Research on disturbance rejection motion control method of USV for UUV recovery

The recovery of unmanned underwater vehicle (UUV) by unmanned surface vehicle (USV) has the characteristics of autonomy, safety, and efficiency. Taking the recovery of UUV by USV as the engineering background, this paper studies the guidance and anti‐interference motion control of USV in the recover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics Jg. 40; H. 3; S. 574 - 594
Hauptverfasser: Liao, Yulei, Chen, Congcong, Du, Tingpeng, Sun, Jiaqi, Xin, Yunwei, Zhai, Zizheng, Wang, Bo, Li, Ye, Pang, Shuo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.05.2023
Schlagworte:
ISSN:1556-4959, 1556-4967
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The recovery of unmanned underwater vehicle (UUV) by unmanned surface vehicle (USV) has the characteristics of autonomy, safety, and efficiency. Taking the recovery of UUV by USV as the engineering background, this paper studies the guidance and anti‐interference motion control of USV in the recovery process. Aiming at the problem of dynamic guidance when recovering UUV, the USV guidance strategy for UUV recovery is studied. Fuzzy guidance is introduced as the dynamic terminal guidance method, and a layered guidance strategy combining classical guidance and fuzzy guidance is proposed. On the basis of the theory of compact form dynamic linearization‐based model‐free adaptive control (CFDL‐MFAC), the motion control of USV in the process of recovering UUV under the influence of model perturbation, external interference, and other uncertainties is studied. Theoretical analysis and experimental results show that there is a contradiction in the matching of dynamic change speed between the USV heading control subsystem and CFDL‐MFAC. By introducing the difference item into the standard control criterion to weaken the integral effect in the heading control subsystem of USV, a difference‐type compact format model‐free adaptive control method (DCFDL‐MFAC) is proposed, and the stability of DCFDL‐MFAC method is proved theoretically. The effectiveness and practicability of the proposed method are verified by simulation tests and field tests of “Dolphin IB” small USV.
AbstractList The recovery of unmanned underwater vehicle (UUV) by unmanned surface vehicle (USV) has the characteristics of autonomy, safety, and efficiency. Taking the recovery of UUV by USV as the engineering background, this paper studies the guidance and anti‐interference motion control of USV in the recovery process. Aiming at the problem of dynamic guidance when recovering UUV, the USV guidance strategy for UUV recovery is studied. Fuzzy guidance is introduced as the dynamic terminal guidance method, and a layered guidance strategy combining classical guidance and fuzzy guidance is proposed. On the basis of the theory of compact form dynamic linearization‐based model‐free adaptive control (CFDL‐MFAC), the motion control of USV in the process of recovering UUV under the influence of model perturbation, external interference, and other uncertainties is studied. Theoretical analysis and experimental results show that there is a contradiction in the matching of dynamic change speed between the USV heading control subsystem and CFDL‐MFAC. By introducing the difference item into the standard control criterion to weaken the integral effect in the heading control subsystem of USV, a difference‐type compact format model‐free adaptive control method (DCFDL‐MFAC) is proposed, and the stability of DCFDL‐MFAC method is proved theoretically. The effectiveness and practicability of the proposed method are verified by simulation tests and field tests of “Dolphin IB” small USV.
The recovery of unmanned underwater vehicle (UUV) by unmanned surface vehicle (USV) has the characteristics of autonomy, safety, and efficiency. Taking the recovery of UUV by USV as the engineering background, this paper studies the guidance and anti‐interference motion control of USV in the recovery process. Aiming at the problem of dynamic guidance when recovering UUV, the USV guidance strategy for UUV recovery is studied. Fuzzy guidance is introduced as the dynamic terminal guidance method, and a layered guidance strategy combining classical guidance and fuzzy guidance is proposed. On the basis of the theory of compact form dynamic linearization‐based model‐free adaptive control (CFDL‐MFAC), the motion control of USV in the process of recovering UUV under the influence of model perturbation, external interference, and other uncertainties is studied. Theoretical analysis and experimental results show that there is a contradiction in the matching of dynamic change speed between the USV heading control subsystem and CFDL‐MFAC. By introducing the difference item into the standard control criterion to weaken the integral effect in the heading control subsystem of USV, a difference‐type compact format model‐free adaptive control method (DCFDL‐MFAC) is proposed, and the stability of DCFDL‐MFAC method is proved theoretically. The effectiveness and practicability of the proposed method are verified by simulation tests and field tests of “Dolphin IB” small USV.
Author Li, Ye
Sun, Jiaqi
Wang, Bo
Zhai, Zizheng
Du, Tingpeng
Xin, Yunwei
Pang, Shuo
Liao, Yulei
Chen, Congcong
Author_xml – sequence: 1
  givenname: Yulei
  surname: Liao
  fullname: Liao, Yulei
  organization: Sanya Harbin Engineering University
– sequence: 2
  givenname: Congcong
  surname: Chen
  fullname: Chen, Congcong
  email: chencongcong@hrbeu.edu.cn
  organization: Sanya Harbin Engineering University
– sequence: 3
  givenname: Tingpeng
  surname: Du
  fullname: Du, Tingpeng
  email: liaoyulei_work@163.com
  organization: Harbin Engineering University
– sequence: 4
  givenname: Jiaqi
  surname: Sun
  fullname: Sun, Jiaqi
  organization: Sanya Harbin Engineering University
– sequence: 5
  givenname: Yunwei
  surname: Xin
  fullname: Xin, Yunwei
  organization: Sanya Harbin Engineering University
– sequence: 6
  givenname: Zizheng
  surname: Zhai
  fullname: Zhai, Zizheng
  organization: Sanya Harbin Engineering University
– sequence: 7
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Sanya Harbin Engineering University
– sequence: 8
  givenname: Ye
  surname: Li
  fullname: Li, Ye
  organization: Sanya Harbin Engineering University
– sequence: 9
  givenname: Shuo
  surname: Pang
  fullname: Pang, Shuo
  organization: Embry‐Riddle Aeronautical University
BookMark eNp9kE9LAzEQxYNUsK0e_AYBTx62TbLZJjlq8R8UCtXtNWSTWbplu6nJVum3d9uKB0FPbxh-7w3zBqjX-AYQuqZkRAlh4-CLEWOUyzPUp1k2SbiaiN7PnKkLNIhxTQhPpcr6aL6ACCbYFfYNdlVsd6EwjQUcYA22rbrtxh_F-qYNvsYbaFfeYV_i_HWJSx9wni873PoPCPtLdF6aOsLVtw5R_vjwNn1OZvOnl-ndLLFMCZmkKbfGCSNLo4xxyinCIJOF4oUQXLi0gIK40gngBiylImXUESEdMQw4Y-kQ3Zxyt8G_7yC2eu13oelOaiYUn6SMSdJRtyfKBh9jgFJvQ7UxYa8p0Ye-dNeXPvbVseNfrK1ac3i9Daaq_3N8VjXs_47Wi_n9yfEFVZd-fg
CitedBy_id crossref_primary_10_1007_s10489_024_05633_5
crossref_primary_10_1002_rnc_70101
crossref_primary_10_1016_j_oceaneng_2023_115359
crossref_primary_10_3390_sym17081339
crossref_primary_10_1002_rob_22404
crossref_primary_10_1109_LCSYS_2025_3578918
crossref_primary_10_1016_j_oceaneng_2025_120965
crossref_primary_10_1016_j_apor_2024_104203
crossref_primary_10_3390_jmse12081332
crossref_primary_10_1016_j_oceaneng_2025_121426
crossref_primary_10_1016_j_oceaneng_2024_120225
crossref_primary_10_1016_j_apor_2024_103992
crossref_primary_10_3390_jmse12122282
crossref_primary_10_1109_ACCESS_2025_3571978
crossref_primary_10_1109_TASE_2024_3461806
crossref_primary_10_1109_TIV_2024_3358789
crossref_primary_10_1016_j_compag_2024_108845
crossref_primary_10_3390_jmse11122335
Cites_doi 10.6040/j.issn.1672-3961.0.2016.010
10.1109/TMECH.2016.2632304
10.1007/s12555-019-0977-5
10.1109/TCST.2008.917224
10.1007/s11771-020-4405-z
10.1177/1729881419831584
10.1155/2017/3209451
10.1007/s11771-017-3440-x
10.3724/SP.J.1218.2013.00263
10.1109/JOE.2011.2180058
10.1007/s11771-015-2512-z
10.16526/j.cnki.11-4762/tp.2016.03.024
10.3969/j.issn.1002-0640.2013.08.028
10.1109/TMECH.2017.2651057
10.3969/j.issn.1673-3185.2007.05.018
10.1109/OCEANS.2014.7003032
10.14107/j.cnki.kzgc.2010.s2.029
10.1016/j.apor.2019.101945
10.1007/s11804-010-1029-y
10.11113/jt.v74.4635
10.11990/jheu.201807036
10.1201/b15752
10.1109/OCEANS.2012.6404999
10.1109/AUV.2014.7054403
10.19693/j.issn.1673-3185.01940
10.1109/TIE.2019.2914631
10.3969/j.issn.1006-7043.2003.04.010
10.1109/OCEANSChennai45887.2022.9775227
10.1109/TCST.2017.2699167
10.11990/jheu.201808090
10.1109/ICMA.2017.8016095
10.1007/s11804-012-1129-y
10.1002/rob.21452
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22148
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 594
ExternalDocumentID 10_1002_rob_22148
ROB22148
Genre article
GrantInformation_xml – fundername: ainan Provincial Natural Science Foundation of China
  funderid: 522MS162
– fundername: National Natural Science Foundation of China
  funderid: 52071097
– fundername: Natural Science Foundation of Heilongjiang Province of China
  funderid: YQ2020E026
– fundername: Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory
  funderid: 2021JCJQ‐SYSJJ‐LB06910
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
1OB
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2978-334cad7a8fa9aad9d902e58b94b7747d3beb0dfd7e4aec117321d078d0a2e4223
IEDL.DBID DRFUL
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906023300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-4959
IngestDate Wed Aug 13 04:40:16 EDT 2025
Sat Nov 29 06:55:47 EST 2025
Tue Nov 18 21:45:04 EST 2025
Wed Jan 22 16:22:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2978-334cad7a8fa9aad9d902e58b94b7747d3beb0dfd7e4aec117321d078d0a2e4223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2794632280
PQPubID 1006410
PageCount 21
ParticipantIDs proquest_journals_2794632280
crossref_primary_10_1002_rob_22148
crossref_citationtrail_10_1002_rob_22148
wiley_primary_10_1002_rob_22148_ROB22148
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 93
2017; 2017
2012
2020; 41
2010; 17
2017; 22
2015; 74
2008; 16
2017; 24
2019; 16
1993
2012; 37
2012; 11
2018; 26
2021; 16
2019; 40
2013; 38
2022
2013; 35
2021
2020
2015; 22
2021; 19
2013; 30
2003; 24
2020; 27
2017
2020; 67
2014
2007; 2
2013
2016; 46
2016; 24
2010; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Liu Q. (e_1_2_7_20_1) 2021
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Hu S. (e_1_2_7_10_1) 1993
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 46
  start-page: 54
  issue: 4
  year: 2016
  end-page: 59
  article-title: Path following controller for unmanned surface vessels based on ADRC
  publication-title: Journal of Shandong University
– volume: 16
  start-page: 1125
  issue: 6
  year: 2008
  end-page: 1137
  article-title: A fuzzy approach to the guidance of unmanned air vehicles tracking moving targets
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Modeling and identification of podded propulsion unmanned surface vehicle and its course control research
  publication-title: Mathematical Problems in Engineering
– volume: 24
  start-page: 382
  issue: 2
  year: 2017
  end-page: 393
  article-title: Leader‐following coordination of multiple UUVs formation under two independent topologies and time‐varying delays
  publication-title: Journal of Central South University
– start-page: 1
  year: 2012
  end-page: 10
– start-page: 141
  year: 2021
  end-page: 149
– start-page: 1827
  year: 2017
  end-page: 1832
– volume: 40
  start-page: 1801
  issue: 11
  year: 2019
  end-page: 1808
  article-title: Unmanned surface vessels concise robust course control based on planning and control scheme
  publication-title: Journal of Harbin Engineering University
– volume: 26
  start-page: 1083
  issue: 3
  year: 2018
  end-page: 1090
  article-title: Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 30
  start-page: 371
  issue: 3
  year: 2013
  end-page: 398
  article-title: Modeling, identification, and control of an unmanned surface vehicle
  publication-title: Journal of Field Robotics
– volume: 41
  start-page: 37
  issue: 1
  year: 2020
  end-page: 43
  article-title: The method and experiments of redefined model‐free adaptive heading control of unmanned surface vehicle
  publication-title: Journal of Harbin Engineering University
– volume: 16
  issue: 3
  year: 2019
  article-title: Unmanned surface vessel heading control of model free adaptive method with variable integral separated and proportion control
  publication-title: International Journal of Advanced Robotic Systems
– year: 2014
– volume: 37
  start-page: 143
  issue: 2
  year: 2012
  end-page: 155
  article-title: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 35
  start-page: 263
  issue: 3
  year: 2013
  end-page: 268
  article-title: The course control based on an on‐line self‐adjusted PID control algorithm for unmanned surface vehicles
  publication-title: Robot
– start-page: 1
  year: 2014
  end-page: 15
– volume: 16
  start-page: 105
  issue: 01
  year: 2021
  end-page: 113
  article-title: Tracking control of intelligent ship based on deep reinforcement learning
  publication-title: Chinese Journal of Ship Research
– volume: 74
  start-page: 11
  issue: 5
  year: 2015
  end-page: 20
  article-title: Review of course keeping control system for unmanned surface vehicle
  publication-title: Jurnal Teknologi (Sciences & Engineering)
– volume: 27
  start-page: 1754
  issue: 6
  year: 2020
  end-page: 1769
  article-title: Three‐dimensional neural network tracking control of autonomous underwater vehicles with input saturation
  publication-title: Journal of Central South University
– volume: 24
  start-page: 88
  issue: 3
  year: 2016
  end-page: 91
  article-title: Simulation of path tracking control of unmanned surface vessel
  publication-title: Computer Measurement & Control
– volume: 2
  start-page: 80
  issue: 5
  year: 2007
  end-page: 84
  article-title: Development of unmanned underwater vehicle—their missions and capabilities
  publication-title: Chinese Journal of Ship Research
– volume: 17
  start-page: 36
  issue: S2
  year: 2010
  end-page: 38
  article-title: Model‐free adaptive control on integral process
  publication-title: Control Engineering of China
– volume: 22
  start-page: 1143
  issue: 3
  year: 2017
  end-page: 1153
  article-title: Adaptive path‐following control for an unmanned surface vessel using an identified dynamic model
  publication-title: IEEE/ASME Transactions on Mechatronics
– year: 2022
– year: 2020
– volume: 22
  start-page: 214
  issue: 1
  year: 2015
  end-page: 223
  article-title: Serret–Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties
  publication-title: Journal of Central South University
– volume: 24
  start-page: 395
  issue: 4
  year: 2003
  end-page: 399
  article-title: Intelligent adaptive ship course control system based on neural network reference model
  publication-title: Journal of Harbin Engineering University
– volume: 11
  start-page: 244
  issue: 02
  year: 2012
  end-page: 250
  article-title: Robust adaptive path following for underactuated surface vessels with uncertain dynamics
  publication-title: Journal of Marine Science and Application
– volume: 38
  start-page: 103
  issue: 8
  year: 2013
  end-page: 106
  article-title: Autonomous recovery of an AUV based on way‐point tracking control
  publication-title: Fire Control & Command Control
– volume: 22
  start-page: 1026
  issue: 2
  year: 2017
  end-page: 1036
  article-title: Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial‐temporal decoupling
  publication-title: IEEE/ASME Transactions on Mechatronics
– year: 1993
– start-page: 1
  year: 2014
  end-page: 10
– volume: 9
  start-page: 425
  issue: 04
  year: 2010
  end-page: 430
  article-title: Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems
  publication-title: Journal of Marine Science and Application
– volume: 67
  start-page: 4024
  issue: 5
  year: 2020
  end-page: 4035
  article-title: Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: theory and experimental results
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 19
  start-page: 2569
  issue: 7
  year: 2021
  end-page: 2582
  article-title: Research on UUV recovery active disturbance rejection control based on LMNN compensation
  publication-title: International Journal of Control, Automation and Systems
– year: 2013
– volume: 93
  issue: 11
  year: 2019
  article-title: Model free adaptive control method with variable forgetting factor for unmanned surface vehicle control
  publication-title: Applied Ocean Research
– start-page: 141
  volume-title: Proceedings of 2021 Chinese intelligent automation conference
  year: 2021
  ident: e_1_2_7_20_1
– ident: e_1_2_7_32_1
  doi: 10.6040/j.issn.1672-3961.0.2016.010
– ident: e_1_2_7_26_1
  doi: 10.1109/TMECH.2016.2632304
– ident: e_1_2_7_4_1
  doi: 10.1007/s12555-019-0977-5
– ident: e_1_2_7_12_1
  doi: 10.1109/TCST.2008.917224
– ident: e_1_2_7_33_1
  doi: 10.1007/s11771-020-4405-z
– ident: e_1_2_7_13_1
  doi: 10.1177/1729881419831584
– ident: e_1_2_7_24_1
  doi: 10.1155/2017/3209451
– ident: e_1_2_7_34_1
  doi: 10.1007/s11771-017-3440-x
– ident: e_1_2_7_11_1
  doi: 10.3724/SP.J.1218.2013.00263
– ident: e_1_2_7_31_1
  doi: 10.1109/JOE.2011.2180058
– ident: e_1_2_7_19_1
  doi: 10.1007/s11771-015-2512-z
– ident: e_1_2_7_36_1
  doi: 10.16526/j.cnki.11-4762/tp.2016.03.024
– ident: e_1_2_7_5_1
  doi: 10.3969/j.issn.1002-0640.2013.08.028
– ident: e_1_2_7_28_1
  doi: 10.1109/TMECH.2017.2651057
– ident: e_1_2_7_7_1
  doi: 10.3969/j.issn.1673-3185.2007.05.018
– ident: e_1_2_7_14_1
  doi: 10.1109/OCEANS.2014.7003032
– ident: e_1_2_7_15_1
  doi: 10.14107/j.cnki.kzgc.2010.s2.029
– ident: e_1_2_7_18_1
  doi: 10.1016/j.apor.2019.101945
– ident: e_1_2_7_35_1
  doi: 10.1007/s11804-010-1029-y
– ident: e_1_2_7_2_1
  doi: 10.11113/jt.v74.4635
– ident: e_1_2_7_8_1
  doi: 10.11990/jheu.201807036
– ident: e_1_2_7_9_1
  doi: 10.1201/b15752
– ident: e_1_2_7_16_1
– ident: e_1_2_7_29_1
  doi: 10.1109/OCEANS.2012.6404999
– ident: e_1_2_7_25_1
  doi: 10.1109/AUV.2014.7054403
– ident: e_1_2_7_38_1
  doi: 10.19693/j.issn.1673-3185.01940
– ident: e_1_2_7_3_1
  doi: 10.1109/TIE.2019.2914631
– ident: e_1_2_7_22_1
  doi: 10.3969/j.issn.1006-7043.2003.04.010
– ident: e_1_2_7_37_1
  doi: 10.1109/OCEANSChennai45887.2022.9775227
– ident: e_1_2_7_27_1
  doi: 10.1109/TCST.2017.2699167
– ident: e_1_2_7_17_1
  doi: 10.11990/jheu.201808090
– ident: e_1_2_7_6_1
– ident: e_1_2_7_21_1
  doi: 10.1109/ICMA.2017.8016095
– ident: e_1_2_7_23_1
  doi: 10.1007/s11804-012-1129-y
– ident: e_1_2_7_30_1
  doi: 10.1002/rob.21452
– volume-title: Principle of automatic control
  year: 1993
  ident: e_1_2_7_10_1
SSID ssj0043895
Score 2.470942
Snippet The recovery of unmanned underwater vehicle (UUV) by unmanned surface vehicle (USV) has the characteristics of autonomy, safety, and efficiency. Taking the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 574
SubjectTerms Adaptive control
Autonomous underwater vehicles
Control methods
Dolphins
Field tests
fuzzy guidance
heading control
Interference
layered guidance
model‐free adaptive control
Motion control
Perturbation
Recovery
Subsystems
Surface vehicles
Terminal guidance
Unmanned vehicles
USV
UUV recovery
Title Research on disturbance rejection motion control method of USV for UUV recovery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22148
https://www.proquest.com/docview/2794632280
Volume 40
WOSCitedRecordID wos000906023300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1556-4967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0043895
  issn: 1556-4959
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5z86AHv8XplCAevFTbJG1TPPk1PIxNph27lXwVFGml2wT_vUnabhMUBG89vP3gffMmT8qT5wHgDKW-TwNpeDhIOYQiz6EeJg4OUswCSgUVVjK_F_b7dDyOHhvgqj4LU-pDzH-4mc6w87VpcMYnlwvR0CLnFwhpNL8CWuZQld55te6G3bhXT8TG19u3cql-4Oh9QFQLC7nocn7z9-VogTGXkapdarqb__rILbBRIUx4XQ6JbdBQ2Q5YX9Id3AWDmm8H8wxKXehZwU31YaFeLTUrg6W7D6yY7LA0moZ5CuOnEdRAF8bxCJrdtG6Fzz0Qd--fbx-cylnBEcjyITARTIaMpixiTEYycpHyKY8I13AwlJgr7spUhoowJTwvxMiTGkxIlyFFNKLYB80sz9QBgFGq25hgooRvzP1UFGIeIOZKLww97vI2OK8TnIhKdty4X7wlpWAySnSOEpujNjidh76XWhs_BXXqKiVVu00SZGTysVH20a-z9fj9AclwcGMvDv8eegTWjM18SXTsgOa0mKljsCo-pi-T4qQad19Xgdob
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL3oKKgL3-LbIC7cVNskbVJw42tQHEdRK-5K0qSgSEc6o-Dfm6TtqKAguOvi9sG9uclJOD0HYAfnYcgjZXk4WHuU48DjAaEeiXIiIs4znjnJ_A7rdvnDQ3w9AgfNvzCVPsTwwM12hpuvbYPbA-n9T9XQsif3MDZwfhTGaEQYb8HYyU076TQzsTX2Dp1eahh5ZiMQN8pCPt4f3vx9PfoEmV-hqltr2jP_-8pZmK4xJjqsBsUcjOhiHqa-KA8uwFXDuEO9AilT6tdS2vqjUj85claBKn8fVHPZUWU1jXo5Sm7vkYG6KEnukd1Pm2Z4X4SkfXp3fObV3gpehh0jgtBMKCZ4LmIhVKxiH-uQy5hKAwiZIlJLX-WKaSp0FgSM4EAZOKF8gTU1mGIJWkWv0MuA4tw0MiVUZ6G199MxIzLCwlcBY4H05QrsNhlOs1p43PpfPKeVZDJOTY5Sl6MV2B6GvlRqGz8FrTdlSuuG66fYCuUTq-1jXucK8vsD0purI3ex-vfQLZg4u7vspJ3z7sUaTFrT-Yr2uA6tQfmqN2A8exs89svNehB-AHAU3gs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFL3oKKIL3-LbIC7c1GmTtE3Aja9BcRhFrbgrSZOCIh2pM4J_b5K2o4KC4K6L2wf35iYn5eQcgD2chyGLlOXhYO1RhgOPBYR6JMqJiBjLWOYk87txr8ceHvj1GBw2Z2EqfYjRDzfbGW6-tg2uX1Te_lQNLfvyAGMD58dhgoY8pC2YOL3pJN1mJrbG3qHTSw0jz2wEeKMs5OP26Obv69EnyPwKVd1a05n731fOw2yNMdFRNSgWYEwXizDzRXlwCa4axh3qF0iZUg9LaeuPSv3kyFkFqvx9UM1lR5XVNOrnKLm9RwbqoiS5R3Y_bZrhfRmSztndyblXeyt4GXaMCEIzoWLBcsGFUFxxH-uQSU6lAYSxIlJLX-Uq1lToLAhiggNl4ITyBdbUYIoVaBX9Qq8C4rlpZEqozkJr76d5TGSEha-COA6kL9dgv8lwmtXC49b_4jmtJJNxanKUuhytwe4o9KVS2_gpaLMpU1o33GuKrVA-sdo-5nWuIL8_IL25OnYX638P3YGp69NO2r3oXW7AtPWcr1iPm9AalEO9BZPZ2-Dxtdyux-AHLIbdhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+disturbance+rejection+motion+control+method+of+USV+for+UUV+recovery&rft.jtitle=Journal+of+field+robotics&rft.au=Liao%2C+Yulei&rft.au=Chen%2C+Congcong&rft.au=Du%2C+Tingpeng&rft.au=Sun%2C+Jiaqi&rft.date=2023-05-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=40&rft.issue=3&rft.spage=574&rft.epage=594&rft_id=info:doi/10.1002%2Frob.22148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_22148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon