Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation
The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with differential quadrature method with Rubin and Graves linearizing technique has been used. Modified cubic B‐spline base functions are used as...
Uloženo v:
| Vydáno v: | Numerical methods for partial differential equations Ročník 37; číslo 1; s. 690 - 706 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2021
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0749-159X, 1098-2426 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with differential quadrature method with Rubin and Graves linearizing technique has been used. Modified cubic B‐spline base functions are used as base function. By the combination of two numerical methods and effective linearizing technique high accurate numerical algorithm is obtained. Three main test problems are solved for various values of the coefficients. To observe the performance of the present method, the error norms of the single soliton problem which has analytical solution are calculated. Besides these error norms, three invariants are reported. Comparison of the results displays that our algorithm produces superior results than those given in the literature. |
|---|---|
| AbstractList | The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with differential quadrature method with Rubin and Graves linearizing technique has been used. Modified cubic B‐spline base functions are used as base function. By the combination of two numerical methods and effective linearizing technique high accurate numerical algorithm is obtained. Three main test problems are solved for various values of the coefficients. To observe the performance of the present method, the error norms of the single soliton problem which has analytical solution are calculated. Besides these error norms, three invariants are reported. Comparison of the results displays that our algorithm produces superior results than those given in the literature. |
| Author | Başhan, Ali Yağmurlu, N. Murat Uçar, Yusuf Esen, Alaattin |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-8500-493X surname: Başhan fullname: Başhan, Ali email: alibashan@gmail.com organization: Zonguldak Bulent Ecevit University – sequence: 2 givenname: N. Murat orcidid: 0000-0003-1593-0254 surname: Yağmurlu fullname: Yağmurlu, N. Murat organization: Inonu University – sequence: 3 givenname: Yusuf orcidid: 0000-0003-1469-5002 surname: Uçar fullname: Uçar, Yusuf organization: Inonu University – sequence: 4 givenname: Alaattin orcidid: 0000-0002-7927-5941 surname: Esen fullname: Esen, Alaattin organization: Inonu University |
| BookMark | eNp9kM9KAzEQh4Mo2FYPvsGCJw_bJvsv3aMUq0LViwVvy2wyoSm7mzabtfQRfGvTrvQg6Glg5vt9w8yQnDemQUJuGB0zSqNJ09XjKEoTfkYGjObTMEqi7JwMKE_ykKX5xyUZtu2aUsZSlg_I11w32mEgtVJosREY1OhWRgbC1KVuUAY77VanudNQBdsOpAXX2ROsjA38arRa-LmPbjoHTpsmMCpwK88Zb9Dehj5ceaf00h184rFxIK_IhYKqxeufOiLL-cP77ClcvD0-z-4XoYhyzsMswXgKFFIpqCjTqZyqFBPKAEspBTKQIBjwMlXIZJmKuASkPOMqA4A8y-MRue29G2u2HbauWJvONn5lESVZzBiPeOypu54S1rStRVVsrK7B7gtGi8OnC39ucfy0Zye_WKH7650FXf2X2OkK93-ri9flS5_4BoOmlwA |
| CitedBy_id | crossref_primary_10_1007_s40314_022_01882_7 crossref_primary_10_1016_j_camwa_2023_04_014 crossref_primary_10_1063_5_0276849 crossref_primary_10_1016_j_camwa_2025_08_018 crossref_primary_10_11121_ijocta_1546 crossref_primary_10_1002_mma_11135 crossref_primary_10_1016_j_enganabound_2022_09_036 crossref_primary_10_1007_s11071_022_07817_5 crossref_primary_10_1007_s13370_023_01141_w crossref_primary_10_1007_s40314_025_03100_6 crossref_primary_10_1007_s11082_024_07166_0 crossref_primary_10_1016_j_wavemoti_2024_103342 crossref_primary_10_1080_10236198_2022_2132154 crossref_primary_10_1007_s11075_022_01416_6 crossref_primary_10_1007_s13226_023_00444_9 crossref_primary_10_1007_s43069_024_00369_x |
| Cites_doi | 10.1016/j.chaos.2017.04.038 10.5373/jaram.1542.091012 10.1016/j.cnsns.2006.09.018 10.4236/am.2016.710102 10.1017/S0305004100055572 10.32513/tbilisi/1569463234 10.1016/j.asej.2012.03.010 10.36045/bbms/1337864268 10.1080/00207160802395908 10.1155/2012/587208 10.12988/nade.2016.5824 10.1142/S0129183118500432 10.1080/00207160600909918 10.1016/j.mcm.2006.09.012 10.1007/978-1-4471-0407-0 10.1016/j.cnsns.2004.07.001 10.1080/0020716042000272539 10.1016/0167-2789(84)90014-9 10.1140/epjp/i2017-11567-8 10.1007/s00009-018-1291-9 10.3906/mat-1609-69 10.1134/S0965542515030070 10.1140/epjp/i2018-11843-1 10.1016/S0010-4655(99)00471-3 10.1016/j.rinp.2018.02.036 10.1016/j.chaos.2007.06.104 10.1016/j.amc.2012.01.059 10.1016/0021-9991(72)90089-7 10.1016/j.amc.2019.04.073 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/num.22547 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1098-2426 |
| EndPage | 706 |
| ExternalDocumentID | 10_1002_num_22547 NUM22547 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2977-64e38a0a5dc0cb58d8f5e401aebddce1adac1a7b5fe1db5c3bae0767f6aaa9693 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573068900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0749-159X |
| IngestDate | Fri Jul 25 12:19:50 EDT 2025 Tue Nov 18 22:37:48 EST 2025 Sat Nov 29 05:35:17 EST 2025 Wed Jan 22 16:33:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2977-64e38a0a5dc0cb58d8f5e401aebddce1adac1a7b5fe1db5c3bae0767f6aaa9693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8500-493X 0000-0002-7927-5941 0000-0003-1469-5002 0000-0003-1593-0254 |
| PQID | 2463117273 |
| PQPubID | 1016406 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2463117273 crossref_primary_10_1002_num_22547 crossref_citationtrail_10_1002_num_22547 wiley_primary_10_1002_num_22547_NUM22547 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | Numerical methods for partial differential equations |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 29 2012 2006; 11 2019; 12 2015; 55 2019; 16 1975 2008; 13 2012; 19 2005; 82 2017; 132 2019; 360 2012; 13 2013; 5 2018; 42 2016; 4 2018; 9 2010; 87 2018; 133 2016; 7 2012; 3 2014; 4 2006; 83 2000 2000; 126 1984; 11 1972; 10 2017; 100 1979; 85 2007; 45 2012; 218 2009; 39 e_1_2_8_28_1 e_1_2_8_26_1 Başhan A. (e_1_2_8_27_1) 2018; 9 Dereli Y. (e_1_2_8_20_1) 2010; 87 e_1_2_8_3_1 Esen A. (e_1_2_8_10_1) 2006; 83 e_1_2_8_2_1 Wang H. (e_1_2_8_6_1) 2016; 4 e_1_2_8_5_1 e_1_2_8_7_1 Başhan A. (e_1_2_8_29_1) 2018; 29 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_13_1 e_1_2_8_15_1 Geyikli T. (e_1_2_8_17_1) 2012; 19 Yang S. (e_1_2_8_4_1) 2017; 132 Başhan A. (e_1_2_8_24_1) 2018; 133 Raslan K. R. (e_1_2_8_19_1) 2014; 4 Başhan A. (e_1_2_8_25_1) 2019; 16 Çelikkaya İ. (e_1_2_8_11_1) 2019; 12 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 Karakoç S. B. G. (e_1_2_8_14_1) 2012; 13 e_1_2_8_33_1 Karakoç S. B. G. (e_1_2_8_16_1) 2013; 5 e_1_2_8_30_1 |
| References_xml | – volume: 9 start-page: 313 year: 2018 end-page: 320 article-title: Dispersive traveling wave solutions of the equal‐width and modified equal‐width equations via mathematical methods and its applications publication-title: Results Phys. – volume: 133 start-page: 1 year: 2018 end-page: 15 article-title: A new perspective for quintic B‐spline based Crank–Nicolson differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation publication-title: Eur. Phys. J. Plus – volume: 126 start-page: 219 year: 2000 end-page: 231 article-title: Solitary wave interactions for the modified equal width equation publication-title: Comput. Phys. Commun. – volume: 29 start-page: 1850043‐1 year: 2018 end-page: 1850043‐17 article-title: A new perspective for the numerical solutions of the cmKdV equation via modified cubic B‐spline differential quadrature method publication-title: International Journal of Modern Physics C – volume: 4 start-page: 9 year: 2016 end-page: 15 article-title: Exact travelling wave solutions of the modified equal width equation via the dynamical system method publication-title: Nonlinear Anal. Differential Equations – volume: 85 start-page: 143 year: 1979 end-page: 160 article-title: Euler operators and conservation laws of the BBM equation publication-title: Math Proc. Camb. Phil. Soc. – year: 2000 – year: 1975 – volume: 16 start-page: 1 year: 2019 end-page: 19 article-title: An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B‐spline differential quadrature method publication-title: Mediterr. J. Math. – volume: 82 start-page: 445 year: 2005 end-page: 455 article-title: Solitary waves for the generalized equal width (GEW) equation publication-title: Int. J. Comput. Math. – volume: 5 start-page: 51 year: 2013 end-page: 65 article-title: A numerical solution of the MEW equation using sextic B‐splines publication-title: J. Adv. Res. Appl. Math. – volume: 4 start-page: 940 year: 2014 end-page: 957 article-title: Finite difference approximations for the modified equal width wave (MEW) equation publication-title: J. Math. Comput. Sci. – volume: 11 start-page: 324 year: 1984 end-page: 336 article-title: Scattering of regularized‐long‐wave solitary waves publication-title: Phys. D: Nonlinear Phenom. – volume: 87 start-page: 1569 year: 2010 end-page: 1577 article-title: Radial basis functions method for numerical solution of the modified equal width equation publication-title: Int. J. Comput. Math. – volume: 3 start-page: 321 year: 2012 end-page: 325 article-title: Exact solutions of nonlinear evolution equations by using the modified simple equation method publication-title: Ain Shams Eng. J. – volume: 19 start-page: 215 year: 2012 end-page: 227 article-title: Petrov–Galerkin method with cubic B‐splines for solving the MEW equation publication-title: Bull. Belg. Math. Soc. Simon Stevin – volume: 11 start-page: 148 year: 2006 end-page: 160 article-title: The tanh and the sine‐cosine methods for a reliable treatment of the modified equal width equation and its variants publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 12 start-page: 51 year: 2019 end-page: 67 article-title: Operator splitting method for numerical solution of modified equal width equation publication-title: Tbilisi Math. J. – volume: 42 start-page: 373 year: 2018 end-page: 394 article-title: An effective application of differential quadrature method based on modified cubic B‐splines to numerical solutions of the KdV equation publication-title: Turk. J. Math. – volume: 132 start-page: 1 year: 2017 end-page: 9 article-title: Steady bifurcation and solitary waves of modified equal width equation publication-title: Eur. Phys. J. Plus – volume: 83 start-page: 449 year: 2006 end-page: 459 article-title: A lumped Galerkin method for the numerical solution of the modified equal‐width wave equation using quadratic B‐splines publication-title: Int. J. Comput. Math. – volume: 45 start-page: 1096 year: 2007 end-page: 1117 article-title: Algorithms for numerical solution of the modified equal width wave equation using collocation method publication-title: Math. Comput. Model. – volume: 360 start-page: 42 year: 2019 end-page: 57 article-title: A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method publication-title: Appl. Math. Comput. – volume: 13 start-page: 1538 year: 2008 end-page: 1546 article-title: Solitary wave solutions of the modified equal width wave equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 7 start-page: 1140 year: 2016 end-page: 1147 article-title: Multigrid method for the numerical solution of the modified equal width wave equation publication-title: Appl. Math. – start-page: 1 year: 2012 end-page: 15 – volume: 39 start-page: 2102 year: 2009 end-page: 2109 article-title: He's variational iteration method for the modified equal width equation publication-title: Chaos, Solitons and Fractals – volume: 55 start-page: 410 year: 2015 end-page: 421 article-title: Subdomain finite element method with quartic B splines for the modified equal width wave equation publication-title: Comput. Math. Math. Phys. – volume: 9 start-page: 273 year: 2018 end-page: 284 article-title: Numerical solutions for the fourth order extended Fisher–Kolmogorov equation with high accuracy by differential quadrature method publication-title: Sigma J. Eng. Nat. Sci. – volume: 100 start-page: 45 year: 2017 end-page: 56 article-title: An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B‐spline differential quadrature method publication-title: Chaos, Solitons and Fractals – volume: 13 start-page: 43 year: 2012 end-page: 62 article-title: Different linearization techniques for the numerical solution of the MEW equation publication-title: Selçuk J. Appl. Math. – volume: 10 start-page: 40 year: 1972 end-page: 52 article-title: Differential quadrature: A tecnique for the rapid solution of nonlinear differential equations publication-title: J. Comput. Phys. – volume: 218 start-page: 7839 year: 2012 end-page: 7855 article-title: Numerical solutions of nonlinear Burgers' equation with modified cubic B‐splines collocation method publication-title: Appl. Math. Comput. – ident: e_1_2_8_26_1 doi: 10.1016/j.chaos.2017.04.038 – volume: 5 start-page: 51 year: 2013 ident: e_1_2_8_16_1 article-title: A numerical solution of the MEW equation using sextic B‐splines publication-title: J. Adv. Res. Appl. Math. doi: 10.5373/jaram.1542.091012 – ident: e_1_2_8_12_1 doi: 10.1016/j.cnsns.2006.09.018 – ident: e_1_2_8_13_1 doi: 10.4236/am.2016.710102 – volume: 4 start-page: 940 year: 2014 ident: e_1_2_8_19_1 article-title: Finite difference approximations for the modified equal width wave (MEW) equation publication-title: J. Math. Comput. Sci. – ident: e_1_2_8_34_1 doi: 10.1017/S0305004100055572 – volume: 12 start-page: 51 year: 2019 ident: e_1_2_8_11_1 article-title: Operator splitting method for numerical solution of modified equal width equation publication-title: Tbilisi Math. J. doi: 10.32513/tbilisi/1569463234 – ident: e_1_2_8_8_1 doi: 10.1016/j.asej.2012.03.010 – volume: 19 start-page: 215 year: 2012 ident: e_1_2_8_17_1 article-title: Petrov–Galerkin method with cubic B‐splines for solving the MEW equation publication-title: Bull. Belg. Math. Soc. Simon Stevin doi: 10.36045/bbms/1337864268 – volume: 87 start-page: 1569 year: 2010 ident: e_1_2_8_20_1 article-title: Radial basis functions method for numerical solution of the modified equal width equation publication-title: Int. J. Comput. Math. doi: 10.1080/00207160802395908 – ident: e_1_2_8_33_1 – ident: e_1_2_8_18_1 doi: 10.1155/2012/587208 – volume: 4 start-page: 9 year: 2016 ident: e_1_2_8_6_1 article-title: Exact travelling wave solutions of the modified equal width equation via the dynamical system method publication-title: Nonlinear Anal. Differential Equations doi: 10.12988/nade.2016.5824 – volume: 29 start-page: 1850043‐1 year: 2018 ident: e_1_2_8_29_1 article-title: A new perspective for the numerical solutions of the cmKdV equation via modified cubic B‐spline differential quadrature method publication-title: International Journal of Modern Physics C doi: 10.1142/S0129183118500432 – volume: 83 start-page: 449 year: 2006 ident: e_1_2_8_10_1 article-title: A lumped Galerkin method for the numerical solution of the modified equal‐width wave equation using quadratic B‐splines publication-title: Int. J. Comput. Math. doi: 10.1080/00207160600909918 – ident: e_1_2_8_22_1 doi: 10.1016/j.mcm.2006.09.012 – volume: 9 start-page: 273 year: 2018 ident: e_1_2_8_27_1 article-title: Numerical solutions for the fourth order extended Fisher–Kolmogorov equation with high accuracy by differential quadrature method publication-title: Sigma J. Eng. Nat. Sci. – ident: e_1_2_8_32_1 doi: 10.1007/978-1-4471-0407-0 – ident: e_1_2_8_7_1 doi: 10.1016/j.cnsns.2004.07.001 – ident: e_1_2_8_9_1 doi: 10.1080/0020716042000272539 – ident: e_1_2_8_2_1 doi: 10.1016/0167-2789(84)90014-9 – volume: 132 start-page: 1 year: 2017 ident: e_1_2_8_4_1 article-title: Steady bifurcation and solitary waves of modified equal width equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11567-8 – volume: 16 start-page: 1 year: 2019 ident: e_1_2_8_25_1 article-title: An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B‐spline differential quadrature method publication-title: Mediterr. J. Math. doi: 10.1007/s00009-018-1291-9 – ident: e_1_2_8_28_1 doi: 10.3906/mat-1609-69 – ident: e_1_2_8_15_1 doi: 10.1134/S0965542515030070 – volume: 133 start-page: 1 year: 2018 ident: e_1_2_8_24_1 article-title: A new perspective for quintic B‐spline based Crank–Nicolson differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-11843-1 – volume: 13 start-page: 43 year: 2012 ident: e_1_2_8_14_1 article-title: Different linearization techniques for the numerical solution of the MEW equation publication-title: Selçuk J. Appl. Math. – ident: e_1_2_8_21_1 doi: 10.1016/S0010-4655(99)00471-3 – ident: e_1_2_8_3_1 doi: 10.1016/j.rinp.2018.02.036 – ident: e_1_2_8_5_1 doi: 10.1016/j.chaos.2007.06.104 – ident: e_1_2_8_31_1 doi: 10.1016/j.amc.2012.01.059 – ident: e_1_2_8_23_1 doi: 10.1016/0021-9991(72)90089-7 – ident: e_1_2_8_30_1 doi: 10.1016/j.amc.2019.04.073 |
| SSID | ssj0011519 |
| Score | 2.3700402 |
| Snippet | The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 690 |
| SubjectTerms | Algorithms B‐splines Differential equations differential quadrature method Exact solutions Finite difference method modified equal width equation Norms Numerical analysis Numerical methods Quadratures solitary wave Solitary waves Wave equations |
| Title | Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22547 https://www.proquest.com/docview/2463117273 |
| Volume | 37 |
| WOSCitedRecordID | wos000573068900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1098-2426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011519 issn: 0749-159X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH5kyQ7roVvXlaXLhig97OLWPyRbZqexLezQhlGakpuR9QMCqdMlcfo39L_uk2R7GbQw2M3YT0_GetL7JFnfB3CKKMLECOUt8zENKOMyyHmqAsO4liwXkXTKczcX2WTCZ7P8Vw--tGdhPD9Et-Bme4Ybr20HF-X6fIc0tL49w2Ck2QsYxBi3tA-D71fj6UW3iYDJLPcsnHmAWXvWEguF8XlX-O909Adj7iJVl2rGr__rJd_AfoMwyVcfEgfQ09Vb2Lvs6FnXh_AwnluoSVp1FKmJV5Im6B-nyloRuz7bPcdRYEF-10J5AubWGPEuqWq_5bOwRe9qv7FPloZgdeR2iR4Q4xJtz26iT4VO78VWuxvW8h1Mxz-uv_0MGk2GQMYIFYOU6oSLUDAlQ1kyrrhhGudoQpdKSR0JJWQkspIZHamSyaQUOszSzKRCiDzNkyPoV8tKvweijDBaKR5SxZ0GtmFlzLWhIVeJkHQIn9umKWRDWG51MxaFp1qOrWhK4b7uEE460zvP0vGU0aht36LpqOsipmkSORCH1bmWfN5BMZleuovjfzf9AK9i-xeMW7QZQX-zqvVHeCm3m_l69amJ2EeOCPRH |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED6ytLDtYe3WjqXLNjH6sBe3tmPZMvRltAsZS0IpScmbkfUDAomTJXX3N-y_3kmyvRQ6GPTN2KeTsU66T3fWdwCniCJ0iFDeMB9HXkSZ8FIWS09TpgRNeSBs5bnbYTIes9ksvW7BRX0WxvFDNAE3MzPsem0muAlIn--whpbLM7TGKHkGexGaEW3D3tVNfzpssgjozVJHw5l66LZnNbOQH543jR_6o78gcxeqWl_TP3jaWx7Cqwpjkq_OKF5DSxVv4OWoIWjdHsHv_tyATVLXRxGKuFrSBDvAzbKSxERom-e4DizIz5JLR8FcCyPiJUXpkj4L03RdutQ-WWmC3ZHlCjUgyiXKnN5EnRKV_uL3yt4wkscw7X-bXA68qiqDJ0IEi14cqR7jPqdS-CKnTDJNFe7SuMqlFCrgkouAJznVKpA5Fb2cKz-JEx1zztM47b2FdrEq1DsgUnOtpGR-JJmtgq1pHjKlI5_JHhdRB77UY5OJirLcVM5YZI5sOTRlUzL7dTvwuRFdO56Ox4S69QBn1VTdZiHaTmBhHHZnh_LfCrLxdGQvTv5f9BM8H0xGw2z4ffzjPbwIzT8xNoTThfbdplQfYF_c3823m4-V-f4BHQD4Nw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFiE40AJFbSnUQhy4hObDThypF9QSgdiuKsSivUWOPZYqbXe33ab8Bv41YzsJRSoSUm9RMh5HscfzbMfvAbwjFGFTgvKO-ZhHXEgdlTI3kRUStShVor3y3I9RMR7L6bQ8W4Oj_ixM4IcYFtxcZPjx2gU4Lo09vMUa2l58oN7IiwewwUWZU1hunHyrJqNhF4GyWRloOMuI0va0ZxaK08Oh8N_56A_IvA1Vfa6pNu_3llvwtMOY7GPoFM9gDefP4cnpQNC6egG_qnMHNlmvj6KRBS1pRhXQZBkNcyu0w3MaB2bsslUmUDD3xoR42bwNmz4zV3TZhq19trCMqmMXC_JAKJehO71JPg05_alu0N9wltswqT59P_4cdaoMkU4JLEY5x0yqWAmjY90IaaQVSLM0hY0xGhNllE5U0QiLiWmEzhqFcZEXNldKlXmZvYT1-WKOO8CMVRaNkTE30qtgW9GkEi2PpcmU5rvwvm-bWneU5U45Y1YHsuXUyabU_uvuwtvBdBl4Ou4y2u8buO5CdVWnPM8SD-OoOt-U_3ZQjyen_mLv_00P4NHZSVWPvoy_voLHqfslxq_g7MP69VWLr-Ghvrk-X1296Xrvb7Xn97I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+difference+method+combined+with+differential+quadrature+method+for+numerical+computation+of+the+modified+equal+width+wave+equation&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Ba%C5%9Fhan%2C+Ali&rft.au=Ya%C4%9Fmurlu%2C+N.+Murat&rft.au=U%C3%A7ar%2C+Yusuf&rft.au=Esen%2C+Alaattin&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=37&rft.issue=1&rft.spage=690&rft.epage=706&rft_id=info:doi/10.1002%2Fnum.22547&rft.externalDBID=10.1002%252Fnum.22547&rft.externalDocID=NUM22547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |