HidingGAN: High Capacity Information Hiding with Generative Adversarial Network

Image steganography is the technique of hiding secret information within images. It is an important research direction in the security field. Benefitting from the rapid development of deep neural networks, many steganographic algorithms based on deep learning have been proposed. However, two problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 38; H. 7; S. 393 - 401
Hauptverfasser: Wang, Zihan, Gao, Neng, Wang, Xin, Xiang, Ji, Zha, Daren, Li, Linghui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.10.2019
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Image steganography is the technique of hiding secret information within images. It is an important research direction in the security field. Benefitting from the rapid development of deep neural networks, many steganographic algorithms based on deep learning have been proposed. However, two problems remain to be solved in which the most existing methods are limited by small image size and information capacity. In this paper, to address these problems, we propose a high capacity image steganographic model named HidingGAN. The proposed model utilizes a new secret information preprocessing method and Inception‐ResNet block to promote better integration of secret information and image features. Meanwhile, we introduce generative adversarial networks and perceptual loss to maintain the same statistical characteristics of cover images and stego images in the high‐dimensional feature space, thereby improving the undetectability. Through these manners, our model reaches higher imperceptibility, security, and capacity. Experiment results show that our HidingGAN achieves the capacity of 4 bits‐per‐pixel (bpp) at 256 × 256 pixels, improving over the previous best result of 0.4 bpp at 32 × 32 pixels.
AbstractList Image steganography is the technique of hiding secret information within images. It is an important research direction in the security field. Benefitting from the rapid development of deep neural networks, many steganographic algorithms based on deep learning have been proposed. However, two problems remain to be solved in which the most existing methods are limited by small image size and information capacity. In this paper, to address these problems, we propose a high capacity image steganographic model named HidingGAN. The proposed model utilizes a new secret information preprocessing method and Inception‐ResNet block to promote better integration of secret information and image features. Meanwhile, we introduce generative adversarial networks and perceptual loss to maintain the same statistical characteristics of cover images and stego images in the high‐dimensional feature space, thereby improving the undetectability. Through these manners, our model reaches higher imperceptibility, security, and capacity. Experiment results show that our HidingGAN achieves the capacity of 4 bits‐per‐pixel (bpp) at 256 × 256 pixels, improving over the previous best result of 0.4 bpp at 32 × 32 pixels.
Author Gao, Neng
Zha, Daren
Wang, Xin
Li, Linghui
Wang, Zihan
Xiang, Ji
Author_xml – sequence: 1
  givenname: Zihan
  surname: Wang
  fullname: Wang, Zihan
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Neng
  surname: Gao
  fullname: Gao, Neng
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  email: wangxin@iie.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Ji
  surname: Xiang
  fullname: Xiang, Ji
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Daren
  surname: Zha
  fullname: Zha, Daren
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Linghui
  surname: Li
  fullname: Li, Linghui
  organization: Chinese Academy of Sciences
BookMark eNp9kDFvwjAQha2KSgXaof_AUqcOARvHdtwNRSUgIVja2bIdB0xDQp0A4t_XJZ0qtbfc6fS9d7o3AL2qriwAjxiNcKix2RQjTJKY3YA-jhmPEkZFD_QRDjNHlN6BQdPsEEIxZ7QP1nOXu2qTTVcvcO42W5iqgzKuvcBFVdR-r1pXV7CD4Nm1W5jZyvqwPlk4zU_WN8o7VcKVbc-1_7gHt4UqG_vw04fgffb6ls6j5TpbpNNlZCaCs0hro7G2XJPCKK1srM2EaWQJs1QpajjlmOSEmlwozjgtLKKGFYIIkeQiMWQInjrfg68_j7Zp5a4--iqclBOCY5zEscCBeu4o4-um8baQB-_2yl8kRvI7Lxnykte8Ajv-xYYYru-3XrnyP8XZlfbyt7VMs1mn-AINE35u
CitedBy_id crossref_primary_10_1016_j_asoc_2021_108170
crossref_primary_10_1145_3414685_3417764
crossref_primary_10_1109_TDSC_2021_3132987
crossref_primary_10_1155_2022_4345494
crossref_primary_10_1049_ipr2_12329
crossref_primary_10_1155_2022_5425674
crossref_primary_10_1016_j_measen_2022_100452
crossref_primary_10_1109_TVCG_2022_3155808
crossref_primary_10_1109_TDSC_2024_3363692
crossref_primary_10_3390_math10162934
crossref_primary_10_1049_cit2_70038
crossref_primary_10_7717_peerj_cs_2140
Cites_doi 10.1007/978-3-319-10602-1_48
10.23915/distill.00003
10.18653/v1/P17-3017
10.1109/TIFS.2017.2710946
10.1109/WIFS.2012.6412655
10.1109/CVPR.2015.7298594
10.1007/978-3-030-04179-3_22
10.1109/CVPR.2016.90
10.1109/ICCV.2015.425
10.1016/j.engappai.2015.12.013
10.1186/1687-417X-2014-1
10.1609/aaai.v31i1.11231
10.1109/LSP.2017.2745572
10.1007/978-3-319-46475-6_43
10.1007/978-3-319-77380-3_51
10.1007/978-3-642-16435-4_13
ContentType Journal Article
Copyright 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2019 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2019 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13846
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 401
ExternalDocumentID 10_1111_cgf_13846
CGF13846
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2976-bbcb1be7b3fcabae4bc26b0e36e5aa5c75713d35cd9a7675fe05c6f93998d98c3
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496351100036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 30 04:36:21 EST 2025
Sat Nov 29 03:41:17 EST 2025
Tue Nov 18 22:04:15 EST 2025
Wed Jan 22 16:38:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-bbcb1be7b3fcabae4bc26b0e36e5aa5c75713d35cd9a7675fe05c6f93998d98c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2314184491
PQPubID 30877
PageCount 9
ParticipantIDs proquest_journals_2314184491
crossref_primary_10_1111_cgf_13846
crossref_citationtrail_10_1111_cgf_13846
wiley_primary_10_1111_cgf_13846_CGF13846
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018
2017
2016
2016; 50
2014; 2014
2015
2014
2014; 3
2012
2010
2017; 24
2017; 12
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Goodfellow I. J. (e_1_2_7_7_2) 2014; 3
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
References_xml – start-page: 5769
  year: 2017
  end-page: 5779
– start-page: 100
  year: 2017
  end-page: 106
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 1
  year: 2015
  end-page: 9
– start-page: 534
  year: 2017
  end-page: 544
– start-page: 694
  year: 2016
  end-page: 711
– start-page: 657
  year: 2018
  end-page: 672
– volume: 3
  start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 161
  year: 2010
  end-page: 177
– volume: 24
  start-page: 1547
  issue: 10
  year: 2017
  end-page: 1551
  article-title: Automatic steganographic distortion learning using a generative adversarial network
  publication-title: IEEE Signal Processing Letters
– start-page: 740
  year: 2014
  end-page: 755
– start-page: 2066
  year: 2017
  end-page: 2076
– year: 2017
– year: 2016
– start-page: 1954
  year: 2017
  end-page: 1963
– year: 2018
– volume: 12
  start-page: 2545
  issue: 11
  year: 2017
  end-page: 2557
  article-title: Deep learning hierarchical representations for image steganalysis
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 253
  year: 2018
  end-page: 264
– year: 2014
– start-page: 1
  year: 2018
  end-page: 17
– volume: 2014
  start-page: 1
  issue: 1
  year: 2014
  article-title: Universal distortion function for steganography in an arbitrary domain
  publication-title: EURASIP Journal on Information Security
– year: 2015
– volume: 50
  start-page: 45
  year: 2016
  end-page: 59
  article-title: Unsupervised steganalysis based on artificial training sets
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 234
  year: 2012
  end-page: 239
– ident: e_1_2_7_2_2
– ident: e_1_2_7_17_2
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_7_21_2
– ident: e_1_2_7_19_2
  doi: 10.23915/distill.00003
– ident: e_1_2_7_5_2
  doi: 10.18653/v1/P17-3017
– ident: e_1_2_7_30_2
– ident: e_1_2_7_29_2
  doi: 10.1109/TIFS.2017.2710946
– ident: e_1_2_7_27_2
– ident: e_1_2_7_8_2
– ident: e_1_2_7_18_2
– ident: e_1_2_7_9_2
  doi: 10.1109/WIFS.2012.6412655
– ident: e_1_2_7_6_2
– ident: e_1_2_7_24_2
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_7_12_2
– ident: e_1_2_7_31_2
– ident: e_1_2_7_28_2
  doi: 10.1007/978-3-030-04179-3_22
– ident: e_1_2_7_11_2
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_14_2
– ident: e_1_2_7_16_2
  doi: 10.1109/ICCV.2015.425
– ident: e_1_2_7_15_2
  doi: 10.1016/j.engappai.2015.12.013
– ident: e_1_2_7_3_2
– ident: e_1_2_7_10_2
  doi: 10.1186/1687-417X-2014-1
– ident: e_1_2_7_23_2
  doi: 10.1609/aaai.v31i1.11231
– ident: e_1_2_7_25_2
– ident: e_1_2_7_26_2
  doi: 10.1109/LSP.2017.2745572
– ident: e_1_2_7_13_2
  doi: 10.1007/978-3-319-46475-6_43
– volume: 3
  start-page: 2672
  year: 2014
  ident: e_1_2_7_7_2
  article-title: Generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_7_22_2
  doi: 10.1007/978-3-319-77380-3_51
– ident: e_1_2_7_4_2
– ident: e_1_2_7_20_2
  doi: 10.1007/978-3-642-16435-4_13
SSID ssj0004765
Score 2.4014106
Snippet Image steganography is the technique of hiding secret information within images. It is an important research direction in the security field. Benefitting from...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 393
SubjectTerms Algorithms
Artificial neural networks
CCS Concepts
Computing methodologies → Computer vision tasks
Generative adversarial networks
Machine learning
Pixels
Security and privacy → Privacy protections
Steganography
Title HidingGAN: High Capacity Information Hiding with Generative Adversarial Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13846
https://www.proquest.com/docview/2314184491
Volume 38
WOSCitedRecordID wos000496351100036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eIk0yW6S1VOppj1IFLHQW8hONlKQKk319zubR1tBQfAQyGHyYHdn5_uWmW8ALuzUCQIhuZUh9ywuU20RCuEWeVKG6KZCq6BoNuFHUTAey8cG3NS1MKU-xOLAzXhGsV8bB09UvuLk-JJd2S6FzzVomaIqYl6t26dwdL8si_Q9UUt7G9GYSljIJPIsHv4ejpYYcxWpFqEm3P7XT-7AVoUwWa9cErvQ0NM92FzRHdyHh-HEhKxBL7pmJtGD9SlkIuFxVlUnmdlipREzJ7WsVKc2WyMrWjjniVm4LCqTyA9gFN4994dW1VnBQofwh6UUKltpX7kZJirRXKHjqa52PS2SRKAviLumrsBUJkbtJdNdgV4mCc0EqQzQPYTm9G2qj4ChtB1be4IulxM7IUZNDE8InUkttBe04bIe4Bgr2XHT_eI1rukHjVFcjFEbzhem76XWxk9GnXqW4srd8phAKieqyqVNnyvm4_cXxP1BWNwc_930BDYIKMkyia8DzfnsQ5_COn7OJ_nsrFp3X3jV2v0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFdSDb7FadREPXiJNspvsipdSTSvWKNJCbyG72UhBqrTV3-9sHm0FBcFDIIfJg9mZnW-G2W8Azu3E4ZwJaqWKehYVibYQhVALPSlVyk2YljwbNuGHIR8MxFMFrsuzMDk_xKzgZjwj26-Ng5uC9IKXq5f00nYxfi7BMvVcn1dh-eY56Hfn5yJ9j5Xc3oY1pmAWMp08s4e_x6M5yFyEqlmsCTb_95dbsFFgTNLMjWIbKnq0A-sLzIO78NgZmqDVboZXxLR6kBYGTYWInBTnk8x6kVyImFotyfmpzeZIsiHOk9iYLgnzNvI96Ae3vVbHKmYrWMpBBGJJqaQttS_dVMUy1lQqx5MN7XqaxTFTPsPsNXGZSkRs-F5S3WDKSwXiGZ4Irtx9qI7eRvoAiBK2Y2uP4eVSzE8wp8YcjzGdCs20x2twUWo4UgXxuJl_8RqVCQjqKMp0VIOzmeh7zrbxk1C9XKaocLhJhDCVYrJKhY2fyxbk9xdErXaQ3Rz-XfQUVju9h27UvQvvj2ANYZPIW_rqUJ2OP_QxrKjP6XAyPimM8AuehN7t
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32K16iIevESaZjfJipfSmlYssYiF3kJ2sysFqaWt_n5n82grKAgeAjlMHszs7HyzzHwDcGUnDd9nnFpaUteiPFEWohBqoSdpKZ2EKeGnwya8MPSHQ94vwV3RC5PxQywO3IxnpPu1cXA1SfSKl8tXfWM7GD_XoEIZZ7QMlfZzMOgt-yI9lxXc3oY1JmcWMpU8i4e_x6MlyFyFqmmsCXb-95e7sJ1jTNLMFsUelNR4H7ZWmAcP4Kk7MkGr0wxviSn1IC0MmhIROcn7k4y9SCZEzFktyfipzeZI0iHOs9gsXRJmZeSHMAjuX1pdK5-tYMkGIhBLCClsoTzhaBmLWFEhG66oK8dVLI6Z9Bhmr4nDZMJjw_eiVZ1JV3PEM37CfekcQXn8PlbHQCS3G7ZyGV4O2sHk1JjjMaY0V0y5fhWuCw1HMiceN_Mv3qIiAUEdRamOqnC5EJ1kbBs_CdUKM0W5w80ihKkUk1XKbfxcapDfXxC1OkF6c_J30QvY6LeDqPcQPp7CJqImnlX01aA8n36oM1iXn_PRbHqer8EvWhXeaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HidingGAN%3A+High+Capacity+Information+Hiding+with+Generative+Adversarial+Network&rft.jtitle=Computer+graphics+forum&rft.au=Wang%2C+Zihan&rft.au=Gao%2C+Neng&rft.au=Wang%2C+Xin&rft.au=Xiang%2C+Ji&rft.date=2019-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=7&rft.spage=393&rft.epage=401&rft_id=info:doi/10.1111%2Fcgf.13846&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon