MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification

Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are esse...

Full description

Saved in:
Bibliographic Details
Published in:International journal of intelligent systems Vol. 36; no. 12; pp. 7204 - 7238
Main Authors: Zheng, Qinghe, Zhao, Penghui, Zhang, Deliang, Wang, Hongjun
Format: Journal Article
Language:English
Published: New York John Wiley & Sons, Inc 01.12.2021
Subjects:
ISSN:0884-8173, 1098-111X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are essentially the same as normal signals, it still remains challenging to automatically and effectively identify unauthorized broadcastings in complicated electromagnetic environments. In this paper, we introduce the manifold regularization‐based deep convolutional autoencoder (MR‐DCAE) model for unauthorized broadcasting identification. The specifically designed autoencoder (AE) is optimized by entropy‐stochastic gradient descent, then the reconstruction errors in the testing phase can be adopted to determine whether the received signals are authorized. To make this indicator more discriminative, we design a similarity estimator for manifolds spanning various dimensions as the penalty term to ensure their invariance during the back‐propagation of gradients. In theory, the consistency degree between discrete approximations in the manifold regularization (MR) and the continuous objects that motivate them can be guaranteed under an upper bound. To the best of our knowledge, this is the first time that MR has been successfully applied in AE to promote cross‐layer manifold invariance. Finally, MR‐DCAE is evaluated on the benchmark data set AUBI2020, and comparative experiments show that it achieves state‐of‐the‐art performance. To help understand the principle behind MR‐DCAE, convolution kernels and activation maps of test signals are both visualized. It can be observed that the expert knowledge hidden in normal signals can be extracted and emphasized, rather than simple overfitting.
AbstractList Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are essentially the same as normal signals, it still remains challenging to automatically and effectively identify unauthorized broadcastings in complicated electromagnetic environments. In this paper, we introduce the manifold regularization‐based deep convolutional autoencoder (MR‐DCAE) model for unauthorized broadcasting identification. The specifically designed autoencoder (AE) is optimized by entropy‐stochastic gradient descent, then the reconstruction errors in the testing phase can be adopted to determine whether the received signals are authorized. To make this indicator more discriminative, we design a similarity estimator for manifolds spanning various dimensions as the penalty term to ensure their invariance during the back‐propagation of gradients. In theory, the consistency degree between discrete approximations in the manifold regularization (MR) and the continuous objects that motivate them can be guaranteed under an upper bound. To the best of our knowledge, this is the first time that MR has been successfully applied in AE to promote cross‐layer manifold invariance. Finally, MR‐DCAE is evaluated on the benchmark data set AUBI2020, and comparative experiments show that it achieves state‐of‐the‐art performance. To help understand the principle behind MR‐DCAE, convolution kernels and activation maps of test signals are both visualized. It can be observed that the expert knowledge hidden in normal signals can be extracted and emphasized, rather than simple overfitting.
Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are essentially the same as normal signals, it still remains challenging to automatically and effectively identify unauthorized broadcastings in complicated electromagnetic environments. In this paper, we introduce the manifold regularization‐based deep convolutional autoencoder (MR‐DCAE) model for unauthorized broadcasting identification. The specifically designed autoencoder (AE) is optimized by entropy‐stochastic gradient descent, then the reconstruction errors in the testing phase can be adopted to determine whether the received signals are authorized. To make this indicator more discriminative, we design a similarity estimator for manifolds spanning various dimensions as the penalty term to ensure their invariance during the back‐propagation of gradients. In theory, the consistency degree between discrete approximations in the manifold regularization (MR) and the continuous objects that motivate them can be guaranteed under an upper bound. To the best of our knowledge, this is the first time that MR has been successfully applied in AE to promote cross‐layer manifold invariance. Finally, MR‐DCAE is evaluated on the benchmark data set AUBI2020, and comparative experiments show that it achieves state‐of‐the‐art performance. To help understand the principle behind MR‐DCAE, convolution kernels and activation maps of test signals are both visualized. It can be observed that the expert knowledge hidden in normal signals can be extracted and emphasized, rather than simple overfitting.
Author Zhao, Penghui
Zhang, Deliang
Wang, Hongjun
Zheng, Qinghe
Author_xml – sequence: 1
  givenname: Qinghe
  orcidid: 0000-0003-1466-2542
  surname: Zheng
  fullname: Zheng, Qinghe
  organization: Shandong University
– sequence: 2
  givenname: Penghui
  orcidid: 0000-0002-3353-9059
  surname: Zhao
  fullname: Zhao, Penghui
  organization: Shandong University
– sequence: 3
  givenname: Deliang
  orcidid: 0000-0002-2099-0326
  surname: Zhang
  fullname: Zhang, Deliang
  organization: Shandong University
– sequence: 4
  givenname: Hongjun
  orcidid: 0000-0003-0496-1573
  surname: Wang
  fullname: Wang, Hongjun
  email: hjw@sdu.edu.cn
  organization: Shandong University
BookMark eNp9kM1OAjEUhRuDiYAufIMmrlwMtJ2_jjuCqCSgiWHhbtJpO1gytth2MLjyEXxGn8QCrkw0XTS95zsnt6cHOtpoCcA5RgOMEBkq7QeEpDQ7Al2MChphjJ86oIsoTSKK8_gE9JxbIYRxnqRdsJk_fn18Xo9Hkys4Z1rVphHQymXbMKvemVdGB71iTgoopFxDbvTGNO1OYA1krTdScyOkhbWxsNVh8myCNfCVNUxw5rzSS6iE1F7Viu8zT8FxzRonz37uPljcTBbju2j2cDsdj2YRJ0WeRZVMEsoyRGKR8FhkKapillfhlVNUFDXNC1wzTiSrUhmncZJmicCpZCirCKFxH1wcYtfWvLbS-XJlWhsWd2XoKByEYxyoywPFrXHOyrpcW_XC7LbEqNy1WoZWy32rgR3-Yrny-y95y1Tzn-NNNXL7d3Q5vV8cHN8DiY8f
CitedBy_id crossref_primary_10_1007_s10791_024_09463_4
crossref_primary_10_1155_int_4067323
crossref_primary_10_1016_j_engappai_2023_107619
crossref_primary_10_3390_rs15205071
crossref_primary_10_1016_j_asoc_2025_113675
crossref_primary_10_1007_s10103_024_04125_9
crossref_primary_10_3390_rs16214044
crossref_primary_10_3390_electronics13112213
crossref_primary_10_3233_JIFS_233006
crossref_primary_10_3390_s22031110
crossref_primary_10_1016_j_engappai_2025_110861
crossref_primary_10_1177_09592989251351608
crossref_primary_10_1007_s11063_022_10968_6
crossref_primary_10_1117_1_JEI_31_4_043025
crossref_primary_10_1007_s00034_024_02893_x
crossref_primary_10_1177_00202940241270693
crossref_primary_10_3390_s24134256
crossref_primary_10_1177_00202940251332506
crossref_primary_10_2174_0118744478324910240722052320
crossref_primary_10_1016_j_measurement_2024_115548
crossref_primary_10_1371_journal_pone_0295801
crossref_primary_10_1007_s11517_025_03314_0
crossref_primary_10_1080_0954898X_2024_2435491
crossref_primary_10_2174_0126662558309335240809064620
crossref_primary_10_1002_ima_23178
crossref_primary_10_1016_j_engappai_2024_108138
crossref_primary_10_1109_ACCESS_2025_3584702
crossref_primary_10_1007_s00034_025_03009_9
crossref_primary_10_1016_j_cropro_2024_106867
crossref_primary_10_1117_1_JMI_9_5_054001
crossref_primary_10_1016_j_asoc_2025_112990
crossref_primary_10_3390_app15094771
crossref_primary_10_1016_j_measurement_2025_117192
crossref_primary_10_1371_journal_pone_0308460
crossref_primary_10_1016_j_asoc_2025_113159
crossref_primary_10_1177_00202940251314347
crossref_primary_10_1016_j_infoh_2024_12_001
crossref_primary_10_3390_s24216966
crossref_primary_10_1007_s00371_025_04066_6
crossref_primary_10_1007_s10846_024_02173_5
crossref_primary_10_1016_j_measurement_2024_115550
crossref_primary_10_1016_j_eswa_2025_128230
crossref_primary_10_3390_drones8090515
crossref_primary_10_1007_s11063_022_10806_9
crossref_primary_10_1038_s41598_024_56217_9
crossref_primary_10_1371_journal_pone_0302234
crossref_primary_10_1093_cercor_bhae498
crossref_primary_10_1007_s11571_023_10015_7
crossref_primary_10_1016_j_phycom_2025_102824
crossref_primary_10_3390_electronics13244915
crossref_primary_10_1016_j_eswa_2024_125817
crossref_primary_10_1016_j_eswa_2025_126904
crossref_primary_10_1016_j_measurement_2025_118009
crossref_primary_10_1007_s11227_025_06947_y
crossref_primary_10_1016_j_ijtst_2025_04_002
crossref_primary_10_1007_s00607_024_01366_y
crossref_primary_10_1016_j_eswa_2023_119858
crossref_primary_10_1007_s11042_024_18973_8
crossref_primary_10_1049_sil2_6606572
crossref_primary_10_1177_00202940251319708
crossref_primary_10_1007_s10796_024_10558_y
crossref_primary_10_3390_ijgi13070256
crossref_primary_10_1016_j_compbiomed_2024_107919
crossref_primary_10_1007_s00500_023_09408_x
crossref_primary_10_1038_s41598_025_87615_2
crossref_primary_10_1007_s11235_022_00934_x
crossref_primary_10_1109_ACCESS_2025_3550942
crossref_primary_10_1109_JIOT_2024_3457837
crossref_primary_10_1109_ACCESS_2021_3124746
crossref_primary_10_1007_s00034_025_03258_8
crossref_primary_10_1002_ima_23157
crossref_primary_10_1016_j_engappai_2023_107567
crossref_primary_10_1109_TVT_2023_3296120
crossref_primary_10_1016_j_asoc_2025_112964
crossref_primary_10_1016_j_engappai_2023_107292
crossref_primary_10_1038_s41598_025_91910_3
crossref_primary_10_1007_s11063_022_10954_y
crossref_primary_10_1016_j_measurement_2024_116222
crossref_primary_10_1016_j_smhl_2025_100594
crossref_primary_10_1007_s11227_023_05644_y
crossref_primary_10_1016_j_eswa_2025_127285
crossref_primary_10_1007_s00034_025_03149_y
crossref_primary_10_1038_s41598_025_86743_z
crossref_primary_10_1117_1_JEI_31_3_030501
crossref_primary_10_1109_ACCESS_2025_3557609
crossref_primary_10_1049_gtd2_70068
crossref_primary_10_1007_s00034_025_03019_7
crossref_primary_10_3233_AIS_230626
crossref_primary_10_1016_j_knosys_2025_113967
crossref_primary_10_3390_drones8120739
crossref_primary_10_1007_s10489_023_04825_9
crossref_primary_10_1109_ACCESS_2023_3344465
crossref_primary_10_1038_s41598_024_76178_3
crossref_primary_10_1007_s11517_022_02674_1
crossref_primary_10_1016_j_knosys_2025_114301
crossref_primary_10_1155_2024_9343734
crossref_primary_10_3390_s24020320
crossref_primary_10_1007_s11063_022_10833_6
crossref_primary_10_3233_JAE_230099
crossref_primary_10_1016_j_neucom_2025_131501
crossref_primary_10_3390_drones7100596
crossref_primary_10_1007_s11227_023_05448_0
crossref_primary_10_1177_00202940241270646
crossref_primary_10_3390_drones8090429
crossref_primary_10_1007_s10664_024_10606_w
crossref_primary_10_1007_s11071_024_10250_5
crossref_primary_10_1016_j_asoc_2025_113081
crossref_primary_10_1016_j_mlwa_2025_100697
crossref_primary_10_1142_S021812662550080X
crossref_primary_10_1007_s00034_024_02981_y
crossref_primary_10_1002_ima_70006
crossref_primary_10_1016_j_engappai_2024_108187
crossref_primary_10_1038_s41598_024_82562_w
crossref_primary_10_1007_s00500_023_09481_2
crossref_primary_10_1016_j_engappai_2023_107273
crossref_primary_10_1017_aer_2024_118
crossref_primary_10_1038_s41598_025_94388_1
crossref_primary_10_1007_s00034_025_03148_z
crossref_primary_10_1155_int_2597866
crossref_primary_10_1017_aer_2024_110
crossref_primary_10_1007_s11063_023_11283_4
crossref_primary_10_1109_ACCESS_2024_3435027
crossref_primary_10_3390_s24206692
crossref_primary_10_1007_s00354_025_00291_8
crossref_primary_10_1007_s11517_024_03072_5
crossref_primary_10_1016_j_compbiomed_2025_109653
crossref_primary_10_1049_sil2_2013549
crossref_primary_10_1007_s11517_023_02914_y
crossref_primary_10_1177_00202940231223084
crossref_primary_10_1016_j_jocs_2025_102685
crossref_primary_10_1371_journal_pone_0293517
crossref_primary_10_1016_j_imu_2025_101646
crossref_primary_10_1109_ACCESS_2024_3439870
crossref_primary_10_1007_s11063_023_11174_8
crossref_primary_10_3390_drones6110324
crossref_primary_10_3390_drones8110678
crossref_primary_10_1016_j_engappai_2024_109861
crossref_primary_10_1016_j_engappai_2025_111770
crossref_primary_10_1016_j_epsr_2023_109241
crossref_primary_10_1016_j_measurement_2024_115221
crossref_primary_10_1016_j_swevo_2025_102069
crossref_primary_10_1080_03155986_2023_2235223
crossref_primary_10_1007_s11063_022_11060_9
crossref_primary_10_1007_s11517_023_02899_8
crossref_primary_10_1049_2024_6814362
crossref_primary_10_1109_ACCESS_2024_3411777
crossref_primary_10_1002_ima_23072
crossref_primary_10_1038_s41598_025_85467_4
crossref_primary_10_1016_j_biortech_2023_130073
crossref_primary_10_3390_drones8110663
crossref_primary_10_1007_s00034_024_02817_9
crossref_primary_10_3390_diagnostics15070849
crossref_primary_10_1016_j_asoc_2025_113188
crossref_primary_10_3390_app13127055
crossref_primary_10_3390_s22010204
crossref_primary_10_1007_s11277_024_10896_9
crossref_primary_10_3390_electronics13071391
crossref_primary_10_1016_j_eswa_2023_123008
crossref_primary_10_3390_healthcare10091606
crossref_primary_10_1117_1_JMI_9_4_044002
crossref_primary_10_1177_00202940221109778
crossref_primary_10_1016_j_infoh_2025_08_003
crossref_primary_10_1016_j_jastp_2025_106444
crossref_primary_10_1177_13835416251329225
Cites_doi 10.1007/s11004-021-09935-z
10.1002/int.21875
10.1109/TSP.2016.2645515
10.1002/int.22059
10.1109/ICCV.2015.177
10.1016/j.conengprac.2018.02.005
10.1109/TCCN.2019.2911524
10.1109/CVPR.2017.539
10.1109/ICIS.2018.8466411
10.1002/dac.3968
10.1109/TCYB.2016.2529299
10.1109/ICEICT.2016.7879730
10.1109/TPAMI.2017.2663423
10.1002/2017RS006409
10.1111/j.1468-0270.2010.02062.x
10.7551/mitpress/7503.003.0024
10.1049/iet-cta.2020.0557
10.1109/TSP.2018.2887406
10.1109/ACCESS.2020.2992044
10.1109/TIM.2020.3008988
10.1109/TSSA.2017.8272943
10.1016/j.patrec.2017.03.008
10.1109/ISESD.2016.7886740
10.1007/s00454-013-9557-2
10.3390/math7121170
10.1002/int.21924
10.1109/IMCCC.2018.00039
10.1029/2019RS006885
10.1109/CVPR.2016.319
10.1109/ACCESS.2019.2930627
10.1109/STSIVA.2019.8730244
10.1109/CompComm.2016.7925030
10.1109/TCCN.2021.3071149
10.1109/TCYB.2016.2536638
10.1139/juvs-2016-0011
10.1109/IWCMC48107.2020.9148485
10.1145/3097983.3098052
10.1016/j.neucom.2018.05.027
10.1109/TPAMI.2018.2860995
10.1007/s11071-021-06208-6
10.1016/j.ymssp.2020.106683
10.1038/s41598-019-45333-6
10.1002/rnc.5131
10.1109/TNNLS.2015.2496947
10.1109/MIM.2015.7066682
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
Copyright_xml – notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.22586
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
EndPage 7238
ExternalDocumentID 10_1002_int_22586
INT22586
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province (CN)
  funderid: ZR2019ZD01
– fundername: National Key R&D Program of China
  funderid: 2018YFF01014304; 2012YQ20022407
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2976-be448a6023d4c3d650b3a7b3d478099f8791fac2eab5e3534564d15ea06b2283
IEDL.DBID DRFUL
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686266100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-8173
IngestDate Fri Jul 25 12:09:27 EDT 2025
Sat Nov 29 04:01:53 EST 2025
Tue Nov 18 21:55:11 EST 2025
Wed Jun 18 06:51:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-be448a6023d4c3d650b3a7b3d478099f8791fac2eab5e3534564d15ea06b2283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0496-1573
0000-0002-2099-0326
0000-0003-1466-2542
0000-0002-3353-9059
PQID 2585850131
PQPubID 1026350
PageCount 35
ParticipantIDs proquest_journals_2585850131
crossref_primary_10_1002_int_22586
crossref_citationtrail_10_1002_int_22586
wiley_primary_10_1002_int_22586_INT22586
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2019; 7
2019; 9
2015; 18
2019; 5
2020; 140
2017; 47
2019; 32
2021; 103
2017; 65
2019; 34
2011; 31
2006; 7
2007
2005
2020; 100
2018; 40
2020; 55
2018; 66
2021; 14
2020; 8
2017; 52
2018; 8
2014; 5
2017; 90
2015; 27
2020; 30
2019; 41
2021
2020
2017; 32
2018; 310
2019; 67
2019
2014; 15
2018
2017
2020; 69
2016
2018; 74
2015
2013
2018; 33
2016; 47
2018; 16
2010; 51
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_2_1
Belkin M (e_1_2_11_54_1) 2006; 7
Zhang Y (e_1_2_11_7_1) 2014; 5
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
Laurens V (e_1_2_11_52_1) 2014; 15
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
Zhao C (e_1_2_11_25_1) 2018; 8
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Li J (e_1_2_11_33_1) 2020; 100
Sulam J (e_1_2_11_48_1) 2018; 66
e_1_2_11_21_1
e_1_2_11_44_1
Callegari C (e_1_2_11_59_1) 2018; 16
e_1_2_11_46_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 30
  start-page: 6683
  year: 2020
  end-page: 6700
  article-title: State and parameter joint estimation of linear stochastic systems in presence of faults and non‐Gaussian noises
  publication-title: Int J Robust Nonlinear Control
– volume: 47
  start-page: 1017
  issue: 4
  year: 2017
  end-page: 1027
  article-title: Stacked convolutional denoising auto‐encoders for feature representation
  publication-title: IEEE Trans Cybern.
– volume: 65
  start-page: 1580
  issue: 6
  year: 2017
  end-page: 1594
  article-title: Randomized robust subspace recovery and outlier detection for high dimensional data matrices
  publication-title: IEEE Trans Signal Process
– volume: 69
  start-page: 5981
  issue: 6
  year: 2020
  end-page: 5983
  article-title: Unauthorized broadcasting identification: a deep LSTM recurrent learning approach
  publication-title: IEEE Trans Instrum Meas
– volume: 7
  start-page: 2399
  issue: 1
  year: 2006
  end-page: 2434
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– year: 2005
– volume: 32
  issue: 11
  year: 2019
  article-title: Fast detection and DOA estimation of the unknown wideband signal sources
  publication-title: Int J Commun Syst
– year: 2021
  article-title: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder
  publication-title: Math Geosci
– volume: 140
  year: 2020
  article-title: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks
  publication-title: Mech Syst Signal Proc
– year: 2021
  article-title: Shared spectrum monitoring using deep learning
  publication-title: IEEE Trans Cogn Commun Netw.
– volume: 14
  start-page: 3344
  issue: 19
  year: 2021
  end-page: 3350
  article-title: Robust point‐to‐point iterative learning control with trial‐varying initial conditions
  publication-title: IET Contr Theory Appl
– year: 2007
– volume: 90
  start-page: 8
  year: 2017
  end-page: 14
  article-title: K‐means clustering with outlier removal
  publication-title: Pattern Recogn Lett.
– volume: 7
  start-page: 111257
  year: 2019
  end-page: 111270
  article-title: Hierarchical edge computing: a novel multi‐source multi‐dimensional data anomaly detection scheme for industrial internet of things
  publication-title: IEEE Access
– volume: 31
  start-page: 115
  issue: 1
  year: 2011
  end-page: 117
  article-title: Broadcasting licence fee settlements in the UK and Germany
  publication-title: Econ Aff.
– volume: 32
  start-page: 881
  issue: 9
  year: 2017
  end-page: 899
  article-title: Exponentially weighted ellipsoidal model for anomaly detection
  publication-title: Int J Intell Syst
– volume: 18
  start-page: 33
  issue: 2
  year: 2015
  end-page: 37
  article-title: A cloud‐based approach to spectrum monitoring
  publication-title: IEEE Instrum Meas Mag
– year: 2016
– volume: 27
  start-page: 1997
  issue: 10
  year: 2015
  end-page: 2008
  article-title: Why deep learning works: a manifold disentanglement perspective
  publication-title: IEEE Trans Neural Netw Learn Syst.
– year: 2018
– volume: 16
  start-page: 9
  issue: 1
  year: 2018
  end-page: 16
  article-title: Improving stability of PCA‐based network anomaly detection by means of kernel‐PCA
  publication-title: Int J Comput Sci Eng
– volume: 55
  start-page: 1
  issue: 4
  year: 2020
  end-page: 6
  article-title: FM broadcast monitoring using artificial intelligence
  publication-title: Radio Sci
– volume: 5
  start-page: 50
  issue: 1
  year: 2014
  end-page: 54
  article-title: Research on interconnect technology for radio monitoring stations based on RMTP protocol
  publication-title: Mod Electron Tech.
– volume: 33
  start-page: 1858
  issue: 9
  year: 2018
  end-page: 1868
  article-title: Outlier detection using linguistically quantified statements
  publication-title: Int J Intell Syst
– volume: 8
  start-page: 83765
  year: 2020
  end-page: 83781
  article-title: Long short‐term memory and fuzzy logic for anomaly detection and mitigation in software‐defined network environment
  publication-title: IEEE Access
– volume: 103
  start-page: 1733
  year: 2021
  end-page: 1755
  article-title: Input‐to‐state stability of impulsive reaction–diffusion neural networks with infinite distributed delays
  publication-title: Nonlinear Dyn.
– volume: 52
  start-page: 1261
  issue: 10
  year: 2017
  end-page: 1267
  article-title: State of the art and challenges of radio spectrum monitoring in China
  publication-title: Radio Sci
– volume: 34
  start-page: 415
  issue: 3
  year: 2019
  end-page: 438
  article-title: Detection of outlier information by the use of linguistic summaries based on classic and interval‐valued fuzzy sets
  publication-title: Int J Intell Syst.
– volume: 7
  start-page: 1
  issue: 12
  year: 2019
  end-page: 21
  article-title: Enhancement of deep learning in image classification performance using Xception with the Swish activation function for colorectal polyp preliminary screening
  publication-title: Mathematics
– volume: 9
  start-page: 9051
  issue: 1
  year: 2019
  article-title: EEG decoding reveals the strength and temporal dynamics of goal‐relevant representations
  publication-title: Sci Rep
– volume: 41
  start-page: 2584
  issue: 11
  year: 2019
  end-page: 2598
  article-title: Efficient training for positive unlabeled learning
  publication-title: IEEE Trans Pattern Anal
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  end-page: 3245
  article-title: Accelerating t‐SNE using tree‐based algorithms
  publication-title: J Mach Learn Res
– volume: 40
  start-page: 163
  issue: 1
  year: 2018
  end-page: 178
  article-title: Multi‐dimensional sparse models
  publication-title: IEEE Trans Pattern Anal
– volume: 67
  start-page: 993
  issue: 4
  year: 2019
  end-page: 1005
  article-title: Sequential outlier detection based on incremental decision trees
  publication-title: IEEE Trans Signal Process
– volume: 310
  start-page: 223
  year: 2018
  end-page: 235
  article-title: Ramp loss one‐class support vector machine: a robust and effective approach to anomaly detection problems
  publication-title: Neurocomputing
– volume: 66
  start-page: 4090
  issue: 15
  year: 2018
  end-page: 4104
  article-title: Multi‐layer convolutional sparse modeling: pursuit and dictionary learning
  publication-title: IEEE Trans Signal Process
– volume: 5
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  article-title: Spectrum monitoring with unmanned aerial vehicle carrying a receiver based on the core technology of cognitive radio—a software‐defined radio design
  publication-title: J Unmanned Veh Syst
– year: 2020
– volume: 100
  issue: 4
  year: 2020
  article-title: Clustering‐based anomaly detection in multivariate time series data
  publication-title: Appl Soft Comput.
– volume: 47
  start-page: 830
  issue: 4
  year: 2016
  end-page: 840
  article-title: Manifold partition discriminant analysis
  publication-title: IEEE Trans Cybern.
– year: 2017
– year: 2019
– volume: 8
  start-page: 1
  issue: 12
  year: 2018
  end-page: 15
  article-title: Application of auxiliary classifier Wasserstein generative adversarial networks in wireless signal classification of illegal unmanned aerial vehicles
  publication-title: Appl Sci—Basel.
– volume: 5
  start-page: 637
  issue: 3
  year: 2019
  end-page: 647
  article-title: Unsupervised wireless spectrum anomaly detection with interpretable features
  publication-title: IEEE Trans Cogn Commun.
– year: 2015
– volume: 51
  start-page: 221
  issue: 1
  year: 2010
  end-page: 267
  article-title: Manifold reconstruction using tangential Delaunay complexes
  publication-title: Discrete Comput Geom
– volume: 74
  start-page: 1
  year: 2018
  end-page: 12
  article-title: An incipient fault detection approach via detrending and denoising
  publication-title: Control Eng Pract
– year: 2013
– ident: e_1_2_11_32_1
  doi: 10.1007/s11004-021-09935-z
– ident: e_1_2_11_26_1
  doi: 10.1002/int.21875
– ident: e_1_2_11_41_1
– volume: 16
  start-page: 9
  issue: 1
  year: 2018
  ident: e_1_2_11_59_1
  article-title: Improving stability of PCA‐based network anomaly detection by means of kernel‐PCA
  publication-title: Int J Comput Sci Eng
– ident: e_1_2_11_21_1
  doi: 10.1109/TSP.2016.2645515
– volume: 5
  start-page: 50
  issue: 1
  year: 2014
  ident: e_1_2_11_7_1
  article-title: Research on interconnect technology for radio monitoring stations based on RMTP protocol
  publication-title: Mod Electron Tech.
– ident: e_1_2_11_35_1
  doi: 10.1002/int.22059
– ident: e_1_2_11_38_1
  doi: 10.1109/ICCV.2015.177
– ident: e_1_2_11_31_1
  doi: 10.1016/j.conengprac.2018.02.005
– ident: e_1_2_11_45_1
  doi: 10.1109/TCCN.2019.2911524
– ident: e_1_2_11_57_1
  doi: 10.1109/CVPR.2017.539
– ident: e_1_2_11_15_1
  doi: 10.1109/ICIS.2018.8466411
– ident: e_1_2_11_17_1
  doi: 10.1002/dac.3968
– ident: e_1_2_11_55_1
  doi: 10.1109/TCYB.2016.2529299
– ident: e_1_2_11_13_1
  doi: 10.1109/ICEICT.2016.7879730
– ident: e_1_2_11_39_1
  doi: 10.1109/TPAMI.2017.2663423
– ident: e_1_2_11_2_1
  doi: 10.1002/2017RS006409
– ident: e_1_2_11_4_1
  doi: 10.1111/j.1468-0270.2010.02062.x
– ident: e_1_2_11_53_1
  doi: 10.7551/mitpress/7503.003.0024
– ident: e_1_2_11_30_1
  doi: 10.1049/iet-cta.2020.0557
– ident: e_1_2_11_49_1
  doi: 10.1109/TSP.2018.2887406
– ident: e_1_2_11_50_1
  doi: 10.1109/ACCESS.2020.2992044
– ident: e_1_2_11_24_1
  doi: 10.1109/TIM.2020.3008988
– ident: e_1_2_11_22_1
  doi: 10.1109/TSSA.2017.8272943
– volume: 66
  start-page: 4090
  issue: 15
  year: 2018
  ident: e_1_2_11_48_1
  article-title: Multi‐layer convolutional sparse modeling: pursuit and dictionary learning
  publication-title: IEEE Trans Signal Process
– ident: e_1_2_11_36_1
  doi: 10.1016/j.patrec.2017.03.008
– ident: e_1_2_11_9_1
  doi: 10.1109/ISESD.2016.7886740
– ident: e_1_2_11_43_1
  doi: 10.1007/s00454-013-9557-2
– ident: e_1_2_11_51_1
  doi: 10.3390/math7121170
– ident: e_1_2_11_27_1
  doi: 10.1002/int.21924
– ident: e_1_2_11_58_1
– ident: e_1_2_11_23_1
  doi: 10.1109/IMCCC.2018.00039
– ident: e_1_2_11_5_1
  doi: 10.1029/2019RS006885
– ident: e_1_2_11_44_1
– ident: e_1_2_11_60_1
  doi: 10.1109/CVPR.2016.319
– ident: e_1_2_11_37_1
  doi: 10.1109/ACCESS.2019.2930627
– volume: 7
  start-page: 2399
  issue: 1
  year: 2006
  ident: e_1_2_11_54_1
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: e_1_2_11_52_1
  article-title: Accelerating t‐SNE using tree‐based algorithms
  publication-title: J Mach Learn Res
– ident: e_1_2_11_14_1
  doi: 10.1109/STSIVA.2019.8730244
– ident: e_1_2_11_19_1
  doi: 10.1109/CompComm.2016.7925030
– ident: e_1_2_11_12_1
– ident: e_1_2_11_3_1
  doi: 10.1109/TCCN.2021.3071149
– ident: e_1_2_11_42_1
  doi: 10.1109/TCYB.2016.2536638
– ident: e_1_2_11_8_1
– ident: e_1_2_11_6_1
  doi: 10.1139/juvs-2016-0011
– ident: e_1_2_11_16_1
  doi: 10.1109/IWCMC48107.2020.9148485
– ident: e_1_2_11_40_1
  doi: 10.1145/3097983.3098052
– ident: e_1_2_11_46_1
  doi: 10.1016/j.neucom.2018.05.027
– ident: e_1_2_11_47_1
  doi: 10.1109/TPAMI.2018.2860995
– ident: e_1_2_11_20_1
– volume: 100
  start-page: 106919
  issue: 4
  year: 2020
  ident: e_1_2_11_33_1
  article-title: Clustering‐based anomaly detection in multivariate time series data
  publication-title: Appl Soft Comput.
– volume: 8
  start-page: 1
  issue: 12
  year: 2018
  ident: e_1_2_11_25_1
  article-title: Application of auxiliary classifier Wasserstein generative adversarial networks in wireless signal classification of illegal unmanned aerial vehicles
  publication-title: Appl Sci—Basel.
– ident: e_1_2_11_29_1
  doi: 10.1007/s11071-021-06208-6
– ident: e_1_2_11_34_1
– ident: e_1_2_11_11_1
  doi: 10.1016/j.ymssp.2020.106683
– ident: e_1_2_11_10_1
  doi: 10.1038/s41598-019-45333-6
– ident: e_1_2_11_28_1
  doi: 10.1002/rnc.5131
– ident: e_1_2_11_56_1
  doi: 10.1109/TNNLS.2015.2496947
– ident: e_1_2_11_18_1
  doi: 10.1109/MIM.2015.7066682
SSID ssj0011745
Score 2.6494017
Snippet Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7204
SubjectTerms Back propagation
deep convolutional autoencoder
Intelligent systems
Invariance
manifold consistency
manifold regularization
Manifolds
positive‐unlabeled problem
Radio broadcasting
Regularization
unauthorized broadcasting identification
Upper bounds
Title MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22586
https://www.proquest.com/docview/2585850131
Volume 36
WOSCitedRecordID wos000686266100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 0884-8173
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609eDFt1hfLOLBS7TdbF56KmpRsEWkgrewm91goSQlfZz9Cf5Gf4mzm02roCBILkl2dhJ2ZzJfktlvAE6F78tE-cLxU8Ec5nHqRCxkTsAiKlOmQz43xSaCXi98eYkel-CqWgtT8kPMP7hpzzDPa-3gXIwvFqShg2xyjsYY-stQp2i3Xg3qN0-d54f5TwQE214JIpkTtgK3IhZq0ot55-_haIExvyJVE2o66_-6yQ1YswiTtEuT2IQllW3BelW9gVhn3oZZ9-nj7f3mun17Sbo8G6T5UJLClKYv7OJMbNdRThKp1IjoBHVrqKifTye5JsGUqBOBL5lmeOY1x64oL4qcy4SPdU41GUibkWR07kC_c9u_vnNsFQYnoYhVHKHwDY77GNslS1yJiE64PBB4FIQIL9MwiFopT6jiwlOu52p-GtnyFG_6QnPr7EItyzO1B6SZ-jRViNC8yNU_VHkoQ5VELYaolCPyacBZNRdxYhnKdaGMYVxyK9MYhzM2w9mAk7noqKTl-EnosJrQ2HrmOMYG3DTLEF7OTN3vCuL7Xt_s7P9d9ABWqU57MRkvh1CbFFN1BCvJbDIYF8fWRD8B8qHtPw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPTFecXp1CA--FK3telNfBm6obgNkQm-laRJcSCtdJdnf4K_0V_iSZpOBQVB-tI2J6clOen5mpx8B-CEe56IpcctL-HUoi6zrZAG1PJpaIuEKpfPdLIJfzAIHh_DuwW4KPfCFPwQ8wk3NTL091oNcDUh3fhkDR2lkzO0xsBbhCWKZoT2vXR1333ozVcREG27BYqkVtDynZJZqGk35pW_-6NPkPkVqmpf063-7y3XYc1gTNIujGIDFmS6CdUyfwMxw3kLZv3799e3q8t255z0WTpKsmdBcp2cPjfbM7Fc-TlBhJQvRIWoG1NF_Ww6yRQNpkCdCH3JNMU7TxlWRXmeZ0zEbKyiqslImJgkrXMbht3O8PLaMnkYrNhGtGJxif9wzEPvLmjsCMR03GE-xys_QICZBH7YSlhsS8Zd6biOYqgRLVeypscVu84OVNIslbtAmolnJxIxmhs6akmVBSKQcdiiiEsZYp8anJadEcWGo1ylyniOCnZlO8LmjHRz1uB4LvpSEHP8JFQvezQyY3McYQEeimcIH6f77ncF0c1gqE_2_i56BCvXw34v6t0Mbvdh1VZBMDr-pQ6VST6VB7AczyajcX5o7PUDHrfxLw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFfFifeKj6iIevETbZPMSL6W1KGopUsFb2M1usFCSkrae_Qn-Rn-Js5tNVVAQJJckOzsJuzOZL8nsNwAn3PNELD1ueQmnFnWZbYU0oJZPQ1skVIV8potN-L1e8PQU9itwWa6FKfgh5h_clGfo57VycDkWyfkna-gwnZ6hNQbeAixSVUSmCoudh-7j3fwvAqJtt0CR1AqavlMyCzXs83nn7_HoE2R-hao61nRr_7vLNVg1GJO0CqNYh4pMN6BW1m8gxp034eX-4f31rdNuXV2Qe5YOk2wkSK6L0-dmeSa2qzgniJByTFSKujFV1M9m00zRYArUidCXzFI885xhV5TnecZEzCYqq5oMhclJ0jq3YNC9GrSvLVOHwYptRCsWl_gOxzyM7oLGjkBMxx3mczzyAwSYSeCHzYTFtmTclY7rKIYa0XQla3hcsetsQzXNUrkDpJF4diIRo7mho36pskAEMg6bFHEpQ-yzC6flZESx4ShXpTJGUcGubEc4nJEezl04nouOC2KOn4Tq5YxGxjcnETbgpniG8HJ67n5XEN30Bnpn7--iR7Dc73Sju5ve7T6s2CoHRqe_1KE6zWfyAJbil-lwkh8ac_0AwQ_wqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR%E2%80%90DCAE%3A+Manifold+regularization%E2%80%90based+deep+convolutional+autoencoder+for+unauthorized+broadcasting+identification&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Zheng%2C+Qinghe&rft.au=Zhao%2C+Penghui&rft.au=Zhang%2C+Deliang&rft.au=Wang%2C+Hongjun&rft.date=2021-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=36&rft.issue=12&rft.spage=7204&rft.epage=7238&rft_id=info:doi/10.1002%2Fint.22586&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon