Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation

The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with differential quadrature method with Rubin and Graves linearizing technique has been used. Modified cubic B‐spline base functions are used as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical methods for partial differential equations Ročník 37; číslo 1; s. 690 - 706
Hlavní autoři: Başhan, Ali, Yağmurlu, N. Murat, Uçar, Yusuf, Esen, Alaattin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.01.2021
Wiley Subscription Services, Inc
Témata:
ISSN:0749-159X, 1098-2426
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with differential quadrature method with Rubin and Graves linearizing technique has been used. Modified cubic B‐spline base functions are used as base function. By the combination of two numerical methods and effective linearizing technique high accurate numerical algorithm is obtained. Three main test problems are solved for various values of the coefficients. To observe the performance of the present method, the error norms of the single soliton problem which has analytical solution are calculated. Besides these error norms, three invariants are reported. Comparison of the results displays that our algorithm produces superior results than those given in the literature.
AbstractList The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with differential quadrature method with Rubin and Graves linearizing technique has been used. Modified cubic B‐spline base functions are used as base function. By the combination of two numerical methods and effective linearizing technique high accurate numerical algorithm is obtained. Three main test problems are solved for various values of the coefficients. To observe the performance of the present method, the error norms of the single soliton problem which has analytical solution are calculated. Besides these error norms, three invariants are reported. Comparison of the results displays that our algorithm produces superior results than those given in the literature.
Author Başhan, Ali
Yağmurlu, N. Murat
Uçar, Yusuf
Esen, Alaattin
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0001-8500-493X
  surname: Başhan
  fullname: Başhan, Ali
  email: alibashan@gmail.com
  organization: Zonguldak Bulent Ecevit University
– sequence: 2
  givenname: N. Murat
  orcidid: 0000-0003-1593-0254
  surname: Yağmurlu
  fullname: Yağmurlu, N. Murat
  organization: Inonu University
– sequence: 3
  givenname: Yusuf
  orcidid: 0000-0003-1469-5002
  surname: Uçar
  fullname: Uçar, Yusuf
  organization: Inonu University
– sequence: 4
  givenname: Alaattin
  orcidid: 0000-0002-7927-5941
  surname: Esen
  fullname: Esen, Alaattin
  organization: Inonu University
BookMark eNp9kM9KAzEQh4Mo2FYPvsGCJw_bJvsv3aMUq0LViwVvy2wyoSm7mzabtfQRfGvTrvQg6Glg5vt9w8yQnDemQUJuGB0zSqNJ09XjKEoTfkYGjObTMEqi7JwMKE_ykKX5xyUZtu2aUsZSlg_I11w32mEgtVJosREY1OhWRgbC1KVuUAY77VanudNQBdsOpAXX2ROsjA38arRa-LmPbjoHTpsmMCpwK88Zb9Dehj5ceaf00h184rFxIK_IhYKqxeufOiLL-cP77ClcvD0-z-4XoYhyzsMswXgKFFIpqCjTqZyqFBPKAEspBTKQIBjwMlXIZJmKuASkPOMqA4A8y-MRue29G2u2HbauWJvONn5lESVZzBiPeOypu54S1rStRVVsrK7B7gtGi8OnC39ucfy0Zye_WKH7650FXf2X2OkK93-ri9flS5_4BoOmlwA
CitedBy_id crossref_primary_10_1007_s40314_022_01882_7
crossref_primary_10_1016_j_camwa_2023_04_014
crossref_primary_10_1063_5_0276849
crossref_primary_10_1016_j_camwa_2025_08_018
crossref_primary_10_11121_ijocta_1546
crossref_primary_10_1002_mma_11135
crossref_primary_10_1016_j_enganabound_2022_09_036
crossref_primary_10_1007_s11071_022_07817_5
crossref_primary_10_1007_s13370_023_01141_w
crossref_primary_10_1007_s40314_025_03100_6
crossref_primary_10_1007_s11082_024_07166_0
crossref_primary_10_1016_j_wavemoti_2024_103342
crossref_primary_10_1080_10236198_2022_2132154
crossref_primary_10_1007_s11075_022_01416_6
crossref_primary_10_1007_s13226_023_00444_9
crossref_primary_10_1007_s43069_024_00369_x
Cites_doi 10.1016/j.chaos.2017.04.038
10.5373/jaram.1542.091012
10.1016/j.cnsns.2006.09.018
10.4236/am.2016.710102
10.1017/S0305004100055572
10.32513/tbilisi/1569463234
10.1016/j.asej.2012.03.010
10.36045/bbms/1337864268
10.1080/00207160802395908
10.1155/2012/587208
10.12988/nade.2016.5824
10.1142/S0129183118500432
10.1080/00207160600909918
10.1016/j.mcm.2006.09.012
10.1007/978-1-4471-0407-0
10.1016/j.cnsns.2004.07.001
10.1080/0020716042000272539
10.1016/0167-2789(84)90014-9
10.1140/epjp/i2017-11567-8
10.1007/s00009-018-1291-9
10.3906/mat-1609-69
10.1134/S0965542515030070
10.1140/epjp/i2018-11843-1
10.1016/S0010-4655(99)00471-3
10.1016/j.rinp.2018.02.036
10.1016/j.chaos.2007.06.104
10.1016/j.amc.2012.01.059
10.1016/0021-9991(72)90089-7
10.1016/j.amc.2019.04.073
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.22547
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 706
ExternalDocumentID 10_1002_num_22547
NUM22547
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2977-64e38a0a5dc0cb58d8f5e401aebddce1adac1a7b5fe1db5c3bae0767f6aaa9693
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573068900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-159X
IngestDate Fri Jul 25 12:19:50 EDT 2025
Tue Nov 18 22:37:48 EST 2025
Sat Nov 29 05:35:17 EST 2025
Wed Jan 22 16:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2977-64e38a0a5dc0cb58d8f5e401aebddce1adac1a7b5fe1db5c3bae0767f6aaa9693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8500-493X
0000-0002-7927-5941
0000-0003-1469-5002
0000-0003-1593-0254
PQID 2463117273
PQPubID 1016406
PageCount 33
ParticipantIDs proquest_journals_2463117273
crossref_primary_10_1002_num_22547
crossref_citationtrail_10_1002_num_22547
wiley_primary_10_1002_num_22547_NUM22547
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 29
2012
2006; 11
2019; 12
2015; 55
2019; 16
1975
2008; 13
2012; 19
2005; 82
2017; 132
2019; 360
2012; 13
2013; 5
2018; 42
2016; 4
2018; 9
2010; 87
2018; 133
2016; 7
2012; 3
2014; 4
2006; 83
2000
2000; 126
1984; 11
1972; 10
2017; 100
1979; 85
2007; 45
2012; 218
2009; 39
e_1_2_8_28_1
e_1_2_8_26_1
Başhan A. (e_1_2_8_27_1) 2018; 9
Dereli Y. (e_1_2_8_20_1) 2010; 87
e_1_2_8_3_1
Esen A. (e_1_2_8_10_1) 2006; 83
e_1_2_8_2_1
Wang H. (e_1_2_8_6_1) 2016; 4
e_1_2_8_5_1
e_1_2_8_7_1
Başhan A. (e_1_2_8_29_1) 2018; 29
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_13_1
e_1_2_8_15_1
Geyikli T. (e_1_2_8_17_1) 2012; 19
Yang S. (e_1_2_8_4_1) 2017; 132
Başhan A. (e_1_2_8_24_1) 2018; 133
Raslan K. R. (e_1_2_8_19_1) 2014; 4
Başhan A. (e_1_2_8_25_1) 2019; 16
Çelikkaya İ. (e_1_2_8_11_1) 2019; 12
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
Karakoç S. B. G. (e_1_2_8_14_1) 2012; 13
e_1_2_8_33_1
Karakoç S. B. G. (e_1_2_8_16_1) 2013; 5
e_1_2_8_30_1
References_xml – volume: 9
  start-page: 313
  year: 2018
  end-page: 320
  article-title: Dispersive traveling wave solutions of the equal‐width and modified equal‐width equations via mathematical methods and its applications
  publication-title: Results Phys.
– volume: 133
  start-page: 1
  year: 2018
  end-page: 15
  article-title: A new perspective for quintic B‐spline based Crank–Nicolson differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation
  publication-title: Eur. Phys. J. Plus
– volume: 126
  start-page: 219
  year: 2000
  end-page: 231
  article-title: Solitary wave interactions for the modified equal width equation
  publication-title: Comput. Phys. Commun.
– volume: 29
  start-page: 1850043‐1
  year: 2018
  end-page: 1850043‐17
  article-title: A new perspective for the numerical solutions of the cmKdV equation via modified cubic B‐spline differential quadrature method
  publication-title: International Journal of Modern Physics C
– volume: 4
  start-page: 9
  year: 2016
  end-page: 15
  article-title: Exact travelling wave solutions of the modified equal width equation via the dynamical system method
  publication-title: Nonlinear Anal. Differential Equations
– volume: 85
  start-page: 143
  year: 1979
  end-page: 160
  article-title: Euler operators and conservation laws of the BBM equation
  publication-title: Math Proc. Camb. Phil. Soc.
– year: 2000
– year: 1975
– volume: 16
  start-page: 1
  year: 2019
  end-page: 19
  article-title: An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B‐spline differential quadrature method
  publication-title: Mediterr. J. Math.
– volume: 82
  start-page: 445
  year: 2005
  end-page: 455
  article-title: Solitary waves for the generalized equal width (GEW) equation
  publication-title: Int. J. Comput. Math.
– volume: 5
  start-page: 51
  year: 2013
  end-page: 65
  article-title: A numerical solution of the MEW equation using sextic B‐splines
  publication-title: J. Adv. Res. Appl. Math.
– volume: 4
  start-page: 940
  year: 2014
  end-page: 957
  article-title: Finite difference approximations for the modified equal width wave (MEW) equation
  publication-title: J. Math. Comput. Sci.
– volume: 11
  start-page: 324
  year: 1984
  end-page: 336
  article-title: Scattering of regularized‐long‐wave solitary waves
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 87
  start-page: 1569
  year: 2010
  end-page: 1577
  article-title: Radial basis functions method for numerical solution of the modified equal width equation
  publication-title: Int. J. Comput. Math.
– volume: 3
  start-page: 321
  year: 2012
  end-page: 325
  article-title: Exact solutions of nonlinear evolution equations by using the modified simple equation method
  publication-title: Ain Shams Eng. J.
– volume: 19
  start-page: 215
  year: 2012
  end-page: 227
  article-title: Petrov–Galerkin method with cubic B‐splines for solving the MEW equation
  publication-title: Bull. Belg. Math. Soc. Simon Stevin
– volume: 11
  start-page: 148
  year: 2006
  end-page: 160
  article-title: The tanh and the sine‐cosine methods for a reliable treatment of the modified equal width equation and its variants
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 12
  start-page: 51
  year: 2019
  end-page: 67
  article-title: Operator splitting method for numerical solution of modified equal width equation
  publication-title: Tbilisi Math. J.
– volume: 42
  start-page: 373
  year: 2018
  end-page: 394
  article-title: An effective application of differential quadrature method based on modified cubic B‐splines to numerical solutions of the KdV equation
  publication-title: Turk. J. Math.
– volume: 132
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Steady bifurcation and solitary waves of modified equal width equation
  publication-title: Eur. Phys. J. Plus
– volume: 83
  start-page: 449
  year: 2006
  end-page: 459
  article-title: A lumped Galerkin method for the numerical solution of the modified equal‐width wave equation using quadratic B‐splines
  publication-title: Int. J. Comput. Math.
– volume: 45
  start-page: 1096
  year: 2007
  end-page: 1117
  article-title: Algorithms for numerical solution of the modified equal width wave equation using collocation method
  publication-title: Math. Comput. Model.
– volume: 360
  start-page: 42
  year: 2019
  end-page: 57
  article-title: A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 1538
  year: 2008
  end-page: 1546
  article-title: Solitary wave solutions of the modified equal width wave equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 7
  start-page: 1140
  year: 2016
  end-page: 1147
  article-title: Multigrid method for the numerical solution of the modified equal width wave equation
  publication-title: Appl. Math.
– start-page: 1
  year: 2012
  end-page: 15
– volume: 39
  start-page: 2102
  year: 2009
  end-page: 2109
  article-title: He's variational iteration method for the modified equal width equation
  publication-title: Chaos, Solitons and Fractals
– volume: 55
  start-page: 410
  year: 2015
  end-page: 421
  article-title: Subdomain finite element method with quartic B splines for the modified equal width wave equation
  publication-title: Comput. Math. Math. Phys.
– volume: 9
  start-page: 273
  year: 2018
  end-page: 284
  article-title: Numerical solutions for the fourth order extended Fisher–Kolmogorov equation with high accuracy by differential quadrature method
  publication-title: Sigma J. Eng. Nat. Sci.
– volume: 100
  start-page: 45
  year: 2017
  end-page: 56
  article-title: An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B‐spline differential quadrature method
  publication-title: Chaos, Solitons and Fractals
– volume: 13
  start-page: 43
  year: 2012
  end-page: 62
  article-title: Different linearization techniques for the numerical solution of the MEW equation
  publication-title: Selçuk J. Appl. Math.
– volume: 10
  start-page: 40
  year: 1972
  end-page: 52
  article-title: Differential quadrature: A tecnique for the rapid solution of nonlinear differential equations
  publication-title: J. Comput. Phys.
– volume: 218
  start-page: 7839
  year: 2012
  end-page: 7855
  article-title: Numerical solutions of nonlinear Burgers' equation with modified cubic B‐splines collocation method
  publication-title: Appl. Math. Comput.
– ident: e_1_2_8_26_1
  doi: 10.1016/j.chaos.2017.04.038
– volume: 5
  start-page: 51
  year: 2013
  ident: e_1_2_8_16_1
  article-title: A numerical solution of the MEW equation using sextic B‐splines
  publication-title: J. Adv. Res. Appl. Math.
  doi: 10.5373/jaram.1542.091012
– ident: e_1_2_8_12_1
  doi: 10.1016/j.cnsns.2006.09.018
– ident: e_1_2_8_13_1
  doi: 10.4236/am.2016.710102
– volume: 4
  start-page: 940
  year: 2014
  ident: e_1_2_8_19_1
  article-title: Finite difference approximations for the modified equal width wave (MEW) equation
  publication-title: J. Math. Comput. Sci.
– ident: e_1_2_8_34_1
  doi: 10.1017/S0305004100055572
– volume: 12
  start-page: 51
  year: 2019
  ident: e_1_2_8_11_1
  article-title: Operator splitting method for numerical solution of modified equal width equation
  publication-title: Tbilisi Math. J.
  doi: 10.32513/tbilisi/1569463234
– ident: e_1_2_8_8_1
  doi: 10.1016/j.asej.2012.03.010
– volume: 19
  start-page: 215
  year: 2012
  ident: e_1_2_8_17_1
  article-title: Petrov–Galerkin method with cubic B‐splines for solving the MEW equation
  publication-title: Bull. Belg. Math. Soc. Simon Stevin
  doi: 10.36045/bbms/1337864268
– volume: 87
  start-page: 1569
  year: 2010
  ident: e_1_2_8_20_1
  article-title: Radial basis functions method for numerical solution of the modified equal width equation
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160802395908
– ident: e_1_2_8_33_1
– ident: e_1_2_8_18_1
  doi: 10.1155/2012/587208
– volume: 4
  start-page: 9
  year: 2016
  ident: e_1_2_8_6_1
  article-title: Exact travelling wave solutions of the modified equal width equation via the dynamical system method
  publication-title: Nonlinear Anal. Differential Equations
  doi: 10.12988/nade.2016.5824
– volume: 29
  start-page: 1850043‐1
  year: 2018
  ident: e_1_2_8_29_1
  article-title: A new perspective for the numerical solutions of the cmKdV equation via modified cubic B‐spline differential quadrature method
  publication-title: International Journal of Modern Physics C
  doi: 10.1142/S0129183118500432
– volume: 83
  start-page: 449
  year: 2006
  ident: e_1_2_8_10_1
  article-title: A lumped Galerkin method for the numerical solution of the modified equal‐width wave equation using quadratic B‐splines
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160600909918
– ident: e_1_2_8_22_1
  doi: 10.1016/j.mcm.2006.09.012
– volume: 9
  start-page: 273
  year: 2018
  ident: e_1_2_8_27_1
  article-title: Numerical solutions for the fourth order extended Fisher–Kolmogorov equation with high accuracy by differential quadrature method
  publication-title: Sigma J. Eng. Nat. Sci.
– ident: e_1_2_8_32_1
  doi: 10.1007/978-1-4471-0407-0
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cnsns.2004.07.001
– ident: e_1_2_8_9_1
  doi: 10.1080/0020716042000272539
– ident: e_1_2_8_2_1
  doi: 10.1016/0167-2789(84)90014-9
– volume: 132
  start-page: 1
  year: 2017
  ident: e_1_2_8_4_1
  article-title: Steady bifurcation and solitary waves of modified equal width equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11567-8
– volume: 16
  start-page: 1
  year: 2019
  ident: e_1_2_8_25_1
  article-title: An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B‐spline differential quadrature method
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-018-1291-9
– ident: e_1_2_8_28_1
  doi: 10.3906/mat-1609-69
– ident: e_1_2_8_15_1
  doi: 10.1134/S0965542515030070
– volume: 133
  start-page: 1
  year: 2018
  ident: e_1_2_8_24_1
  article-title: A new perspective for quintic B‐spline based Crank–Nicolson differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-11843-1
– volume: 13
  start-page: 43
  year: 2012
  ident: e_1_2_8_14_1
  article-title: Different linearization techniques for the numerical solution of the MEW equation
  publication-title: Selçuk J. Appl. Math.
– ident: e_1_2_8_21_1
  doi: 10.1016/S0010-4655(99)00471-3
– ident: e_1_2_8_3_1
  doi: 10.1016/j.rinp.2018.02.036
– ident: e_1_2_8_5_1
  doi: 10.1016/j.chaos.2007.06.104
– ident: e_1_2_8_31_1
  doi: 10.1016/j.amc.2012.01.059
– ident: e_1_2_8_23_1
  doi: 10.1016/0021-9991(72)90089-7
– ident: e_1_2_8_30_1
  doi: 10.1016/j.amc.2019.04.073
SSID ssj0011519
Score 2.3700402
Snippet The aim of this study is to improve the numerical solution of the modified equal width wave equation. For this purpose, finite difference method combined with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 690
SubjectTerms Algorithms
B‐splines
Differential equations
differential quadrature method
Exact solutions
Finite difference method
modified equal width equation
Norms
Numerical analysis
Numerical methods
Quadratures
solitary wave
Solitary waves
Wave equations
Title Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22547
https://www.proquest.com/docview/2463117273
Volume 37
WOSCitedRecordID wos000573068900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH5kyQ7roVvXlaXLhig97OLWPyRbZqexLezQhlGakpuR9QMCqdMlcfo39L_uk2R7GbQw2M3YT0_GetL7JFnfB3CKKMLECOUt8zENKOMyyHmqAsO4liwXkXTKczcX2WTCZ7P8Vw--tGdhPD9Et-Bme4Ybr20HF-X6fIc0tL49w2Ck2QsYxBi3tA-D71fj6UW3iYDJLPcsnHmAWXvWEguF8XlX-O909Adj7iJVl2rGr__rJd_AfoMwyVcfEgfQ09Vb2Lvs6FnXh_AwnluoSVp1FKmJV5Im6B-nyloRuz7bPcdRYEF-10J5AubWGPEuqWq_5bOwRe9qv7FPloZgdeR2iR4Q4xJtz26iT4VO78VWuxvW8h1Mxz-uv_0MGk2GQMYIFYOU6oSLUDAlQ1kyrrhhGudoQpdKSR0JJWQkspIZHamSyaQUOszSzKRCiDzNkyPoV8tKvweijDBaKR5SxZ0GtmFlzLWhIVeJkHQIn9umKWRDWG51MxaFp1qOrWhK4b7uEE460zvP0vGU0aht36LpqOsipmkSORCH1bmWfN5BMZleuovjfzf9AK9i-xeMW7QZQX-zqvVHeCm3m_l69amJ2EeOCPRH
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED6ytLDtYe3WjqXLNjH6sBe3tmPZMvRltAsZS0IpScmbkfUDAomTJXX3N-y_3kmyvRQ6GPTN2KeTsU66T3fWdwCniCJ0iFDeMB9HXkSZ8FIWS09TpgRNeSBs5bnbYTIes9ksvW7BRX0WxvFDNAE3MzPsem0muAlIn--whpbLM7TGKHkGexGaEW3D3tVNfzpssgjozVJHw5l66LZnNbOQH543jR_6o78gcxeqWl_TP3jaWx7Cqwpjkq_OKF5DSxVv4OWoIWjdHsHv_tyATVLXRxGKuFrSBDvAzbKSxERom-e4DizIz5JLR8FcCyPiJUXpkj4L03RdutQ-WWmC3ZHlCjUgyiXKnN5EnRKV_uL3yt4wkscw7X-bXA68qiqDJ0IEi14cqR7jPqdS-CKnTDJNFe7SuMqlFCrgkouAJznVKpA5Fb2cKz-JEx1zztM47b2FdrEq1DsgUnOtpGR-JJmtgq1pHjKlI5_JHhdRB77UY5OJirLcVM5YZI5sOTRlUzL7dTvwuRFdO56Ox4S69QBn1VTdZiHaTmBhHHZnh_LfCrLxdGQvTv5f9BM8H0xGw2z4ffzjPbwIzT8xNoTThfbdplQfYF_c3823m4-V-f4BHQD4Nw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFiE40AJFbSnUQhy4hObDThypF9QSgdiuKsSivUWOPZYqbXe33ab8Bv41YzsJRSoSUm9RMh5HscfzbMfvAbwjFGFTgvKO-ZhHXEgdlTI3kRUStShVor3y3I9RMR7L6bQ8W4Oj_ixM4IcYFtxcZPjx2gU4Lo09vMUa2l58oN7IiwewwUWZU1hunHyrJqNhF4GyWRloOMuI0va0ZxaK08Oh8N_56A_IvA1Vfa6pNu_3llvwtMOY7GPoFM9gDefP4cnpQNC6egG_qnMHNlmvj6KRBS1pRhXQZBkNcyu0w3MaB2bsslUmUDD3xoR42bwNmz4zV3TZhq19trCMqmMXC_JAKJehO71JPg05_alu0N9wltswqT59P_4cdaoMkU4JLEY5x0yqWAmjY90IaaQVSLM0hY0xGhNllE5U0QiLiWmEzhqFcZEXNldKlXmZvYT1-WKOO8CMVRaNkTE30qtgW9GkEi2PpcmU5rvwvm-bWneU5U45Y1YHsuXUyabU_uvuwtvBdBl4Ou4y2u8buO5CdVWnPM8SD-OoOt-U_3ZQjyen_mLv_00P4NHZSVWPvoy_voLHqfslxq_g7MP69VWLr-Ghvrk-X1296Xrvb7Xn97I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+difference+method+combined+with+differential+quadrature+method+for+numerical+computation+of+the+modified+equal+width+wave+equation&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Ba%C5%9Fhan%2C+Ali&rft.au=Ya%C4%9Fmurlu%2C+N.+Murat&rft.au=U%C3%A7ar%2C+Yusuf&rft.au=Esen%2C+Alaattin&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=37&rft.issue=1&rft.spage=690&rft.epage=706&rft_id=info:doi/10.1002%2Fnum.22547&rft.externalDBID=10.1002%252Fnum.22547&rft.externalDocID=NUM22547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon