MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification
Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are esse...
Saved in:
| Published in: | International journal of intelligent systems Vol. 36; no. 12; pp. 7204 - 7238 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
John Wiley & Sons, Inc
01.12.2021
|
| Subjects: | |
| ISSN: | 0884-8173, 1098-111X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are essentially the same as normal signals, it still remains challenging to automatically and effectively identify unauthorized broadcastings in complicated electromagnetic environments. In this paper, we introduce the manifold regularization‐based deep convolutional autoencoder (MR‐DCAE) model for unauthorized broadcasting identification. The specifically designed autoencoder (AE) is optimized by entropy‐stochastic gradient descent, then the reconstruction errors in the testing phase can be adopted to determine whether the received signals are authorized. To make this indicator more discriminative, we design a similarity estimator for manifolds spanning various dimensions as the penalty term to ensure their invariance during the back‐propagation of gradients. In theory, the consistency degree between discrete approximations in the manifold regularization (MR) and the continuous objects that motivate them can be guaranteed under an upper bound. To the best of our knowledge, this is the first time that MR has been successfully applied in AE to promote cross‐layer manifold invariance. Finally, MR‐DCAE is evaluated on the benchmark data set AUBI2020, and comparative experiments show that it achieves state‐of‐the‐art performance. To help understand the principle behind MR‐DCAE, convolution kernels and activation maps of test signals are both visualized. It can be observed that the expert knowledge hidden in normal signals can be extracted and emphasized, rather than simple overfitting. |
|---|---|
| AbstractList | Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are essentially the same as normal signals, it still remains challenging to automatically and effectively identify unauthorized broadcastings in complicated electromagnetic environments. In this paper, we introduce the manifold regularization‐based deep convolutional autoencoder (MR‐DCAE) model for unauthorized broadcasting identification. The specifically designed autoencoder (AE) is optimized by entropy‐stochastic gradient descent, then the reconstruction errors in the testing phase can be adopted to determine whether the received signals are authorized. To make this indicator more discriminative, we design a similarity estimator for manifolds spanning various dimensions as the penalty term to ensure their invariance during the back‐propagation of gradients. In theory, the consistency degree between discrete approximations in the manifold regularization (MR) and the continuous objects that motivate them can be guaranteed under an upper bound. To the best of our knowledge, this is the first time that MR has been successfully applied in AE to promote cross‐layer manifold invariance. Finally, MR‐DCAE is evaluated on the benchmark data set AUBI2020, and comparative experiments show that it achieves state‐of‐the‐art performance. To help understand the principle behind MR‐DCAE, convolution kernels and activation maps of test signals are both visualized. It can be observed that the expert knowledge hidden in normal signals can be extracted and emphasized, rather than simple overfitting. Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal broadcastings and further disrupt the management of civilian spectrum resources. Since they are easily hidden in the spectrum and are essentially the same as normal signals, it still remains challenging to automatically and effectively identify unauthorized broadcastings in complicated electromagnetic environments. In this paper, we introduce the manifold regularization‐based deep convolutional autoencoder (MR‐DCAE) model for unauthorized broadcasting identification. The specifically designed autoencoder (AE) is optimized by entropy‐stochastic gradient descent, then the reconstruction errors in the testing phase can be adopted to determine whether the received signals are authorized. To make this indicator more discriminative, we design a similarity estimator for manifolds spanning various dimensions as the penalty term to ensure their invariance during the back‐propagation of gradients. In theory, the consistency degree between discrete approximations in the manifold regularization (MR) and the continuous objects that motivate them can be guaranteed under an upper bound. To the best of our knowledge, this is the first time that MR has been successfully applied in AE to promote cross‐layer manifold invariance. Finally, MR‐DCAE is evaluated on the benchmark data set AUBI2020, and comparative experiments show that it achieves state‐of‐the‐art performance. To help understand the principle behind MR‐DCAE, convolution kernels and activation maps of test signals are both visualized. It can be observed that the expert knowledge hidden in normal signals can be extracted and emphasized, rather than simple overfitting. |
| Author | Zhao, Penghui Zhang, Deliang Wang, Hongjun Zheng, Qinghe |
| Author_xml | – sequence: 1 givenname: Qinghe orcidid: 0000-0003-1466-2542 surname: Zheng fullname: Zheng, Qinghe organization: Shandong University – sequence: 2 givenname: Penghui orcidid: 0000-0002-3353-9059 surname: Zhao fullname: Zhao, Penghui organization: Shandong University – sequence: 3 givenname: Deliang orcidid: 0000-0002-2099-0326 surname: Zhang fullname: Zhang, Deliang organization: Shandong University – sequence: 4 givenname: Hongjun orcidid: 0000-0003-0496-1573 surname: Wang fullname: Wang, Hongjun email: hjw@sdu.edu.cn organization: Shandong University |
| BookMark | eNp9kM1OAjEUhRuDiYAufIMmrlwMtJ2_jjuCqCSgiWHhbtJpO1gytth2MLjyEXxGn8QCrkw0XTS95zsnt6cHOtpoCcA5RgOMEBkq7QeEpDQ7Al2MChphjJ86oIsoTSKK8_gE9JxbIYRxnqRdsJk_fn18Xo9Hkys4Z1rVphHQymXbMKvemVdGB71iTgoopFxDbvTGNO1OYA1krTdScyOkhbWxsNVh8myCNfCVNUxw5rzSS6iE1F7Viu8zT8FxzRonz37uPljcTBbju2j2cDsdj2YRJ0WeRZVMEsoyRGKR8FhkKapillfhlVNUFDXNC1wzTiSrUhmncZJmicCpZCirCKFxH1wcYtfWvLbS-XJlWhsWd2XoKByEYxyoywPFrXHOyrpcW_XC7LbEqNy1WoZWy32rgR3-Yrny-y95y1Tzn-NNNXL7d3Q5vV8cHN8DiY8f |
| CitedBy_id | crossref_primary_10_1007_s10791_024_09463_4 crossref_primary_10_1155_int_4067323 crossref_primary_10_1016_j_engappai_2023_107619 crossref_primary_10_3390_rs15205071 crossref_primary_10_1016_j_asoc_2025_113675 crossref_primary_10_1007_s10103_024_04125_9 crossref_primary_10_3390_rs16214044 crossref_primary_10_3390_electronics13112213 crossref_primary_10_3233_JIFS_233006 crossref_primary_10_3390_s22031110 crossref_primary_10_1016_j_engappai_2025_110861 crossref_primary_10_1177_09592989251351608 crossref_primary_10_1007_s11063_022_10968_6 crossref_primary_10_1117_1_JEI_31_4_043025 crossref_primary_10_1007_s00034_024_02893_x crossref_primary_10_1177_00202940241270693 crossref_primary_10_3390_s24134256 crossref_primary_10_1177_00202940251332506 crossref_primary_10_2174_0118744478324910240722052320 crossref_primary_10_1016_j_measurement_2024_115548 crossref_primary_10_1371_journal_pone_0295801 crossref_primary_10_1007_s11517_025_03314_0 crossref_primary_10_1080_0954898X_2024_2435491 crossref_primary_10_2174_0126662558309335240809064620 crossref_primary_10_1002_ima_23178 crossref_primary_10_1016_j_engappai_2024_108138 crossref_primary_10_1109_ACCESS_2025_3584702 crossref_primary_10_1007_s00034_025_03009_9 crossref_primary_10_1016_j_cropro_2024_106867 crossref_primary_10_1117_1_JMI_9_5_054001 crossref_primary_10_1016_j_asoc_2025_112990 crossref_primary_10_3390_app15094771 crossref_primary_10_1016_j_measurement_2025_117192 crossref_primary_10_1371_journal_pone_0308460 crossref_primary_10_1016_j_asoc_2025_113159 crossref_primary_10_1177_00202940251314347 crossref_primary_10_1016_j_infoh_2024_12_001 crossref_primary_10_3390_s24216966 crossref_primary_10_1007_s00371_025_04066_6 crossref_primary_10_1007_s10846_024_02173_5 crossref_primary_10_1016_j_measurement_2024_115550 crossref_primary_10_1016_j_eswa_2025_128230 crossref_primary_10_3390_drones8090515 crossref_primary_10_1007_s11063_022_10806_9 crossref_primary_10_1038_s41598_024_56217_9 crossref_primary_10_1371_journal_pone_0302234 crossref_primary_10_1093_cercor_bhae498 crossref_primary_10_1007_s11571_023_10015_7 crossref_primary_10_1016_j_phycom_2025_102824 crossref_primary_10_3390_electronics13244915 crossref_primary_10_1016_j_eswa_2024_125817 crossref_primary_10_1016_j_eswa_2025_126904 crossref_primary_10_1016_j_measurement_2025_118009 crossref_primary_10_1007_s11227_025_06947_y crossref_primary_10_1016_j_ijtst_2025_04_002 crossref_primary_10_1007_s00607_024_01366_y crossref_primary_10_1016_j_eswa_2023_119858 crossref_primary_10_1007_s11042_024_18973_8 crossref_primary_10_1049_sil2_6606572 crossref_primary_10_1177_00202940251319708 crossref_primary_10_1007_s10796_024_10558_y crossref_primary_10_3390_ijgi13070256 crossref_primary_10_1016_j_compbiomed_2024_107919 crossref_primary_10_1007_s00500_023_09408_x crossref_primary_10_1038_s41598_025_87615_2 crossref_primary_10_1007_s11235_022_00934_x crossref_primary_10_1109_ACCESS_2025_3550942 crossref_primary_10_1109_JIOT_2024_3457837 crossref_primary_10_1109_ACCESS_2021_3124746 crossref_primary_10_1007_s00034_025_03258_8 crossref_primary_10_1002_ima_23157 crossref_primary_10_1016_j_engappai_2023_107567 crossref_primary_10_1109_TVT_2023_3296120 crossref_primary_10_1016_j_asoc_2025_112964 crossref_primary_10_1016_j_engappai_2023_107292 crossref_primary_10_1038_s41598_025_91910_3 crossref_primary_10_1007_s11063_022_10954_y crossref_primary_10_1016_j_measurement_2024_116222 crossref_primary_10_1016_j_smhl_2025_100594 crossref_primary_10_1007_s11227_023_05644_y crossref_primary_10_1016_j_eswa_2025_127285 crossref_primary_10_1007_s00034_025_03149_y crossref_primary_10_1038_s41598_025_86743_z crossref_primary_10_1117_1_JEI_31_3_030501 crossref_primary_10_1109_ACCESS_2025_3557609 crossref_primary_10_1049_gtd2_70068 crossref_primary_10_1007_s00034_025_03019_7 crossref_primary_10_3233_AIS_230626 crossref_primary_10_1016_j_knosys_2025_113967 crossref_primary_10_3390_drones8120739 crossref_primary_10_1007_s10489_023_04825_9 crossref_primary_10_1109_ACCESS_2023_3344465 crossref_primary_10_1038_s41598_024_76178_3 crossref_primary_10_1007_s11517_022_02674_1 crossref_primary_10_1016_j_knosys_2025_114301 crossref_primary_10_1155_2024_9343734 crossref_primary_10_3390_s24020320 crossref_primary_10_1007_s11063_022_10833_6 crossref_primary_10_3233_JAE_230099 crossref_primary_10_1016_j_neucom_2025_131501 crossref_primary_10_3390_drones7100596 crossref_primary_10_1007_s11227_023_05448_0 crossref_primary_10_1177_00202940241270646 crossref_primary_10_3390_drones8090429 crossref_primary_10_1007_s10664_024_10606_w crossref_primary_10_1007_s11071_024_10250_5 crossref_primary_10_1016_j_asoc_2025_113081 crossref_primary_10_1016_j_mlwa_2025_100697 crossref_primary_10_1142_S021812662550080X crossref_primary_10_1007_s00034_024_02981_y crossref_primary_10_1002_ima_70006 crossref_primary_10_1016_j_engappai_2024_108187 crossref_primary_10_1038_s41598_024_82562_w crossref_primary_10_1007_s00500_023_09481_2 crossref_primary_10_1016_j_engappai_2023_107273 crossref_primary_10_1017_aer_2024_118 crossref_primary_10_1038_s41598_025_94388_1 crossref_primary_10_1007_s00034_025_03148_z crossref_primary_10_1155_int_2597866 crossref_primary_10_1017_aer_2024_110 crossref_primary_10_1007_s11063_023_11283_4 crossref_primary_10_1109_ACCESS_2024_3435027 crossref_primary_10_3390_s24206692 crossref_primary_10_1007_s00354_025_00291_8 crossref_primary_10_1007_s11517_024_03072_5 crossref_primary_10_1016_j_compbiomed_2025_109653 crossref_primary_10_1049_sil2_2013549 crossref_primary_10_1007_s11517_023_02914_y crossref_primary_10_1177_00202940231223084 crossref_primary_10_1016_j_jocs_2025_102685 crossref_primary_10_1371_journal_pone_0293517 crossref_primary_10_1016_j_imu_2025_101646 crossref_primary_10_1109_ACCESS_2024_3439870 crossref_primary_10_1007_s11063_023_11174_8 crossref_primary_10_3390_drones6110324 crossref_primary_10_3390_drones8110678 crossref_primary_10_1016_j_engappai_2024_109861 crossref_primary_10_1016_j_engappai_2025_111770 crossref_primary_10_1016_j_epsr_2023_109241 crossref_primary_10_1016_j_measurement_2024_115221 crossref_primary_10_1016_j_swevo_2025_102069 crossref_primary_10_1080_03155986_2023_2235223 crossref_primary_10_1007_s11063_022_11060_9 crossref_primary_10_1007_s11517_023_02899_8 crossref_primary_10_1049_2024_6814362 crossref_primary_10_1109_ACCESS_2024_3411777 crossref_primary_10_1002_ima_23072 crossref_primary_10_1038_s41598_025_85467_4 crossref_primary_10_1016_j_biortech_2023_130073 crossref_primary_10_3390_drones8110663 crossref_primary_10_1007_s00034_024_02817_9 crossref_primary_10_3390_diagnostics15070849 crossref_primary_10_1016_j_asoc_2025_113188 crossref_primary_10_3390_app13127055 crossref_primary_10_3390_s22010204 crossref_primary_10_1007_s11277_024_10896_9 crossref_primary_10_3390_electronics13071391 crossref_primary_10_1016_j_eswa_2023_123008 crossref_primary_10_3390_healthcare10091606 crossref_primary_10_1117_1_JMI_9_4_044002 crossref_primary_10_1177_00202940221109778 crossref_primary_10_1016_j_infoh_2025_08_003 crossref_primary_10_1016_j_jastp_2025_106444 crossref_primary_10_1177_13835416251329225 |
| Cites_doi | 10.1007/s11004-021-09935-z 10.1002/int.21875 10.1109/TSP.2016.2645515 10.1002/int.22059 10.1109/ICCV.2015.177 10.1016/j.conengprac.2018.02.005 10.1109/TCCN.2019.2911524 10.1109/CVPR.2017.539 10.1109/ICIS.2018.8466411 10.1002/dac.3968 10.1109/TCYB.2016.2529299 10.1109/ICEICT.2016.7879730 10.1109/TPAMI.2017.2663423 10.1002/2017RS006409 10.1111/j.1468-0270.2010.02062.x 10.7551/mitpress/7503.003.0024 10.1049/iet-cta.2020.0557 10.1109/TSP.2018.2887406 10.1109/ACCESS.2020.2992044 10.1109/TIM.2020.3008988 10.1109/TSSA.2017.8272943 10.1016/j.patrec.2017.03.008 10.1109/ISESD.2016.7886740 10.1007/s00454-013-9557-2 10.3390/math7121170 10.1002/int.21924 10.1109/IMCCC.2018.00039 10.1029/2019RS006885 10.1109/CVPR.2016.319 10.1109/ACCESS.2019.2930627 10.1109/STSIVA.2019.8730244 10.1109/CompComm.2016.7925030 10.1109/TCCN.2021.3071149 10.1109/TCYB.2016.2536638 10.1139/juvs-2016-0011 10.1109/IWCMC48107.2020.9148485 10.1145/3097983.3098052 10.1016/j.neucom.2018.05.027 10.1109/TPAMI.2018.2860995 10.1007/s11071-021-06208-6 10.1016/j.ymssp.2020.106683 10.1038/s41598-019-45333-6 10.1002/rnc.5131 10.1109/TNNLS.2015.2496947 10.1109/MIM.2015.7066682 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/int.22586 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| EndPage | 7238 |
| ExternalDocumentID | 10_1002_int_22586 INT22586 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province (CN) funderid: ZR2019ZD01 – fundername: National Key R&D Program of China funderid: 2018YFF01014304; 2012YQ20022407 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFZJQ AGQPQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY AIQQE CITATION O8X PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2976-be448a6023d4c3d650b3a7b3d478099f8791fac2eab5e3534564d15ea06b2283 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686266100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-8173 |
| IngestDate | Fri Jul 25 12:09:27 EDT 2025 Sat Nov 29 04:01:53 EST 2025 Tue Nov 18 21:55:11 EST 2025 Wed Jun 18 06:51:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2976-be448a6023d4c3d650b3a7b3d478099f8791fac2eab5e3534564d15ea06b2283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0496-1573 0000-0002-2099-0326 0000-0003-1466-2542 0000-0002-3353-9059 |
| PQID | 2585850131 |
| PQPubID | 1026350 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2585850131 crossref_primary_10_1002_int_22586 crossref_citationtrail_10_1002_int_22586 wiley_primary_10_1002_int_22586_INT22586 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 5 2019; 7 2019; 9 2015; 18 2019; 5 2020; 140 2017; 47 2019; 32 2021; 103 2017; 65 2019; 34 2011; 31 2006; 7 2007 2005 2020; 100 2018; 40 2020; 55 2018; 66 2021; 14 2020; 8 2017; 52 2018; 8 2014; 5 2017; 90 2015; 27 2020; 30 2019; 41 2021 2020 2017; 32 2018; 310 2019; 67 2019 2014; 15 2018 2017 2020; 69 2016 2018; 74 2015 2013 2018; 33 2016; 47 2018; 16 2010; 51 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_2_1 Belkin M (e_1_2_11_54_1) 2006; 7 Zhang Y (e_1_2_11_7_1) 2014; 5 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 Laurens V (e_1_2_11_52_1) 2014; 15 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_12_1 Zhao C (e_1_2_11_25_1) 2018; 8 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Li J (e_1_2_11_33_1) 2020; 100 Sulam J (e_1_2_11_48_1) 2018; 66 e_1_2_11_21_1 e_1_2_11_44_1 Callegari C (e_1_2_11_59_1) 2018; 16 e_1_2_11_46_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – volume: 30 start-page: 6683 year: 2020 end-page: 6700 article-title: State and parameter joint estimation of linear stochastic systems in presence of faults and non‐Gaussian noises publication-title: Int J Robust Nonlinear Control – volume: 47 start-page: 1017 issue: 4 year: 2017 end-page: 1027 article-title: Stacked convolutional denoising auto‐encoders for feature representation publication-title: IEEE Trans Cybern. – volume: 65 start-page: 1580 issue: 6 year: 2017 end-page: 1594 article-title: Randomized robust subspace recovery and outlier detection for high dimensional data matrices publication-title: IEEE Trans Signal Process – volume: 69 start-page: 5981 issue: 6 year: 2020 end-page: 5983 article-title: Unauthorized broadcasting identification: a deep LSTM recurrent learning approach publication-title: IEEE Trans Instrum Meas – volume: 7 start-page: 2399 issue: 1 year: 2006 end-page: 2434 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – year: 2005 – volume: 32 issue: 11 year: 2019 article-title: Fast detection and DOA estimation of the unknown wideband signal sources publication-title: Int J Commun Syst – year: 2021 article-title: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder publication-title: Math Geosci – volume: 140 year: 2020 article-title: A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks publication-title: Mech Syst Signal Proc – year: 2021 article-title: Shared spectrum monitoring using deep learning publication-title: IEEE Trans Cogn Commun Netw. – volume: 14 start-page: 3344 issue: 19 year: 2021 end-page: 3350 article-title: Robust point‐to‐point iterative learning control with trial‐varying initial conditions publication-title: IET Contr Theory Appl – year: 2007 – volume: 90 start-page: 8 year: 2017 end-page: 14 article-title: K‐means clustering with outlier removal publication-title: Pattern Recogn Lett. – volume: 7 start-page: 111257 year: 2019 end-page: 111270 article-title: Hierarchical edge computing: a novel multi‐source multi‐dimensional data anomaly detection scheme for industrial internet of things publication-title: IEEE Access – volume: 31 start-page: 115 issue: 1 year: 2011 end-page: 117 article-title: Broadcasting licence fee settlements in the UK and Germany publication-title: Econ Aff. – volume: 32 start-page: 881 issue: 9 year: 2017 end-page: 899 article-title: Exponentially weighted ellipsoidal model for anomaly detection publication-title: Int J Intell Syst – volume: 18 start-page: 33 issue: 2 year: 2015 end-page: 37 article-title: A cloud‐based approach to spectrum monitoring publication-title: IEEE Instrum Meas Mag – year: 2016 – volume: 27 start-page: 1997 issue: 10 year: 2015 end-page: 2008 article-title: Why deep learning works: a manifold disentanglement perspective publication-title: IEEE Trans Neural Netw Learn Syst. – year: 2018 – volume: 16 start-page: 9 issue: 1 year: 2018 end-page: 16 article-title: Improving stability of PCA‐based network anomaly detection by means of kernel‐PCA publication-title: Int J Comput Sci Eng – volume: 55 start-page: 1 issue: 4 year: 2020 end-page: 6 article-title: FM broadcast monitoring using artificial intelligence publication-title: Radio Sci – volume: 5 start-page: 50 issue: 1 year: 2014 end-page: 54 article-title: Research on interconnect technology for radio monitoring stations based on RMTP protocol publication-title: Mod Electron Tech. – volume: 33 start-page: 1858 issue: 9 year: 2018 end-page: 1868 article-title: Outlier detection using linguistically quantified statements publication-title: Int J Intell Syst – volume: 8 start-page: 83765 year: 2020 end-page: 83781 article-title: Long short‐term memory and fuzzy logic for anomaly detection and mitigation in software‐defined network environment publication-title: IEEE Access – volume: 103 start-page: 1733 year: 2021 end-page: 1755 article-title: Input‐to‐state stability of impulsive reaction–diffusion neural networks with infinite distributed delays publication-title: Nonlinear Dyn. – volume: 52 start-page: 1261 issue: 10 year: 2017 end-page: 1267 article-title: State of the art and challenges of radio spectrum monitoring in China publication-title: Radio Sci – volume: 34 start-page: 415 issue: 3 year: 2019 end-page: 438 article-title: Detection of outlier information by the use of linguistic summaries based on classic and interval‐valued fuzzy sets publication-title: Int J Intell Syst. – volume: 7 start-page: 1 issue: 12 year: 2019 end-page: 21 article-title: Enhancement of deep learning in image classification performance using Xception with the Swish activation function for colorectal polyp preliminary screening publication-title: Mathematics – volume: 9 start-page: 9051 issue: 1 year: 2019 article-title: EEG decoding reveals the strength and temporal dynamics of goal‐relevant representations publication-title: Sci Rep – volume: 41 start-page: 2584 issue: 11 year: 2019 end-page: 2598 article-title: Efficient training for positive unlabeled learning publication-title: IEEE Trans Pattern Anal – volume: 15 start-page: 3221 issue: 1 year: 2014 end-page: 3245 article-title: Accelerating t‐SNE using tree‐based algorithms publication-title: J Mach Learn Res – volume: 40 start-page: 163 issue: 1 year: 2018 end-page: 178 article-title: Multi‐dimensional sparse models publication-title: IEEE Trans Pattern Anal – volume: 67 start-page: 993 issue: 4 year: 2019 end-page: 1005 article-title: Sequential outlier detection based on incremental decision trees publication-title: IEEE Trans Signal Process – volume: 310 start-page: 223 year: 2018 end-page: 235 article-title: Ramp loss one‐class support vector machine: a robust and effective approach to anomaly detection problems publication-title: Neurocomputing – volume: 66 start-page: 4090 issue: 15 year: 2018 end-page: 4104 article-title: Multi‐layer convolutional sparse modeling: pursuit and dictionary learning publication-title: IEEE Trans Signal Process – volume: 5 start-page: 1 issue: 1 year: 2017 end-page: 12 article-title: Spectrum monitoring with unmanned aerial vehicle carrying a receiver based on the core technology of cognitive radio—a software‐defined radio design publication-title: J Unmanned Veh Syst – year: 2020 – volume: 100 issue: 4 year: 2020 article-title: Clustering‐based anomaly detection in multivariate time series data publication-title: Appl Soft Comput. – volume: 47 start-page: 830 issue: 4 year: 2016 end-page: 840 article-title: Manifold partition discriminant analysis publication-title: IEEE Trans Cybern. – year: 2017 – year: 2019 – volume: 8 start-page: 1 issue: 12 year: 2018 end-page: 15 article-title: Application of auxiliary classifier Wasserstein generative adversarial networks in wireless signal classification of illegal unmanned aerial vehicles publication-title: Appl Sci—Basel. – volume: 5 start-page: 637 issue: 3 year: 2019 end-page: 647 article-title: Unsupervised wireless spectrum anomaly detection with interpretable features publication-title: IEEE Trans Cogn Commun. – year: 2015 – volume: 51 start-page: 221 issue: 1 year: 2010 end-page: 267 article-title: Manifold reconstruction using tangential Delaunay complexes publication-title: Discrete Comput Geom – volume: 74 start-page: 1 year: 2018 end-page: 12 article-title: An incipient fault detection approach via detrending and denoising publication-title: Control Eng Pract – year: 2013 – ident: e_1_2_11_32_1 doi: 10.1007/s11004-021-09935-z – ident: e_1_2_11_26_1 doi: 10.1002/int.21875 – ident: e_1_2_11_41_1 – volume: 16 start-page: 9 issue: 1 year: 2018 ident: e_1_2_11_59_1 article-title: Improving stability of PCA‐based network anomaly detection by means of kernel‐PCA publication-title: Int J Comput Sci Eng – ident: e_1_2_11_21_1 doi: 10.1109/TSP.2016.2645515 – volume: 5 start-page: 50 issue: 1 year: 2014 ident: e_1_2_11_7_1 article-title: Research on interconnect technology for radio monitoring stations based on RMTP protocol publication-title: Mod Electron Tech. – ident: e_1_2_11_35_1 doi: 10.1002/int.22059 – ident: e_1_2_11_38_1 doi: 10.1109/ICCV.2015.177 – ident: e_1_2_11_31_1 doi: 10.1016/j.conengprac.2018.02.005 – ident: e_1_2_11_45_1 doi: 10.1109/TCCN.2019.2911524 – ident: e_1_2_11_57_1 doi: 10.1109/CVPR.2017.539 – ident: e_1_2_11_15_1 doi: 10.1109/ICIS.2018.8466411 – ident: e_1_2_11_17_1 doi: 10.1002/dac.3968 – ident: e_1_2_11_55_1 doi: 10.1109/TCYB.2016.2529299 – ident: e_1_2_11_13_1 doi: 10.1109/ICEICT.2016.7879730 – ident: e_1_2_11_39_1 doi: 10.1109/TPAMI.2017.2663423 – ident: e_1_2_11_2_1 doi: 10.1002/2017RS006409 – ident: e_1_2_11_4_1 doi: 10.1111/j.1468-0270.2010.02062.x – ident: e_1_2_11_53_1 doi: 10.7551/mitpress/7503.003.0024 – ident: e_1_2_11_30_1 doi: 10.1049/iet-cta.2020.0557 – ident: e_1_2_11_49_1 doi: 10.1109/TSP.2018.2887406 – ident: e_1_2_11_50_1 doi: 10.1109/ACCESS.2020.2992044 – ident: e_1_2_11_24_1 doi: 10.1109/TIM.2020.3008988 – ident: e_1_2_11_22_1 doi: 10.1109/TSSA.2017.8272943 – volume: 66 start-page: 4090 issue: 15 year: 2018 ident: e_1_2_11_48_1 article-title: Multi‐layer convolutional sparse modeling: pursuit and dictionary learning publication-title: IEEE Trans Signal Process – ident: e_1_2_11_36_1 doi: 10.1016/j.patrec.2017.03.008 – ident: e_1_2_11_9_1 doi: 10.1109/ISESD.2016.7886740 – ident: e_1_2_11_43_1 doi: 10.1007/s00454-013-9557-2 – ident: e_1_2_11_51_1 doi: 10.3390/math7121170 – ident: e_1_2_11_27_1 doi: 10.1002/int.21924 – ident: e_1_2_11_58_1 – ident: e_1_2_11_23_1 doi: 10.1109/IMCCC.2018.00039 – ident: e_1_2_11_5_1 doi: 10.1029/2019RS006885 – ident: e_1_2_11_44_1 – ident: e_1_2_11_60_1 doi: 10.1109/CVPR.2016.319 – ident: e_1_2_11_37_1 doi: 10.1109/ACCESS.2019.2930627 – volume: 7 start-page: 2399 issue: 1 year: 2006 ident: e_1_2_11_54_1 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: e_1_2_11_52_1 article-title: Accelerating t‐SNE using tree‐based algorithms publication-title: J Mach Learn Res – ident: e_1_2_11_14_1 doi: 10.1109/STSIVA.2019.8730244 – ident: e_1_2_11_19_1 doi: 10.1109/CompComm.2016.7925030 – ident: e_1_2_11_12_1 – ident: e_1_2_11_3_1 doi: 10.1109/TCCN.2021.3071149 – ident: e_1_2_11_42_1 doi: 10.1109/TCYB.2016.2536638 – ident: e_1_2_11_8_1 – ident: e_1_2_11_6_1 doi: 10.1139/juvs-2016-0011 – ident: e_1_2_11_16_1 doi: 10.1109/IWCMC48107.2020.9148485 – ident: e_1_2_11_40_1 doi: 10.1145/3097983.3098052 – ident: e_1_2_11_46_1 doi: 10.1016/j.neucom.2018.05.027 – ident: e_1_2_11_47_1 doi: 10.1109/TPAMI.2018.2860995 – ident: e_1_2_11_20_1 – volume: 100 start-page: 106919 issue: 4 year: 2020 ident: e_1_2_11_33_1 article-title: Clustering‐based anomaly detection in multivariate time series data publication-title: Appl Soft Comput. – volume: 8 start-page: 1 issue: 12 year: 2018 ident: e_1_2_11_25_1 article-title: Application of auxiliary classifier Wasserstein generative adversarial networks in wireless signal classification of illegal unmanned aerial vehicles publication-title: Appl Sci—Basel. – ident: e_1_2_11_29_1 doi: 10.1007/s11071-021-06208-6 – ident: e_1_2_11_34_1 – ident: e_1_2_11_11_1 doi: 10.1016/j.ymssp.2020.106683 – ident: e_1_2_11_10_1 doi: 10.1038/s41598-019-45333-6 – ident: e_1_2_11_28_1 doi: 10.1002/rnc.5131 – ident: e_1_2_11_56_1 doi: 10.1109/TNNLS.2015.2496947 – ident: e_1_2_11_18_1 doi: 10.1109/MIM.2015.7066682 |
| SSID | ssj0011745 |
| Score | 2.6494017 |
| Snippet | Nowadays, radio broadcasting plays an important role in people's daily life. However, unauthorized broadcasting stations may seriously interfere with normal... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7204 |
| SubjectTerms | Back propagation deep convolutional autoencoder Intelligent systems Invariance manifold consistency manifold regularization Manifolds positive‐unlabeled problem Radio broadcasting Regularization unauthorized broadcasting identification Upper bounds |
| Title | MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22586 https://www.proquest.com/docview/2585850131 |
| Volume | 36 |
| WOSCitedRecordID | wos000686266100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609eDFt1hfLOLBS7TdbF56KmpRsEWkgrewm91goSQlfZz9Cf5Gf4mzm02roCBILkl2dhJ2ZzJfktlvAE6F78tE-cLxU8Ec5nHqRCxkTsAiKlOmQz43xSaCXi98eYkel-CqWgtT8kPMP7hpzzDPa-3gXIwvFqShg2xyjsYY-stQp2i3Xg3qN0-d54f5TwQE214JIpkTtgK3IhZq0ot55-_haIExvyJVE2o66_-6yQ1YswiTtEuT2IQllW3BelW9gVhn3oZZ9-nj7f3mun17Sbo8G6T5UJLClKYv7OJMbNdRThKp1IjoBHVrqKifTye5JsGUqBOBL5lmeOY1x64oL4qcy4SPdU41GUibkWR07kC_c9u_vnNsFQYnoYhVHKHwDY77GNslS1yJiE64PBB4FIQIL9MwiFopT6jiwlOu52p-GtnyFG_6QnPr7EItyzO1B6SZ-jRViNC8yNU_VHkoQ5VELYaolCPyacBZNRdxYhnKdaGMYVxyK9MYhzM2w9mAk7noqKTl-EnosJrQ2HrmOMYG3DTLEF7OTN3vCuL7Xt_s7P9d9ABWqU57MRkvh1CbFFN1BCvJbDIYF8fWRD8B8qHtPw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPTFecXp1CA--FK3telNfBm6obgNkQm-laRJcSCtdJdnf4K_0V_iSZpOBQVB-tI2J6clOen5mpx8B-CEe56IpcctL-HUoi6zrZAG1PJpaIuEKpfPdLIJfzAIHh_DuwW4KPfCFPwQ8wk3NTL091oNcDUh3fhkDR2lkzO0xsBbhCWKZoT2vXR1333ozVcREG27BYqkVtDynZJZqGk35pW_-6NPkPkVqmpf063-7y3XYc1gTNIujGIDFmS6CdUyfwMxw3kLZv3799e3q8t255z0WTpKsmdBcp2cPjfbM7Fc-TlBhJQvRIWoG1NF_Ww6yRQNpkCdCH3JNMU7TxlWRXmeZ0zEbKyiqslImJgkrXMbht3O8PLaMnkYrNhGtGJxif9wzEPvLmjsCMR03GE-xys_QICZBH7YSlhsS8Zd6biOYqgRLVeypscVu84OVNIslbtAmolnJxIxmhs6akmVBSKQcdiiiEsZYp8anJadEcWGo1ylyniOCnZlO8LmjHRz1uB4LvpSEHP8JFQvezQyY3McYQEeimcIH6f77ncF0c1gqE_2_i56BCvXw34v6t0Mbvdh1VZBMDr-pQ6VST6VB7AczyajcX5o7PUDHrfxLw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFfFifeKj6iIevETbZPMSL6W1KGopUsFb2M1usFCSkrae_Qn-Rn-Js5tNVVAQJJckOzsJuzOZL8nsNwAn3PNELD1ueQmnFnWZbYU0oJZPQ1skVIV8potN-L1e8PQU9itwWa6FKfgh5h_clGfo57VycDkWyfkna-gwnZ6hNQbeAixSVUSmCoudh-7j3fwvAqJtt0CR1AqavlMyCzXs83nn7_HoE2R-hao61nRr_7vLNVg1GJO0CqNYh4pMN6BW1m8gxp034eX-4f31rdNuXV2Qe5YOk2wkSK6L0-dmeSa2qzgniJByTFSKujFV1M9m00zRYArUidCXzFI885xhV5TnecZEzCYqq5oMhclJ0jq3YNC9GrSvLVOHwYptRCsWl_gOxzyM7oLGjkBMxx3mczzyAwSYSeCHzYTFtmTclY7rKIYa0XQla3hcsetsQzXNUrkDpJF4diIRo7mho36pskAEMg6bFHEpQ-yzC6flZESx4ShXpTJGUcGubEc4nJEezl04nouOC2KOn4Tq5YxGxjcnETbgpniG8HJ67n5XEN30Bnpn7--iR7Dc73Sju5ve7T6s2CoHRqe_1KE6zWfyAJbil-lwkh8ac_0AwQ_wqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR%E2%80%90DCAE%3A+Manifold+regularization%E2%80%90based+deep+convolutional+autoencoder+for+unauthorized+broadcasting+identification&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Zheng%2C+Qinghe&rft.au=Zhao%2C+Penghui&rft.au=Zhang%2C+Deliang&rft.au=Wang%2C+Hongjun&rft.date=2021-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=36&rft.issue=12&rft.spage=7204&rft.epage=7238&rft_id=info:doi/10.1002%2Fint.22586&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |