Multistage stochastic programming for the closed‐loop supply chain planning with mobile modules under uncertainty
Traditional supply chains usually follow fixed facility designs which coincide with the strategic nature of supply chain management (SCM). However, as the global market turns more volatile, the concept of mobile modularization has been adopted by increasingly more industrial practitioners. In mobile...
Uloženo v:
| Vydáno v: | AIChE journal Ročník 69; číslo 9 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2023
American Institute of Chemical Engineers |
| Témata: | |
| ISSN: | 0001-1541, 1547-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Traditional supply chains usually follow fixed facility designs which coincide with the strategic nature of supply chain management (SCM). However, as the global market turns more volatile, the concept of mobile modularization has been adopted by increasingly more industrial practitioners. In mobile modular networks, modular units can be installed or removed at a particular site to expand or reduce the capacity of a facility, or relocated to other sites to tackle market volatility. In this work, we formulate a mixed‐integer linear programming (MILP) model for the closed‐loop supply chain network planning with modular distribution and collection facilities. To further deal with uncertain customer demands and recovery rates, we extend our model to a multistage stochastic programming model and efficiently solve it using a tailored stochastic dynamic dual integer programming (SDDiP) with Magnanti‐Wong enhanced cuts. Computational experiments show that the added Magnanti‐Wong cuts in the proposed algorithm can effectively close the gap between upper and lower bounds, and the benefit of mobile modules is evident when the temporal and spatial variability of customer demand is high. |
|---|---|
| AbstractList | Traditional supply chains usually follow fixed facility designs which coincide with the strategic nature of supply chain management (SCM). However, as the global market turns more volatile, the concept of mobile modularization has been adopted by increasingly more industrial practitioners. In mobile modular networks, modular units can be installed or removed at a particular site to expand or reduce the capacity of a facility, or relocated to other sites to tackle market volatility. In this work, we formulate a mixed‐integer linear programming (MILP) model for the closed‐loop supply chain network planning with modular distribution and collection facilities. To further deal with uncertain customer demands and recovery rates, we extend our model to a multistage stochastic programming model and efficiently solve it using a tailored stochastic dynamic dual integer programming (SDDiP) with Magnanti‐Wong enhanced cuts. Computational experiments show that the added Magnanti‐Wong cuts in the proposed algorithm can effectively close the gap between upper and lower bounds, and the benefit of mobile modules is evident when the temporal and spatial variability of customer demand is high. |
| Author | Yuan, Zhihong Zhang, Lifeng Yang, Wenhui Ge, Congqin |
| Author_xml | – sequence: 1 givenname: Congqin surname: Ge fullname: Ge, Congqin organization: Tsinghua University – sequence: 2 givenname: Lifeng surname: Zhang fullname: Zhang, Lifeng organization: Tsinghua University – sequence: 3 givenname: Wenhui surname: Yang fullname: Yang, Wenhui organization: Tsinghua University – sequence: 4 givenname: Zhihong orcidid: 0000-0002-4680-8203 surname: Yuan fullname: Yuan, Zhihong email: zhihongyuan@mail.tsinghua.edu.cn organization: Tsinghua University |
| BookMark | eNp1kE1OwzAQhS1UJNrCghtYYsUirZ0f11lWFT-VitjAOnIcu3Xl2MF2VGXHETgjJ8GlrBBs5mlG35vRvAkYGWsEANcYzTBC6ZwpPsMUF-QMjHGRL5KiRMUIjBFCOIkDfAEm3u9jly5oOgb-qddB-cC2Avpg-Y75oDjsnN061rbKbKG0DoadgFxbL5rP9w9tbQd933V6gNGgDOw0M-bIHlTYwdbWSosoTa-Fh71phIuVCxciHIZLcC6Z9uLqR6fg9f7uZfWYbJ4f1qvlJuFpuSCJQDSveSMlQwyRRjLBaiyyssgKIjNKSCnqXDKSkYKRNCKS0pwiWuOsIYzTbApuTnvjN2-98KHa296ZeLJKaV5mBcZpGan5ieLOeu-ErLgKLChrgmNKVxhVx2SrmGz1nWx03P5ydE61zA1_sj_bDzGS4X-wWq5XJ8cXTWCN4Q |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2023_09_014 crossref_primary_10_1108_K_02_2024_0329 |
| Cites_doi | 10.1002/aic.15872 10.1287/opre.50.5.810.370 10.1023/A:1026146507143 10.1016/j.cie.2022.108734 10.1080/00207543.2022.2120924 10.1287/opre.33.5.989 10.1007/s00500-014-1405-7 10.1016/S0377-2217(98)00186-6 10.1287/opre.1030.0065 10.1016/j.ejor.2018.08.031 10.1021/acssuschemeng.7b02081 10.1007/s10287-018-0338-5 10.1016/j.ejor.2017.04.009 10.1016/j.orl.2020.06.003 10.1002/aic.17367 10.1016/j.ejor.2008.05.007 10.1016/j.compchemeng.2016.03.002 10.1016/j.ejor.2020.03.045 10.1016/j.compchemeng.2021.107501 10.1016/j.cor.2004.07.005 10.1016/j.ejor.2019.01.066 10.1016/j.cie.2011.09.018 10.1007/s11573-020-01019-4 10.1016/S0305-0548(99)00126-4 10.1007/s11356-020-09966-9 10.1002/aic.17329 10.1287/opre.29.3.464 10.1002/aic.17909 10.1016/j.ijpe.2007.10.017 10.1016/j.compchemeng.2022.108102 10.1002/aic.17333 10.1051/ro/2022134 10.1016/j.orl.2008.01.013 10.1016/S0167-6377(98)00050-9 10.1007/s10107-003-0454-y 10.1016/0167-6377(93)90002-X 10.1016/S0305-0483(99)00080-8 10.1016/j.jclepro.2016.06.106 10.1016/j.ijpe.2005.03.011 10.1016/j.compchemeng.2016.11.011 10.1016/j.cor.2006.03.017 10.1016/j.jmsy.2008.03.002 10.1016/j.ejor.2020.03.065 10.1007/s11081-019-09471-0 10.1007/s10107-018-1249-5 10.1016/j.apenergy.2019.114439 10.1016/j.compchemeng.2020.107175 10.1016/j.ejor.2016.06.039 10.1016/j.ejor.2018.05.039 10.1109/TPWRS.2018.2880996 10.1016/j.ifacol.2020.12.583 10.1016/j.ejor.2014.04.024 10.1016/j.compchemeng.2013.11.011 10.1080/09511920310001593100 10.1016/j.orl.2008.01.005 10.1016/j.energy.2015.10.043 10.1016/j.compchemeng.2021.107326 10.1021/acs.iecr.8b04189 10.1287/mnsc.28.10.1091 10.1021/acs.iecr.1c00446 10.1007/BF01582895 |
| ContentType | Journal Article |
| Copyright | 2023 American Institute of Chemical Engineers. 2023 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2023 American Institute of Chemical Engineers. – notice: 2023 American Institute of Chemical Engineers |
| DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.18156 |
| DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_aic_18156 AIC18156 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2022YFB330590 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABJIA ADMLS AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X PHGZM PHGZT PQGLB 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c2976-e084bcdffa0a06dfaeab1e395356f38669eb4fa6365a62a06f884808b13d6ac83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016748600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Mon Nov 10 02:58:58 EST 2025 Sat Nov 29 07:17:54 EST 2025 Tue Nov 18 22:20:41 EST 2025 Wed Jan 22 16:19:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2976-e084bcdffa0a06dfaeab1e395356f38669eb4fa6365a62a06f884808b13d6ac83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4680-8203 |
| PQID | 2849351129 |
| PQPubID | 7879 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2849351129 crossref_citationtrail_10_1002_aic_18156 crossref_primary_10_1002_aic_18156 wiley_primary_10_1002_aic_18156_AIC18156 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | AIChE journal |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers |
| References | 2017; 5 2022; 173 2021; 67 2021; 288 2020; 286 2002; 50 2006; 33 1991; 52 2019; 58 2008; 36 2022; 68 2019; 16 2008; 35 2009; 196 1998; 111 2014; 62 1982; 28 2023; 170 2020; 53 2020; 48 2021; 150 2021; 155 2008; 113 2019; 276 2003; 122 2019; 277 2007; 26 2012; 62 2007; 27 2017; 63 2014; 238 2015; 19 2000; 28 2015; 93 2020; 261 2021; 145 2019; 34 1999; 24 1981; 29 2001; 28 2016; 91 2021; 91 2022; 1‐21 2004; 99 2004; 52 1993; 13 2018; 271 2004; 17 2015; 232 2016; 135 2022; 56 2020; 27 2016; 255 2017; 263 2020; 21 1985; 33 2021; 60 2017; 103 2019; 175 2006; 102 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Jena SD (e_1_2_10_16_1) 2015; 232 Dias J (e_1_2_10_15_1) 2007; 27 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 63 start-page: 4262 issue: 10 year: 2017 end-page: 4272 article-title: Modular manufacturing processes: status, challenges, and opportunities publication-title: AIChE J – volume: 26 start-page: 188 issue: 3 year: 2007 end-page: 193 article-title: The concept of mobile manufacturing publication-title: J Manuf Syst – volume: 33 start-page: 181 issue: 1 year: 2006 end-page: 208 article-title: Dynamic multi‐commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning publication-title: Comput Oper Res – volume: 19 start-page: 2245 issue: 8 year: 2015 end-page: 2264 article-title: Designing closed‐loop supply chains with nonlinear dimensioning factors using ant colony optimization publication-title: Soft Comput – volume: 111 start-page: 423 issue: 3 year: 1998 end-page: 447 article-title: Strategic facility location: a review publication-title: Eur J Oper Res – volume: 27 start-page: 107 issue: 2 year: 2007 end-page: 130 article-title: Dynamic location problems with discrete expansion and reduction sizes of available capacities publication-title: Investig Operacional – volume: 67 issue: 10 year: 2021 article-title: Multistage adaptive stochastic mixed integer optimization under endogenous and exogenous uncertainty publication-title: AIChE J – volume: 170 year: 2023 article-title: A spatial superstructure approach to the optimal design of modular processes and supply chains publication-title: Comput Chem Eng – volume: 255 start-page: 729 issue: 3 year: 2016 end-page: 746 article-title: Multi‐period capacitated facility location under delayed demand satisfaction publication-title: Eur J Oper Res – volume: 135 start-page: 127 year: 2016 end-page: 138 article-title: Sustainable production in emerging markets through distributed manufacturing systems (DMS) publication-title: J Clean Prod – volume: 103 start-page: 233 year: 2017 end-page: 274 article-title: Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties publication-title: Comput Chem Eng – volume: 62 start-page: 62 year: 2014 end-page: 79 article-title: A new decomposition algorithm for multistage stochastic programs with endogenous uncertainties publication-title: Comput Chem Eng – volume: 24 start-page: 37 issue: 1 year: 1999 end-page: 45 article-title: Dual decomposition in stochastic integer programming publication-title: Oper Res Lett – volume: 232 start-page: 151 issue: 1 year: 2015 end-page: 177 article-title: Modeling and solving a logging camp location problem publication-title: Ann Oper Res – volume: 36 start-page: 450 issue: 4 year: 2008 end-page: 455 article-title: On the convergence of stochastic dual dynamic programming and related methods publication-title: Oper Res Lett – volume: 58 start-page: 5898 issue: 15 year: 2019 end-page: 5908 article-title: Exploring the benefits of modular renewable‐powered ammonia production: a supply chain optimization study publication-title: Ind Eng Chem Res – volume: 17 start-page: 117 issue: 2 year: 2004 end-page: 125 article-title: Including technology selection decisions in manufacturing network design models publication-title: Int J Comput Integr Manuf – volume: 261 year: 2020 article-title: Optimal planning and modular infrastructure dynamic allocation for shale gas production publication-title: Appl Energy – volume: 155 year: 2021 article-title: Coordinated allocation production routing problem for mobile supply chains with shared factories publication-title: Comput Chem Eng – volume: 175 start-page: 461 issue: 1–2 year: 2019 end-page: 502 article-title: Stochastic dual dynamic integer programming publication-title: Math Program – volume: 150 year: 2021 article-title: Biomass waste‐to‐energy supply chain optimization with mobile production modules publication-title: Comput Chem Eng – volume: 271 start-page: 1037 issue: 3 year: 2018 end-page: 1054 article-title: Deterministic electric power infrastructure planning: mixed‐integer programming model and nested decomposition algorithm publication-title: Eur J Oper Res – volume: 34 start-page: 1814 issue: 3 year: 2019 end-page: 1823 article-title: Multistage stochastic unit commitment using stochastic dual dynamic integer programming publication-title: IEEE Trans Power Syst – volume: 145 year: 2021 article-title: A framework for supply chain optimization for modular manufacturing with production feasibility analysis publication-title: Comput Chem Eng – volume: 173 year: 2022 article-title: Modular and mobile facility location problems: A systematic review publication-title: Comput Ind Eng – volume: 122 start-page: 141 issue: 1 year: 2003 end-page: 161 article-title: A Lagrangean heuristic for a modular capacitated location problem publication-title: Ann Oper Res – volume: 28 start-page: 411 issue: 5 year: 2001 end-page: 427 article-title: An algorithm for the capacitated, multi‐commodity multi‐period facility location problem publication-title: Comput Oper Res – volume: 288 start-page: 1 issue: 1 year: 2021 end-page: 13 article-title: Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming publication-title: Eur J Oper Res – volume: 56 start-page: 2751 issue: 4 year: 2022 end-page: 2765 article-title: Multi‐period hub location problem: a review publication-title: RAIRO‐Oper Res – volume: 48 start-page: 513 issue: 4 year: 2020 end-page: 523 article-title: Tractable reformulations of two‐stage distributionally robust linear programs over the type‐∞ Wasserstein ball publication-title: Oper Res Lett – volume: 62 start-page: 408 issue: 1 year: 2012 end-page: 420 article-title: Facility location dynamics: an overview of classifications and applications publication-title: Comput Ind Eng – volume: 238 start-page: 699 issue: 3 year: 2014 end-page: 710 article-title: A multicut L‐shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem publication-title: Eur J Oper Res – volume: 28 start-page: 1091 issue: 10 year: 1982 end-page: 1105 article-title: A dual‐based procedure for dynamic facility location publication-title: Manag Sci – volume: 33 start-page: 989 issue: 5 year: 1985 end-page: 1007 article-title: Decomposition and partitioning methods for multistage stochastic linear programs publication-title: Oper Res – volume: 52 start-page: 359 issue: 1 year: 1991 end-page: 375 article-title: Multi‐stage stochastic optimization applied to energy planning publication-title: Math Program – volume: 286 start-page: 494 issue: 2 year: 2020 end-page: 507 article-title: Dynamic location of modular manufacturing facilities with relocation of individual modules publication-title: Eur J Oper Res – volume: 102 start-page: 358 issue: 2 year: 2006 end-page: 378 article-title: Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry publication-title: Int J Prod Econ – volume: 113 start-page: 678 issue: 2 year: 2008 end-page: 693 article-title: A dynamic model for facility location in the design of complex supply chains publication-title: Int J Prod Econ – volume: 68 issue: 12 year: 2022 article-title: Distributionally robust optimization for the closed‐loop supply chain design under uncertainty publication-title: AIChE J – volume: 35 start-page: 373 issue: 2 year: 2008 end-page: 391 article-title: Dynamic supply chain design with inventory publication-title: Comput Oper Res – volume: 13 start-page: 133 issue: 3 year: 1993 end-page: 142 article-title: The integer L‐shaped method for stochastic integer programs with complete recourse publication-title: Oper Res Lett – volume: 28 start-page: 581 issue: 5 year: 2000 end-page: 598 article-title: A multi‐objective approach to simultaneous strategic and operational planning in supply chain design publication-title: Omega – volume: 276 start-page: 957 issue: 3 year: 2019 end-page: 970 article-title: Value of modular production concepts in future chemical industry production networks publication-title: Eur J Oper Res – volume: 5 start-page: 10046 issue: 11 year: 2017 end-page: 10071 article-title: Can modular manufacturing be the next game‐changer in shale gas supply chain design and operations for economic and environmental sustainability? publication-title: ACS Sustain Chem Eng – volume: 29 start-page: 464 issue: 3 year: 1981 end-page: 484 article-title: Accelerating benders decomposition: algorithmic enhancement and model selection criteria publication-title: Oper Res – volume: 60 start-page: 7883 issue: 21 year: 2021 end-page: 7903 article-title: Multistage distributionally robust design of a renewable source processing network under uncertainty publication-title: Ind Eng Chem Res – volume: 16 start-page: 545 year: 2019 end-page: 576 article-title: The decision rule approach to optimization under uncertainty: methodology and applications publication-title: Comput Manag Sci – volume: 263 start-page: 108 issue: 1 year: 2017 end-page: 141 article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions publication-title: Eur J Oper Res – volume: 196 start-page: 401 issue: 2 year: 2009 end-page: 412 article-title: Facility location and supply chain management – A review publication-title: Eur J Oper Res – volume: 91 start-page: 3 year: 2016 end-page: 14 article-title: Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty publication-title: Comput Chem Eng – volume: 21 start-page: 1243 issue: 4 year: 2020 end-page: 1281 article-title: Electric power infrastructure planning under uncertainty: stochastic dual dynamic integer programming (SDDiP) and parallelization scheme publication-title: Optim Eng – volume: 67 issue: 11 year: 2021 article-title: Modular supply chain optimization considering demand uncertainty to manage risk publication-title: AICHE J – volume: 277 start-page: 799 issue: 3 year: 2019 end-page: 813 article-title: A survey of adjustable robust optimization publication-title: Eur J Oper Res – volume: 99 start-page: 351 issue: 2 year: 2004 end-page: 376 article-title: Adjustable robust solutions of uncertain linear programs publication-title: Math Program – volume: 53 start-page: 11452 year: 2020 end-page: 11457 article-title: Production scheduling of supply chains comprised of modular production units publication-title: IFAC PaperOnline – volume: 36 start-page: 444 issue: 4 year: 2008 end-page: 449 article-title: Practical enhancements to the Magnanti‐Wong method publication-title: Oper Res Lett – volume: 91 start-page: 867 issue: 6 year: 2021 end-page: 895 article-title: Decentralized modular production to increase supply chain efficiency in chemical markets publication-title: J Bus Econ – volume: 52 start-page: 35 issue: 1 year: 2004 end-page: 53 article-title: The price of robustness publication-title: Oper Res – volume: 1‐21 start-page: 1 year: 2022 end-page: 21 article-title: A stochastic dual dynamic integer programming based approach for remanufacturing planning under uncertainty publication-title: Int J Prod Res – volume: 93 start-page: 1581 year: 2015 end-page: 1594 article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study publication-title: Energy – volume: 50 start-page: 810 issue: 5 year: 2002 end-page: 819 article-title: On the value of binary expansions for general mixed‐integer linear programs publication-title: Oper Res – volume: 27 start-page: 39241 issue: 31 year: 2020 end-page: 39252 article-title: Optimization of hyperconnected mobile modular production toward environmental and economic sustainability publication-title: Environ Sci Pollut Res – volume: 67 issue: 9 year: 2021 article-title: Multistage distributionally robust optimization for integrated production and maintenance scheduling publication-title: AIChE J – ident: e_1_2_10_4_1 doi: 10.1002/aic.15872 – volume: 27 start-page: 107 issue: 2 year: 2007 ident: e_1_2_10_15_1 article-title: Dynamic location problems with discrete expansion and reduction sizes of available capacities publication-title: Investig Operacional – ident: e_1_2_10_60_1 doi: 10.1287/opre.50.5.810.370 – ident: e_1_2_10_33_1 doi: 10.1023/A:1026146507143 – ident: e_1_2_10_3_1 doi: 10.1016/j.cie.2022.108734 – ident: e_1_2_10_59_1 doi: 10.1080/00207543.2022.2120924 – ident: e_1_2_10_23_1 doi: 10.1287/opre.33.5.989 – ident: e_1_2_10_36_1 doi: 10.1007/s00500-014-1405-7 – ident: e_1_2_10_28_1 doi: 10.1016/S0377-2217(98)00186-6 – ident: e_1_2_10_20_1 doi: 10.1287/opre.1030.0065 – ident: e_1_2_10_48_1 doi: 10.1016/j.ejor.2018.08.031 – ident: e_1_2_10_8_1 doi: 10.1021/acssuschemeng.7b02081 – ident: e_1_2_10_50_1 doi: 10.1007/s10287-018-0338-5 – ident: e_1_2_10_19_1 doi: 10.1016/j.ejor.2017.04.009 – ident: e_1_2_10_54_1 doi: 10.1016/j.orl.2020.06.003 – ident: e_1_2_10_44_1 doi: 10.1002/aic.17367 – ident: e_1_2_10_11_1 doi: 10.1016/j.ejor.2008.05.007 – ident: e_1_2_10_21_1 doi: 10.1016/j.compchemeng.2016.03.002 – ident: e_1_2_10_17_1 doi: 10.1016/j.ejor.2020.03.045 – ident: e_1_2_10_26_1 doi: 10.1016/j.compchemeng.2021.107501 – ident: e_1_2_10_39_1 doi: 10.1016/j.cor.2004.07.005 – ident: e_1_2_10_5_1 doi: 10.1016/j.ejor.2019.01.066 – ident: e_1_2_10_10_1 doi: 10.1016/j.cie.2011.09.018 – ident: e_1_2_10_42_1 doi: 10.1007/s11573-020-01019-4 – ident: e_1_2_10_14_1 doi: 10.1016/S0305-0548(99)00126-4 – ident: e_1_2_10_29_1 doi: 10.1007/s11356-020-09966-9 – ident: e_1_2_10_52_1 doi: 10.1002/aic.17329 – ident: e_1_2_10_62_1 doi: 10.1287/opre.29.3.464 – ident: e_1_2_10_27_1 doi: 10.1002/aic.17909 – ident: e_1_2_10_38_1 doi: 10.1016/j.ijpe.2007.10.017 – ident: e_1_2_10_45_1 doi: 10.1016/j.compchemeng.2022.108102 – ident: e_1_2_10_51_1 doi: 10.1002/aic.17333 – volume: 232 start-page: 151 issue: 1 year: 2015 ident: e_1_2_10_16_1 article-title: Modeling and solving a logging camp location problem publication-title: Ann Oper Res – ident: e_1_2_10_32_1 doi: 10.1051/ro/2022134 – ident: e_1_2_10_56_1 doi: 10.1016/j.orl.2008.01.013 – ident: e_1_2_10_25_1 doi: 10.1016/S0167-6377(98)00050-9 – ident: e_1_2_10_49_1 doi: 10.1007/s10107-003-0454-y – ident: e_1_2_10_61_1 doi: 10.1016/0167-6377(93)90002-X – ident: e_1_2_10_18_1 doi: 10.1016/S0305-0483(99)00080-8 – ident: e_1_2_10_2_1 doi: 10.1016/j.jclepro.2016.06.106 – ident: e_1_2_10_37_1 doi: 10.1016/j.ijpe.2005.03.011 – ident: e_1_2_10_46_1 doi: 10.1016/j.compchemeng.2016.11.011 – ident: e_1_2_10_13_1 doi: 10.1016/j.cor.2006.03.017 – ident: e_1_2_10_30_1 doi: 10.1016/j.jmsy.2008.03.002 – ident: e_1_2_10_55_1 doi: 10.1016/j.ejor.2020.03.065 – ident: e_1_2_10_22_1 doi: 10.1007/s11081-019-09471-0 – ident: e_1_2_10_57_1 doi: 10.1007/s10107-018-1249-5 – ident: e_1_2_10_41_1 doi: 10.1016/j.apenergy.2019.114439 – ident: e_1_2_10_43_1 doi: 10.1016/j.compchemeng.2020.107175 – ident: e_1_2_10_34_1 doi: 10.1016/j.ejor.2016.06.039 – ident: e_1_2_10_58_1 doi: 10.1016/j.ejor.2018.05.039 – ident: e_1_2_10_64_1 doi: 10.1109/TPWRS.2018.2880996 – ident: e_1_2_10_40_1 doi: 10.1016/j.ifacol.2020.12.583 – ident: e_1_2_10_31_1 doi: 10.1016/j.ejor.2014.04.024 – ident: e_1_2_10_24_1 doi: 10.1016/j.compchemeng.2013.11.011 – ident: e_1_2_10_35_1 doi: 10.1080/09511920310001593100 – ident: e_1_2_10_63_1 doi: 10.1016/j.orl.2008.01.005 – ident: e_1_2_10_7_1 doi: 10.1016/j.energy.2015.10.043 – ident: e_1_2_10_6_1 doi: 10.1016/j.compchemeng.2021.107326 – ident: e_1_2_10_9_1 doi: 10.1021/acs.iecr.8b04189 – ident: e_1_2_10_12_1 doi: 10.1287/mnsc.28.10.1091 – ident: e_1_2_10_53_1 doi: 10.1021/acs.iecr.1c00446 – ident: e_1_2_10_47_1 doi: 10.1007/BF01582895 |
| SSID | ssj0012782 |
| Score | 2.4310234 |
| Snippet | Traditional supply chains usually follow fixed facility designs which coincide with the strategic nature of supply chain management (SCM). However, as the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms closed‐loop supply chain planning Customers Global marketing Integer programming Linear programming Lower bounds mobile modules Modular units Modules stochastic dual dynamic integer programming Stochastic models Stochastic programming Supply chain management Supply chains uncertainty |
| Title | Multistage stochastic programming for the closed‐loop supply chain planning with mobile modules under uncertainty |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.18156 https://www.proquest.com/docview/2849351129 |
| Volume | 69 |
| WOSCitedRecordID | wos001016748600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsX6YhEPXmLz6naDp1ItClJErPQWdje7Wkib0qjQmz_B3-gvcTZJH4KC4CXJYTZZdmaz3-zOfANwGjncR1jBLaojbfkKfVYuG8piwhHoEFHKsioKj7eNTof1esFdCS6muTA5P8Rsw83MjOx_bSY4F2ltThrK-_LcMVwnS1Bx0W79MlQu79vd29khgttgOVk4esyIFJwpsZDt1maNvy9Hc4y5iFSzpaa9_q9ObsBagTBJMzeJTSip4RasLvAObkOapd0iLnxSBMGffOaGrZkUsVoDlCGIZQliQyLjJFXR5_tHnCQjkpoaoBOCDfpDMirqHRGzl0sGicAe4i16jVVKTG7aGK8yDzl4mexAt3310Lq2iuoLlnQRo1jKZr6Qkdbc5jaNNFdcOMoL6l6dao9RGijha049WufURRHNmM9sVLIXUS6ZtwvlYTJUe0A05bruSE9IHfjovaNTqVTDdSMqtKO5X4WzqRJCWVCTmwoZcZiTKrshjmOYjWMVTmaio5yP4yehw6kmw2JKpiGuw4GXwUv8XKaz318QNm9a2cP-30UPYMWUos_jzw6h_DJ-VUewLN9Qn-Pjwja_ALUP64o |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt_iouogHL7F5bjbgRaqlYi0irfQWNptdLdSmNCp48yf4G_0lzibpQ1AQvCQ5zCbLzkz2m9ndbwCOY4u7CCu4QVWsDFdizMqFLw0WWREGRJSyrIrCfcNvNlmnE9zOwNnoLEzODzFOuGnPyP7X2sF1QroyYQ3lXXFqabKTWZhz0Yy8Esxd3NXajfEqgu2znC0cQ2aECtaIWci0K-PG3-ejCcichqrZXFNb-V8vV2G5wJjkPDeKNZiR_XVYmmIe3IA0O3iLyPBBEoR_4pFrvmZS7NZ6QhmCaJYgOiSil6Qy_nz_6CXJgKS6CugbwQbdPhkUFY-IzuaSpyTCLuItfunJlOjTaUO8inzTwfPbJrRrl61q3SjqLxjCRpRiSJO5kYiV4iY3aay45JElncBzPKocRmkgI1dx6lCPUxtFFGMuM1HNTky5YM4WlPpJX24DUZQrzxJOJFTgYvyOYaWUvm3HNFKW4u4OnIy0EIqCnFzXyOiFOa2yHeI4htk47sDRWHSQM3L8JFQeqTIsnDINcSYOnAxg4ucypf3-gvD8qpo97P5d9BAW6q2bRti4al7vwaIuTJ_vRitD6Xn4IvdhXryibocHhaF-AcUg73o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7qA9GDb7E-F_HgJZrnZgNeSrUoliKi0lvY7EOFtilNK3jzJ_gb_SXOJmlVUBC8JDnMJsvOTvab3ZlvAA6lw32EFdyiWmrLV-izchEqiyVOgg4RpSyvonDfDFst1m5H1xU4HefCFPwQkw03Yxn5_9oYuOpLffLJGsqfxLFjyE6mYMYPIopmOXN207hrTk4R3JAVbOHoMiNUcMbMQrZ7Mmn8fT36BJlfoWq-1jSW_tfLZVgsMSapFZNiBSqqtwoLX5gH1yDLE28RGT4ogvBPPHLD10zKaK0uyhBEswTRIRGdNFPy_fWtk6Z9kpkqoC8EGzz1SL-seETMbi7ppgl2EW9y1FEZMdlpA7yKIuhg-LIOd43z2_qFVdZfsISLKMVSNvMTIbXmNrep1FzxxFFeFHgB1R6jNFKJrzn1aMCpiyKaMZ_ZqGZPUi6YtwHTvbSnNoFoynXgCC8ROvLRf0e3UqnQdSVNtKO5X4WjsRZiUZKTmxoZnbigVXZjHMc4H8cqHExE-wUjx09CO2NVxqVRZjGuxJGXA0z8XK60318Q1y7r-cPW30X3Ye76rBE3L1tX2zBv6tIXwWg7MD0cjNQuzIpnVO1gr5ynH2pj7vU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+stochastic+programming+for+the+closed%E2%80%90loop+supply+chain+planning+with+mobile+modules+under+uncertainty&rft.jtitle=AIChE+journal&rft.au=Ge%2C+Congqin&rft.au=Zhang%2C+Lifeng&rft.au=Yang%2C+Wenhui&rft.au=Yuan%2C+Zhihong&rft.date=2023-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=69&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faic.18156&rft.externalDBID=10.1002%252Faic.18156&rft.externalDocID=AIC18156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |