LDOFQU--9A52L6aX_AC_tFTpi-rEduH8BmT_0WA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+design+of+reflective+metasurface+antennas+using+deep+learning+from+small%E2%80%90scale+statistically+random+pico%E2%80%90cells&rft.jtitle=Microwave+and+optical+technology+letters&rft.au=Xi+Chong+You&rft.au=Feng+Han+Lin&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0895-2477&rft.eissn=1098-2760&rft.volume=66&rft.issue=2&rft_id=info:doi/10.1002%2Fmop.34068&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-2477&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-2477&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-2477&client=summon |