Poisson Surface Reconstruction with Envelope Constraints

Reconstructing surfaces from scanned 3D points has been an important research area for several decades. One common approach that has proven efficient and robust to noise is implicit surface reconstruction, i.e. fitting to the points a 3D scalar function (such as an indicator function or signed‐dista...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 39; no. 5; pp. 173 - 182
Main Authors: Kazhdan, Misha, Chuang, Ming, Rusinkiewicz, Szymon, Hoppe, Hugues
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.08.2020
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconstructing surfaces from scanned 3D points has been an important research area for several decades. One common approach that has proven efficient and robust to noise is implicit surface reconstruction, i.e. fitting to the points a 3D scalar function (such as an indicator function or signed‐distance field) and then extracting an isosurface. Though many techniques fall within this category, existing methods either impose no boundary constraints or impose Dirichlet/Neumann conditions on the surface of a bounding box containing the scanned data. In this work, we demonstrate the benefit of supporting Dirichlet constraints on a general boundary. To this end, we adapt the Screened Poisson Reconstruction algorithm to input a constraint envelope in addition to the oriented point cloud. We impose Dirichlet boundary conditions, forcing the reconstructed implicit function to be zero outside this constraint surface. Using a visual hull and/or depth hull derived from RGB‐D scans to define the constraint envelope, we obtain substantially improved surface reconstructions in regions of missing data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14077