Learning the sparse prior: Modern approaches

The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the convolutional sparse representation, and the multi‐layer convolutional sparse repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational statistics Jg. 16; H. 1; S. e1646 - n/a
1. Verfasser: Peng, Guan‐Ju
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1939-5108, 1939-0068
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the convolutional sparse representation, and the multi‐layer convolutional sparse representation. When the data morphology has been adequately addressed, a sparse representation can be obtained by solving the sparse coding problem specified by the data model. This article presents a comprehensive overview of these three models and their corresponding sparse coding problems and demonstrates that they can be solved using convex and non‐convex optimization approaches. When the data morphology is not known or cannot be analyzed, it must be learned from training data, thereby formulating dictionary learning problems. This article addresses two different dictionary learning paradigms. In an unsupervised scenario, dictionary learning involves the alternating or joint resolution of sparse coding and dictionary updating. Another option is to create a recurrent neural network by unrolling algorithms designed to solve sparse coding problems. These networks can then be used in a supervised learning setting to facilitate the training of dictionaries via forward‐backward optimization. This article lists numerous applications in various domains and outlines several directions for future research related to the sparse prior. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms Statistical Models > Nonlinear Models Optimization approaches for the models using the sparse prior.
AbstractList The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the convolutional sparse representation, and the multi‐layer convolutional sparse representation. When the data morphology has been adequately addressed, a sparse representation can be obtained by solving the sparse coding problem specified by the data model. This article presents a comprehensive overview of these three models and their corresponding sparse coding problems and demonstrates that they can be solved using convex and non‐convex optimization approaches. When the data morphology is not known or cannot be analyzed, it must be learned from training data, thereby formulating dictionary learning problems. This article addresses two different dictionary learning paradigms. In an unsupervised scenario, dictionary learning involves the alternating or joint resolution of sparse coding and dictionary updating. Another option is to create a recurrent neural network by unrolling algorithms designed to solve sparse coding problems. These networks can then be used in a supervised learning setting to facilitate the training of dictionaries via forward‐backward optimization. This article lists numerous applications in various domains and outlines several directions for future research related to the sparse prior. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms Statistical Models > Nonlinear Models
The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the convolutional sparse representation, and the multi‐layer convolutional sparse representation. When the data morphology has been adequately addressed, a sparse representation can be obtained by solving the sparse coding problem specified by the data model. This article presents a comprehensive overview of these three models and their corresponding sparse coding problems and demonstrates that they can be solved using convex and non‐convex optimization approaches. When the data morphology is not known or cannot be analyzed, it must be learned from training data, thereby formulating dictionary learning problems. This article addresses two different dictionary learning paradigms. In an unsupervised scenario, dictionary learning involves the alternating or joint resolution of sparse coding and dictionary updating. Another option is to create a recurrent neural network by unrolling algorithms designed to solve sparse coding problems. These networks can then be used in a supervised learning setting to facilitate the training of dictionaries via forward‐backward optimization. This article lists numerous applications in various domains and outlines several directions for future research related to the sparse prior.This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Modeling MethodsStatistical and Graphical Methods of Data Analysis > Modeling Methods and AlgorithmsStatistical Models > Nonlinear Models
The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the convolutional sparse representation, and the multi‐layer convolutional sparse representation. When the data morphology has been adequately addressed, a sparse representation can be obtained by solving the sparse coding problem specified by the data model. This article presents a comprehensive overview of these three models and their corresponding sparse coding problems and demonstrates that they can be solved using convex and non‐convex optimization approaches. When the data morphology is not known or cannot be analyzed, it must be learned from training data, thereby formulating dictionary learning problems. This article addresses two different dictionary learning paradigms. In an unsupervised scenario, dictionary learning involves the alternating or joint resolution of sparse coding and dictionary updating. Another option is to create a recurrent neural network by unrolling algorithms designed to solve sparse coding problems. These networks can then be used in a supervised learning setting to facilitate the training of dictionaries via forward‐backward optimization. This article lists numerous applications in various domains and outlines several directions for future research related to the sparse prior. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Modeling Methods and Algorithms Statistical Models > Nonlinear Models Optimization approaches for the models using the sparse prior.
Author Peng, Guan‐Ju
Author_xml – sequence: 1
  givenname: Guan‐Ju
  orcidid: 0000-0001-5508-9485
  surname: Peng
  fullname: Peng, Guan‐Ju
  email: gjpeng@email.nchu.edu.tw
  organization: Institute of Data Science and Information Computing, National Chung Hsing University
BookMark eNp9UMtKAzEUDVLBtrrwDwZcCU6b10wSd1J8QcWFBZchzdzalJqMyZTSvze1XQnKXdzL4TwuZ4B6PnhA6JLgEcGYjrfOphGpeX2C-kQxVWJcy97xrgiWZ2iQ0iqjIk8f3UzBRO_8R9EtoUitiQmKNroQb4uX0ED0hWnbGIxdQjpHpwuzTnBx3EM0e7ifTZ7K6evj8-RuWlqqRF02DASpG0xoo2Au-Jw20lImFKsUlUBZBqjklZVCCSKoMbixC2ak4rXlnA3R1cE2535tIHV6FTbR50RNFSMVlpLLzLo-sGwMKUVY6Pz2p4k7TbDed6H3Xeh9F5k7_sW1rjOdC76Lxq3_U2zdGnZ_W-v358nbj-IbyshxEg
CitedBy_id crossref_primary_10_1137_23M1603959
crossref_primary_10_1007_s11265_025_01957_8
Cites_doi 10.1109/CVPR.2013.57
10.1109/TASLP.2016.2598323
10.1137/140998135
10.1137/15M1027528
10.1007/s11042-023-14337-w
10.1073/pnas.0437847100
10.1109/TPAMI.2017.2656884
10.1109/MCSE.2010.14
10.1137/18M1183352
10.1109/TPAMI.2012.63
10.1137/S0097539792240406
10.1142/9815
10.1109/TNNLS.2019.2906074
10.1017/CBO9780511730344
10.1109/78.398734
10.1109/TCSVT.2015.2492859
10.1109/ICIP.2016.7532692
10.1109/TPAMI.2015.2487966
10.1109/18.382009
10.1137/05064182X
10.1109/LSP.2017.2666183
10.1109/TPAMI.2020.3039215
10.1109/TIP.2023.3274488
10.1561/2400000003
10.1109/JSTSP.2017.2743683
10.1109/IJCNN.2013.6706854
10.1109/TII.2015.2404299
10.1109/TIP.2007.901238
10.1109/TIP.2011.2108306
10.1007/978-3-030-01267-0_50
10.3389/fnins.2015.00484
10.1109/TSP.2017.2733447
10.1137/090770783
10.1109/TPAMI.2010.220
10.1109/LSP.2021.3135196
10.1109/TSP.2012.2183129
10.1137/080716542
10.1109/TIP.2019.2896541
10.1109/TPAMI.2011.66
10.1080/01431161.2017.1328144
10.1109/TMM.2018.2847228
10.1109/TSP.2015.2434323
10.1109/RADAR.2017.7944416
10.1007/s00365-011-9142-y
10.1007/s10107-011-0484-9
10.1109/TCI.2022.3175309
10.1137/140957809
10.1109/TPAMI.2020.2984244
10.1109/MSP.2020.3016905
10.1109/TSP.2013.2278158
10.1109/TIP.2021.3090531
10.1109/TPAMI.2019.2904255
10.1109/ICCV.2015.212
10.1561/2200000015
10.1109/TIP.2017.2713099
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TCSVT.2017.2748382
10.1109/ACSSC.1993.342465
10.1109/CVPR.2015.7299149
10.1109/ICASSP.2018.8461543
10.1016/S1076-5670(04)32006-9
10.1109/TIT.2005.858979
10.1109/TNNLS.2022.3154108
10.1109/TMI.2019.2906853
10.1016/j.dsp.2006.02.002
10.1007/978-3-319-24574-4_28
10.1109/TIP.2017.2761545
10.1109/TIP.2015.2495260
10.1007/978-3-642-34481-7_42
10.1109/WACV.2017.145
10.1109/TSP.2006.881199
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
JQ2
L.G
DOI 10.1002/wics.1646
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1939-0068
EndPage n/a
ExternalDocumentID 10_1002_wics_1646
WICS1646
Genre reviewArticle
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 109‐2115‐M‐005‐007‐MY2; 111‐2115‐M‐005‐005‐MY2
GroupedDBID 05W
0R~
1OC
1VH
33P
4.4
53G
5DZ
8-1
AAESR
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADZMN
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
DCZOG
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
RNS
ROL
SUPJJ
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
AAYXX
CITATION
LH4
7QH
7UA
C1K
F1W
H96
H97
JQ2
L.G
ID FETCH-LOGICAL-c2976-d3e716d012d9eb74b2d8c237935928e23b2d2845c8797172aa0dcf3a8946c443
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163089800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-5108
IngestDate Fri Jul 25 05:48:10 EDT 2025
Sat Nov 29 03:49:26 EST 2025
Tue Nov 18 22:04:14 EST 2025
Wed Aug 20 07:26:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-d3e716d012d9eb74b2d8c237935928e23b2d2845c8797172aa0dcf3a8946c443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5508-9485
PQID 2931508848
PQPubID 2034593
PageCount 29
ParticipantIDs proquest_journals_2931508848
crossref_primary_10_1002_wics_1646
crossref_citationtrail_10_1002_wics_1646
wiley_primary_10_1002_wics_1646_WICS1646
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational statistics
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 12
2012; 60
2023; 32
2023; 34
2013; 61
2018; 40
2016; 38
2021; 30
2023; 82
2022; 29
2014; 1
2021; 38
2004; 132
2019; 21
2017; 38
1995; 24
2011; 20
2019; 28
2010; 3
2012; 25
2014; 7
2007; 17
2018; 28
2021; 43
2012
2017; 26
2020; 42
2006; 54
2010
2019; 1
2019; 32
2017; 65
2017; 24
2015; 11
1998
2019; 38
2008
2006; 5
2011; 33
1993
2022; 44
1996; 58
2012; 35
2018; 66
2018; 27
2007; 16
1995; 41
2011; 2011
2015; 25
2020; 31
2013; 35
2017; 11
2013; 137
2022; 8
2015; 63
2017; 10
1995; 43
2005; 51
2009; 9
2018
2017
2016
2015
2017; 18
2014
2013
2016; 29
2009; 2
2012; 4
2016; 26
2003; 100
2016; 25
2016; 9
2016; 24
Yang M. (e_1_2_15_83_1) 2011; 2011
Yang J. (e_1_2_15_80_1) 2008
Simon D. (e_1_2_15_66_1) 2019
Yang Y. (e_1_2_15_84_1) 2016
e_1_2_15_21_1
e_1_2_15_88_1
e_1_2_15_40_1
e_1_2_15_69_1
e_1_2_15_3_1
e_1_2_15_29_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_61_1
e_1_2_15_82_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_63_1
e_1_2_15_23_1
e_1_2_15_65_1
e_1_2_15_9_1
e_1_2_15_7_1
Zhang J. (e_1_2_15_86_1) 2018
e_1_2_15_5_1
e_1_2_15_10_1
e_1_2_15_31_1
e_1_2_15_56_1
e_1_2_15_77_1
e_1_2_15_58_1
e_1_2_15_79_1
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_50_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_54_1
e_1_2_15_75_1
Mallat S. (e_1_2_15_47_1) 1998
Horev I. (e_1_2_15_37_1) 2012
e_1_2_15_19_1
Papyan V. (e_1_2_15_53_1) 2017; 18
Sulam J. (e_1_2_15_72_1) 2018; 66
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_41_1
e_1_2_15_68_1
e_1_2_15_28_1
e_1_2_15_81_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
Sturm B. L. (e_1_2_15_70_1) 2012
e_1_2_15_24_1
e_1_2_15_62_1
e_1_2_15_85_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_87_1
Lee H. (e_1_2_15_42_1) 2009; 9
Liu B. (e_1_2_15_44_1) 2011; 2011
e_1_2_15_8_1
e_1_2_15_6_1
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_59_1
Sra S. (e_1_2_15_67_1) 2012
e_1_2_15_17_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_13_1
Goodfellow I. (e_1_2_15_33_1) 2016
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_76_1
References_xml – start-page: 220
  year: 2012
  end-page: 224
– volume: 8
  start-page: 425
  year: 2022
  end-page: 437
  article-title: Learning multiscale convolutional dictionaries for image reconstruction
  publication-title: IEEE Transactions on Computational Imaging
– volume: 25
  year: 2012
– volume: 25
  start-page: 2434
  issue: 4
  year: 2015
  end-page: 2460
  article-title: Global convergence of splitting methods for nonconvex composite optimization
  publication-title: SIAM Journal on Optimization
– start-page: 40
  year: 1993
  end-page: 44
– volume: 33
  start-page: 2259
  issue: 11
  year: 2011
  end-page: 2272
  article-title: Robust visual tracking and vehicle classification via sparse representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  end-page: 627
  article-title: De‐noising by soft‐thresholding
  publication-title: IEEE Transactions on Information Theory
– volume: 12
  start-page: 44
  issue: 1
  year: 2010
  end-page: 63
  article-title: MCALAB: Reproducible research in signal and image decomposition and inpainting
  publication-title: Computing in Science and Engineering
– volume: 9
  start-page: 1113
  year: 2009
  end-page: 1119
  article-title: Exponential family sparse coding with application to self‐taught learning
  publication-title: IJCAI
– volume: 38
  start-page: 18
  issue: 2
  year: 2021
  end-page: 44
  article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Processing Magazine
– start-page: 1352
  year: 2017
  end-page: 1356
– start-page: 5135
  year: 2015
  end-page: 5143
– start-page: 1259
  year: 2017
  end-page: 1267
– volume: 82
  start-page: 20215
  issue: 13
  year: 2023
  end-page: 20231
  article-title: Image inpainting based on sparse representation using self‐similar joint sparse coding
  publication-title: Multimedia Tools and Applications
– volume: 26
  start-page: 2165
  issue: 12
  year: 2016
  end-page: 2175
  article-title: Adaptive and robust sparse coding for laser range data denoising and inpainting
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 65
  start-page: 5687
  issue: 21
  year: 2017
  end-page: 5701
  article-title: Working locally thinking globally: Theoretical guarantees for convolutional sparse coding
  publication-title: IEEE Transactions on Signal Processing
– year: 2018
– volume: 17
  start-page: 32
  issue: 1
  year: 2007
  end-page: 49
  article-title: Family of iterative LS‐based dictionary learning algorithms, ILS‐DLA, for sparse signal representation
  publication-title: Digital Signal Processing
– volume: 11
  start-page: 1072
  issue: 7
  year: 2017
  end-page: 1081
  article-title: Image reconstruction via manifold constrained convolutional sparse coding for image sets
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– year: 2014
– volume: 26
  start-page: 4509
  issue: 9
  year: 2017
  end-page: 4522
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Transactions on Image Processing
– volume: 29
  start-page: 389
  year: 2022
  end-page: 393
  article-title: Efficient ADMM‐based algorithms for convolutional sparse coding
  publication-title: IEEE Signal Processing Letters
– year: 1998
– start-page: 530
  year: 2012
  end-page: 538
– volume: 9
  start-page: 484
  year: 2016
  article-title: Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding
  publication-title: Frontiers in Neuroscience
– volume: 31
  start-page: 559
  issue: 2
  year: 2020
  end-page: 573
  article-title: Joint and direct optimization for dictionary learning in convolutional sparse representation
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  end-page: 234
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM Journal on Computing
– volume: 61
  start-page: 5495
  issue: 22
  year: 2013
  end-page: 5506
  article-title: Direct optimization of the dictionary learning problem
  publication-title: IEEE Transactions on Signal Processing
– volume: 34
  start-page: 8928
  issue: 11
  year: 2023
  end-page: 8949
  article-title: MMV‐NET: A multiple measurement vector network for multifrequency electrical impedance tomography
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  end-page: 239
  article-title: Proximal algorithms
  publication-title: Foundations and Trends in Optimization
– volume: 43
  start-page: 1713
  issue: 7
  year: 1995
  end-page: 1715
  article-title: Fast orthogonal least squares algorithm for efficient subset model selection
  publication-title: IEEE Transactions on Signal Processing
– volume: 1
  start-page: 46
  issue: 1
  year: 2019
  end-page: 77
  article-title: Multi‐layer sparse coding: The holistic way
  publication-title: SIAM Journal on Mathematics of Data Science
– volume: 42
  start-page: 1968
  issue: 8
  year: 2020
  end-page: 1980
  article-title: On multi‐layer basis pursuit, efficient algorithms and convolutional neural networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 32
  year: 2019
– volume: 24
  start-page: 392
  issue: 4
  year: 2017
  end-page: 396
  article-title: Piano transcription with convolutional sparse lateral inhibition
  publication-title: IEEE Signal Processing Letters
– year: 2015
– volume: 2011
  start-page: 625
  year: 2011
  end-page: 632
  article-title: Robust sparse coding for face recognition
  publication-title: CVPR
– volume: 35
  start-page: 21
  issue: 1
  year: 2012
  end-page: 72
  article-title: Construction of compactly supported shearlet frames
  publication-title: Constructive Approximation
– volume: 137
  start-page: 91
  issue: 1–2
  year: 2013
  end-page: 129
  article-title: Convergence of descent methods for semi‐algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods
  publication-title: Mathematical Programming
– start-page: 234
  year: 2015
  end-page: 241
– volume: 32
  start-page: 2843
  year: 2023
  end-page: 2856
  article-title: ADMMSRNET: Alternating direction method of multipliers based sparse representation network for one‐class classification
  publication-title: IEEE Transactions on Image Processing
– volume: 11
  start-page: 467
  issue: 2
  year: 2015
  end-page: 475
  article-title: Sparse coding‐inspired optimal trading system for HFT industry
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 20
  start-page: 1838
  issue: 7
  year: 2011
  end-page: 1857
  article-title: Image deblurring and super‐resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Transactions on Image Processing
– volume: 21
  start-page: 39
  issue: 1
  year: 2019
  end-page: 50
  article-title: Adaptive rd optimal sparse coding with quantization for image compression
  publication-title: IEEE Transactions on Multimedia
– volume: 30
  start-page: 5944
  year: 2021
  end-page: 5955
  article-title: Deep K‐SVD denoising
  publication-title: IEEE Transactions on Image Processing
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  end-page: 4215
  article-title: Decoding by linear programming
  publication-title: IEEE Transactions on Information Theory
– volume: 38
  start-page: 1356
  issue: 7
  year: 2016
  end-page: 1369
  article-title: Dictionary learning for sparse coding: Algorithms and convergence analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 28
  start-page: 3408
  issue: 7
  year: 2019
  end-page: 3422
  article-title: Adaptive ADMM for dictionary learning in convolutional sparse representation
  publication-title: IEEE Transactions on Image Processing
– volume: 132
  start-page: 287
  year: 2004
  end-page: 348
  article-title: Redundant multiscale transforms and their application for morphological component separation
  publication-title: Advances in Imaging and Electron Physics
– volume: 43
  start-page: 3333
  issue: 10
  year: 2021
  end-page: 3348
  article-title: Deep convolutional neural network for multi‐modal image restoration and fusion
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 5
  start-page: 861
  issue: 3
  year: 2006
  end-page: 899
  article-title: Fast discrete curvelet transforms
  publication-title: Multiscale Modeling & Simulation
– volume: 66
  start-page: 4090
  issue: 15
  year: 2018
  end-page: 4104
  article-title: Multilayer convolutional sparse modeling: Pursuit and dictionary learning
  publication-title: IEEE Transactions on Signal Processing
– volume: 25
  start-page: 301
  issue: 1
  year: 2016
  end-page: 315
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Transactions on Image Processing
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: SIAM Journal on Imaging Sciences
– volume: 33
  start-page: 1561
  issue: 8
  year: 2011
  end-page: 1576
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 391
  year: 2013
  end-page: 398
– volume: 24
  start-page: 2158
  issue: 11
  year: 2016
  end-page: 2170
  article-title: Monaural music source separation using convolutional sparse coding
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 60
  start-page: 1597
  issue: 4
  year: 2012
  end-page: 1611
  article-title: Shift & 2D rotation invariant sparse coding for multivariate signals
  publication-title: IEEE Transactions on Signal Processing
– volume: 38
  start-page: 2607
  issue: 11
  year: 2019
  end-page: 2619
  article-title: Convolutional sparse coding for compressed sensing CT reconstruction
  publication-title: IEEE Transactions on Medical Imaging
– year: 2016
– volume: 10
  start-page: 74
  issue: 1
  year: 2017
  end-page: 110
  article-title: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction
  publication-title: SIAM Journal on Imaging Sciences
– year: 2010
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  article-title: Image denoising by sparse 3‐D transform‐domain collaborative filtering
  publication-title: IEEE Transactions on Image Processing
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  article-title: K‐SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Transactions on Signal Processing
– volume: 63
  start-page: 3946
  issue: 15
  year: 2015
  end-page: 3958
  article-title: A proximal method for dictionary updating in sparse representations
  publication-title: IEEE Transactions on Signal Processing
– volume: 44
  start-page: 2426
  issue: 5
  year: 2022
  end-page: 2437
  article-title: Dicodile: Distributed convolutional dictionary learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 28
  start-page: 3387
  issue: 12
  year: 2018
  end-page: 3397
  article-title: Rate‐distortion optimized sparse coding with ordered dictionary for image set compression
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 35
  start-page: 92
  issue: 1
  year: 2013
  end-page: 104
  article-title: Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2008
  end-page: 8
– volume: 40
  start-page: 1182
  issue: 5
  year: 2018
  end-page: 1194
  article-title: Unsupervised transfer learning via multi‐scale convolutional sparse coding for biomedical applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 38
  start-page: 4868
  issue: 17
  year: 2017
  end-page: 4887
  article-title: Label‐dependent sparse representation for synthetic aperture radar target configuration recognition
  publication-title: International Journal of Remote Sensing
– start-page: 1918
  year: 2016
  end-page: 1922
– volume: 3
  start-page: 646
  issue: 3
  year: 2010
  end-page: 669
  article-title: Learning the morphological diversity
  publication-title: SIAM Journal on Imaging Sciences
– start-page: 592
  year: 2012
  end-page: 595
– volume: 29
  year: 2016
– start-page: 1
  year: 2013
  end-page: 5
– volume: 2011
  start-page: 1313
  year: 2011
  end-page: 1320
  article-title: Robust tracking using local sparse appearance model and k‐selection
  publication-title: CVPR
– start-page: 6847
  year: 2018
  end-page: 6851
– volume: 100
  start-page: 2197
  issue: 5
  year: 2003
  end-page: 2202
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ minimization
  publication-title: Proceedings of the National Academy of Sciences
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 7
  start-page: 2078
  issue: 4
  year: 2014
  end-page: 2104
  article-title: Reweighted and adaptive morphology separation
  publication-title: SIAM Journal on Imaging Sciences
– volume: 4
  start-page: 1
  issue: 1
  year: 2012
  end-page: 106
  article-title: Optimization with sparsity‐inducing penalties
  publication-title: Foundations and Trends in Machine Learning
– volume: 27
  start-page: 1697
  issue: 4
  year: 2018
  end-page: 1712
  article-title: Convolutional dictionary learning: Acceleration and convergence
  publication-title: IEEE Transactions on Image Processing
– volume: 18
  start-page: 2887
  issue: 1
  year: 2017
  end-page: 2938
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_15_12_1
  doi: 10.1109/CVPR.2013.57
– ident: e_1_2_15_38_1
  doi: 10.1109/TASLP.2016.2598323
– start-page: 592
  volume-title: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP)
  year: 2012
  ident: e_1_2_15_37_1
– ident: e_1_2_15_43_1
  doi: 10.1137/140998135
– ident: e_1_2_15_82_1
  doi: 10.1137/15M1027528
– ident: e_1_2_15_87_1
  doi: 10.1007/s11042-023-14337-w
– ident: e_1_2_15_28_1
  doi: 10.1073/pnas.0437847100
– ident: e_1_2_15_16_1
  doi: 10.1109/TPAMI.2017.2656884
– ident: e_1_2_15_30_1
  doi: 10.1109/MCSE.2010.14
– volume-title: Advances in neural information processing systems
  year: 2016
  ident: e_1_2_15_84_1
– ident: e_1_2_15_2_1
  doi: 10.1137/18M1183352
– ident: e_1_2_15_31_1
  doi: 10.1109/TPAMI.2012.63
– ident: e_1_2_15_52_1
  doi: 10.1137/S0097539792240406
– ident: e_1_2_15_77_1
  doi: 10.1142/9815
– ident: e_1_2_15_58_1
  doi: 10.1109/TNNLS.2019.2906074
– ident: e_1_2_15_69_1
  doi: 10.1017/CBO9780511730344
– ident: e_1_2_15_18_1
  doi: 10.1109/78.398734
– ident: e_1_2_15_32_1
  doi: 10.1109/TCSVT.2015.2492859
– ident: e_1_2_15_17_1
  doi: 10.1109/ICIP.2016.7532692
– ident: e_1_2_15_7_1
  doi: 10.1109/TPAMI.2015.2487966
– ident: e_1_2_15_27_1
  doi: 10.1109/18.382009
– ident: e_1_2_15_13_1
  doi: 10.1137/05064182X
– ident: e_1_2_15_22_1
  doi: 10.1109/LSP.2017.2666183
– volume: 2011
  start-page: 625
  year: 2011
  ident: e_1_2_15_83_1
  article-title: Robust sparse coding for face recognition
  publication-title: CVPR
– ident: e_1_2_15_50_1
  doi: 10.1109/TPAMI.2020.3039215
– ident: e_1_2_15_20_1
  doi: 10.1109/TIP.2023.3274488
– ident: e_1_2_15_55_1
  doi: 10.1561/2400000003
– ident: e_1_2_15_81_1
  doi: 10.1109/JSTSP.2017.2743683
– ident: e_1_2_15_15_1
  doi: 10.1109/IJCNN.2013.6706854
– ident: e_1_2_15_25_1
  doi: 10.1109/TII.2015.2404299
– ident: e_1_2_15_23_1
  doi: 10.1109/TIP.2007.901238
– ident: e_1_2_15_26_1
  doi: 10.1109/TIP.2011.2108306
– ident: e_1_2_15_51_1
  doi: 10.1007/978-3-030-01267-0_50
– ident: e_1_2_15_3_1
  doi: 10.3389/fnins.2015.00484
– ident: e_1_2_15_54_1
  doi: 10.1109/TSP.2017.2733447
– start-page: 530
  volume-title: Advances in neural Information processing systems 25
  year: 2012
  ident: e_1_2_15_67_1
– ident: e_1_2_15_11_1
  doi: 10.1109/CVPR.2013.57
– ident: e_1_2_15_61_1
  doi: 10.1137/090770783
– ident: e_1_2_15_35_1
  doi: 10.1109/TPAMI.2010.220
– ident: e_1_2_15_76_1
  doi: 10.1109/LSP.2021.3135196
– ident: e_1_2_15_9_1
  doi: 10.1109/TSP.2012.2183129
– ident: e_1_2_15_10_1
  doi: 10.1137/080716542
– ident: e_1_2_15_57_1
  doi: 10.1109/TIP.2019.2896541
– ident: e_1_2_15_48_1
  doi: 10.1109/TPAMI.2011.66
– ident: e_1_2_15_45_1
  doi: 10.1080/01431161.2017.1328144
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_15_33_1
– volume: 9
  start-page: 1113
  year: 2009
  ident: e_1_2_15_42_1
  article-title: Exponential family sparse coding with application to self‐taught learning
  publication-title: IJCAI
– ident: e_1_2_15_40_1
  doi: 10.1109/TMM.2018.2847228
– ident: e_1_2_15_60_1
  doi: 10.1109/TSP.2015.2434323
– ident: e_1_2_15_75_1
  doi: 10.1109/RADAR.2017.7944416
– ident: e_1_2_15_41_1
  doi: 10.1007/s00365-011-9142-y
– ident: e_1_2_15_5_1
  doi: 10.1007/s10107-011-0484-9
– start-page: 220
  volume-title: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)
  year: 2012
  ident: e_1_2_15_70_1
– ident: e_1_2_15_46_1
  doi: 10.1109/TCI.2022.3175309
– ident: e_1_2_15_59_1
  doi: 10.1137/140957809
– ident: e_1_2_15_24_1
  doi: 10.1109/TPAMI.2020.2984244
– ident: e_1_2_15_49_1
  doi: 10.1109/MSP.2020.3016905
– ident: e_1_2_15_63_1
  doi: 10.1109/TSP.2013.2278158
– ident: e_1_2_15_65_1
  doi: 10.1109/TIP.2021.3090531
– volume: 18
  start-page: 2887
  issue: 1
  year: 2017
  ident: e_1_2_15_53_1
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_15_71_1
  doi: 10.1109/TPAMI.2019.2904255
– ident: e_1_2_15_34_1
  doi: 10.1109/ICCV.2015.212
– volume-title: Advances in neural Information processing systems
  year: 2019
  ident: e_1_2_15_66_1
– ident: e_1_2_15_6_1
  doi: 10.1561/2200000015
– ident: e_1_2_15_39_1
  doi: 10.1109/TIP.2017.2713099
– ident: e_1_2_15_74_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_15_88_1
  doi: 10.1109/TCSVT.2017.2748382
– ident: e_1_2_15_56_1
  doi: 10.1109/ACSSC.1993.342465
– ident: e_1_2_15_36_1
  doi: 10.1109/CVPR.2015.7299149
– ident: e_1_2_15_62_1
  doi: 10.1109/ICASSP.2018.8461543
– ident: e_1_2_15_68_1
  doi: 10.1016/S1076-5670(04)32006-9
– volume-title: A wavelet tour of signal processing
  year: 1998
  ident: e_1_2_15_47_1
– ident: e_1_2_15_14_1
  doi: 10.1109/TIT.2005.858979
– ident: e_1_2_15_19_1
  doi: 10.1109/TNNLS.2022.3154108
– volume: 66
  start-page: 4090
  issue: 15
  year: 2018
  ident: e_1_2_15_72_1
  article-title: Multilayer convolutional sparse modeling: Pursuit and dictionary learning
  publication-title: IEEE Transactions on Signal Processing
– ident: e_1_2_15_73_1
– ident: e_1_2_15_8_1
  doi: 10.1109/TMI.2019.2906853
– ident: e_1_2_15_29_1
  doi: 10.1016/j.dsp.2006.02.002
– start-page: 1
  volume-title: 2008 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2008
  ident: e_1_2_15_80_1
– ident: e_1_2_15_64_1
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2018
  ident: e_1_2_15_86_1
– ident: e_1_2_15_21_1
  doi: 10.1109/TIP.2017.2761545
– volume: 2011
  start-page: 1313
  year: 2011
  ident: e_1_2_15_44_1
  article-title: Robust tracking using local sparse appearance model and k‐selection
  publication-title: CVPR
– ident: e_1_2_15_78_1
  doi: 10.1109/TIP.2015.2495260
– ident: e_1_2_15_79_1
  doi: 10.1007/978-3-642-34481-7_42
– ident: e_1_2_15_85_1
  doi: 10.1109/WACV.2017.145
– ident: e_1_2_15_4_1
  doi: 10.1109/TSP.2006.881199
SSID ssj0067676
Score 2.3048563
SecondaryResourceType review_article
Snippet The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1646
SubjectTerms algorithm unrolling
Algorithms
Coding
convex and non‐convex optimization
Convexity
convolutional sparse model
Data analysis
Dictionaries
dictionary learning
Glossaries
Graphical methods
Learning
Machine learning
Modelling
Morphology
multi‐layer convolutional sparse model
Neural networks
Optimization
recurrent neural network
Recurrent neural networks
Representations
sparse coding
sparse prior
Supervised learning
Training
Title Learning the sparse prior: Modern approaches
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwics.1646
https://www.proquest.com/docview/2931508848
Volume 16
WOSCitedRecordID wos001163089800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-0068
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067676
  issn: 1939-5108
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfc_OgB38Pp1OKePBg3JZma6onmQ6FOUQn7lbSJJWBbKOd-u_70rSdgoLgrYT0R36-70v6PgE4jrBdlY40kagtCBOMEUFDTgyqDh25TpvplK7f9wYDPhr59yW4yGNhLB-iWHAzIyOdr80AF2HSWEBDP8YyOTN0rCWomKAq9LwqVw-9p34-ERsUWcduKvsEux7PwUJN2ihu_m6OFhrzq1JNTU1v_V8fuQFrmcJ0Lm2X2ISSnmzB6l2BZ0224TSjqr44mOjgnBIn2pnF42l87tjD0ZycNa6THRj2rofdG5Idm0AkRXFBlKvRCVJoeZSvQ4-FVHFJXc_E4FKuqYsJaJTakns-OnNUiKaSkSu4zzqSMbcK5cl0onfBUUxps8_ZEh56cbQtogg9SG1-nYl42BI1OMkrL5AZUtycbPEaWBgyDUz5A1P-GhwVWWeWo_FTpnreAkE2lJIA9Yhh1nPG8XVpXf_-gOD5tvtoLvb-nnUfVigKFbusUofyPH7TB7As3-fjJD7M-tQn6-HO7w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPcxPUB-_idGoRH3wwbkuzNhVfRB0bdkN04t5KmqYykG20U7--J71NQUHwrYT0kuv5n5PmF4CTENs1UKEiErUFYYIxIqjPiUbVoSNntZhK6Pqu3e_z4dC5L8Flvhcm5UMUATc9MpL5Wg9wHZCuz6mhHyMZn2s81gJUmGXavAyVm4f2k5vPxJpFZqWryg7BvsdzslCD1oubv9ujucj8KlUTW9Ne-99XrsNqpjGNq7RTbEBJjTdhpVcAWuMtOMu4qi8GJho4q0SxMqbRaBJdGOnxaEZOG1fxNgzat4PrDskOTiCSorwgganQDQrQ9gSO8m3m04BLatp6Fy7lipqYgGapJbntoDtHhWgEMjQFd5glGTN3oDyejNUuGAELlF7pbAob_TjaEmGIPqTSP8-E3G-KKpzmtefJDCquz7Z49VIcMvV0-T1d_iocF1mnKUnjp0y1vAm8bDDFHioSTa3njOPrksr-_QHec_f6UV_s_T3rESx1Bj3Xc7v9u31Ypihb0iBLDcqz6E0dwKJ8n43i6DDrYJ9cD9Lf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPcxPRB-_idGoRH3ywbkvTNRVfZLM4nGPoRN9KmqQykG20U7--J71NQUHwrYT0kuQk53-S5heAkxDbVapQmQK1hUk5pSYnATM1qg4DuZZNVULX7zn9Pnt-dgcluMz3wqR8iGLCTfeMZLzWHVxNZVifU0M_RiI-13isBahQ27VpGSqde--xl4_EmkXWSleVXRNtj-VkoQapFzd_90dzkflVqia-xlv731euw2qmMY2r1Cg2oKTGm7ByVwBa4y04y7iqLwYmGjiqRLEyptFoEl0Y6fFoRk4bV_E2DL3rYfvGzA5OMAVBeWFKS2EYJNH3SFcFDg2IZIJYjt6FS5giFiagW7IFc1wM5wjnDSlCizOXtgSl1g6Ux5Ox2gVDUqn0SmeTOxjHEZuHIcaQSv88E7KgyatwmteeLzKouD7b4tVPccjE1-X3dfmrcFxknaYkjZ8y1fIm8LPOFPuoSDS1nlGGr0sq-_cH-E_d9oO-2Pt71iNYGnQ8v9ft3-7DMkHVks6x1KA8i97UASyK99kojg4z-_oEKW7SWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+sparse+prior%3A+Modern+approaches&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+statistics&rft.au=Peng%2C+Guan%E2%80%90Ju&rft.date=2024-01-01&rft.issn=1939-5108&rft.eissn=1939-0068&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1002%2Fwics.1646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wics_1646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5108&client=summon