Insight into three‐dimensional flow of three different dynamics of nanofluids subject to thermal radiation: The case of water–cobalt ferrite, water–manganese–zinc ferrite, and water–magnetite
Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNF...
Saved in:
| Published in: | Heat transfer (Hoboken, N.J. Print) Vol. 51; no. 5; pp. 4434 - 4450 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.07.2022
|
| Subjects: | |
| ISSN: | 2688-4534, 2688-4542 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNFs (Fe3O4–water, CoFe2O4–water, Mn–ZnFe2O4–water) over a shrinking surface with suction and thermal radiation effects. The single‐phase nanofluid model is reduced into a system of ordinary differential equations by applying the similarity transformation. The results are then, obtained using the bvp4c solver in the Matlab software. The results reveal that for the shrinking case, the Mn–ZnFe2O4–water nanofluid has the maximum thermal rate followed by CoFe2O4–water and Fe3O4–water, respectively. Meanwhile, Fe3O4–water expands the separation value of boundary layer flow greater than other tested MNFs. Besides this, the suction parameter is also a contributing factor for the thermal enhancement of all MNFs. |
|---|---|
| AbstractList | Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNFs (Fe3O4–water, CoFe2O4–water, Mn–ZnFe2O4–water) over a shrinking surface with suction and thermal radiation effects. The single‐phase nanofluid model is reduced into a system of ordinary differential equations by applying the similarity transformation. The results are then, obtained using the bvp4c solver in the Matlab software. The results reveal that for the shrinking case, the Mn–ZnFe2O4–water nanofluid has the maximum thermal rate followed by CoFe2O4–water and Fe3O4–water, respectively. Meanwhile, Fe3O4–water expands the separation value of boundary layer flow greater than other tested MNFs. Besides this, the suction parameter is also a contributing factor for the thermal enhancement of all MNFs. Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNFs (Fe 3 O 4 –water, CoFe 2 O 4 –water, Mn–ZnFe 2 O 4 –water) over a shrinking surface with suction and thermal radiation effects. The single‐phase nanofluid model is reduced into a system of ordinary differential equations by applying the similarity transformation. The results are then, obtained using the bvp4c solver in the Matlab software. The results reveal that for the shrinking case, the Mn–ZnFe 2 O 4 –water nanofluid has the maximum thermal rate followed by CoFe 2 O 4 –water and Fe 3 O 4 –water, respectively. Meanwhile, Fe 3 O 4 –water expands the separation value of boundary layer flow greater than other tested MNFs. Besides this, the suction parameter is also a contributing factor for the thermal enhancement of all MNFs. |
| Author | Khashi'ie, Najiyah S. Wahid, Nur S. Pop, Ioan Arifin, Norihan Md |
| Author_xml | – sequence: 1 givenname: Najiyah S. surname: Khashi'ie fullname: Khashi'ie, Najiyah S. email: najiyah@utem.edu.my organization: Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya – sequence: 2 givenname: Nur S. surname: Wahid fullname: Wahid, Nur S. organization: Universiti Putra Malaysia – sequence: 3 givenname: Norihan Md surname: Arifin fullname: Arifin, Norihan Md organization: Universiti Putra Malaysia – sequence: 4 givenname: Ioan surname: Pop fullname: Pop, Ioan organization: Babeş‐Bolyai University |
| BookMark | eNp1kc1qGzEUhUVJoamTRd9A0FWhTkYaWTOTXQnNH4Fs3PVwpbmyZWakVJIxziqPUMhT5TXyJJHtkIbQriTuPefjcs5nsue8Q0K-sOKIFQU_nqfFEeeTQn4g-1zW9VhMBN97_ZfiEzmMcVFk7YSxist98njpop3NE7UueZrmAfHp_k9nB8xz76Cnpvcr6s1uRztrDAZ0iXZrB4PVcbNz4Lzpl7aLNC7VAnWiWxqGIRMCdBZSpp3Q6Ryphogb0woShqf7B-0V9IlmbLAJv7_OB3AzcBjzQQ931um_CnDdG9XMYcrjA_LRQB_x8OUdkV9nP6enF-Prm_PL0x_XY82bSo4bUAKUYlgK0yhUNa9ZYyolTcdkKVRdy64GVZQaJqhQNqKSuhLAQQutWVmOyNcd9zb430uMqV34ZchJxbbkXJSiKnLUI3K8U-ngYwxoWm3TNoQUwPYtK9pNZW2urN1Wlh3f3jlugx0grP-pfaGvbI_r_wvbi-nVzvEM68mygg |
| CitedBy_id | crossref_primary_10_1002_zamm_202200213 crossref_primary_10_1002_zamm_202400709 crossref_primary_10_3390_math10224259 crossref_primary_10_1002_zamm_202200384 crossref_primary_10_1007_s00521_024_10834_7 crossref_primary_10_3390_sym14102057 crossref_primary_10_1016_j_cjph_2023_07_016 crossref_primary_10_1016_j_jtice_2023_104927 |
| Cites_doi | 10.1038/s41598-021-81417-y 10.1515/zna-2019-0180 10.1016/j.jmmm.2016.11.099 10.1016/j.rinp.2016.11.049 10.1016/j.aej.2016.04.030 10.1016/j.expthermflusci.2013.04.018 10.3390/app9101976 10.1016/j.rinp.2017.11.038 10.1016/j.est.2020.101236 10.1016/S0017-9310(01)00175-2 10.1016/j.amc.2011.02.029 10.3390/ma12193173 10.1016/j.jmmm.2014.08.004 10.1017/CBO9780511615542 10.1108/HFF-01-2021-0017 10.1615/JPorMedia.2021036038 10.1090/S0033-569X-06-01002-5 10.1108/HFF-03-2020-0126 10.1002/htj.22193 10.1115/1.4028807 10.1007/s40819-021-00999-3 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.icheatmasstransfer.2021.105484 10.1016/j.icheatmasstransfer.2019.104451 10.1016/j.jppr.2020.11.006 10.1615/NanoSciTechnolIntJ.2018020102 10.1002/htj.22227 10.1016/j.rser.2012.04.003 10.1115/1.2150834 10.1016/j.aej.2016.08.035 10.1016/j.cjph.2020.03.032 10.3390/math9050538 10.1016/j.ijheatmasstransfer.2016.11.074 10.1088/0031-8949/87/01/015703 10.1063/1.864868 10.1016/j.jmmm.2018.06.020 10.1016/j.surfin.2021.101654 10.1016/j.ijheatfluidflow.2008.04.009 10.1016/j.csite.2022.101837 10.1016/j.wear.2017.01.113 10.1016/j.ijheatmasstransfer.2015.08.107 10.1016/j.ijheatmasstransfer.2012.10.037 10.1016/j.jmmm.2011.10.017 10.1007/978-3-662-26679-3 10.1002/htj.21964 10.1615/JPorMedia.2020024600 10.1007/s10973-021-10550-7 10.1515/zna-2020-0317 10.1201/9781315367637 10.1080/17455030.2021.1988757 10.3329/jsr.v6i2.17233 10.1016/j.icheatmasstransfer.2015.08.017 10.1016/j.csite.2021.101199 10.1155/2013/721578 10.1093/jcde/qwaa031 10.1016/j.molliq.2018.11.148 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley Periodicals LLC 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2022 Wiley Periodicals LLC – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1002/htj.22506 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2688-4542 |
| EndPage | 4450 |
| ExternalDocumentID | 10_1002_htj_22506 HTJ22506 |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Higher Education, Malaysia and Universiti Teknikal Malaysia Melaka |
| GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AASGY AAXRX ABJNI ACAHQ ACCFJ ACCZN ACXBN ADOZA ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB DCZOG DRFUL DRSTM EBS HGLYW LATKE LEEKS MEWTI SUPJJ TUS WXSBR AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION ROL 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c2976-9ab4abb1e34f9beb82819f7b6fd1634b886d8ab03ca5ebe69476c74a2ac4cc133 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2688-4534 |
| IngestDate | Thu Jul 10 13:12:07 EDT 2025 Tue Nov 18 21:58:49 EST 2025 Sat Nov 29 05:41:43 EST 2025 Wed Jan 22 16:24:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2976-9ab4abb1e34f9beb82819f7b6fd1634b886d8ab03ca5ebe69476c74a2ac4cc133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3224347045 |
| PQPubID | 996354 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3224347045 crossref_citationtrail_10_1002_htj_22506 crossref_primary_10_1002_htj_22506 wiley_primary_10_1002_htj_22506_HTJ22506 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Heat transfer (Hoboken, N.J. Print) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 24 2021; 27 2019; 11 2021; 126 1984; 27 2019; 12 1931 2012; 16 2012; 324 2022; 28 2020; 7 2018; 9 2020; 6 2018; 8 2021; 76 2006; 64 2021; 31 2015; 137 2013; 57 2002; 45 2008; 29 2015; 374 2022; 31 2022; 32 2014; 6 2006; 128 2019; 276 2021; 9 2021; 7 2019; 9 2011; 217 2013; 49 2019; 74 2018; 465 2008 1995 1873 2007; 50 2016; 92 2021; 144 2003 2021; 50 2017; 377 2007; 15 2016; 55 2015; 68 2016; 6 2021; 10 2013; 721578 2021; 11 2021 2017; 56 2020; 28 2016 2020; 111 2020; 23 2020; 66 2012; 87 2017; 107 2017; 426 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 Mohamed MK (e_1_2_10_30_1) 2019; 11 Blaney L (e_1_2_10_16_1) 2007; 15 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 Hakeem AKA (e_1_2_10_55_1) 2020; 6 Maxwell JC (e_1_2_10_2_1) 1873 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Das SK (e_1_2_10_5_1) 2008 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 Singh K (e_1_2_10_40_1) 2021 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 55 start-page: 2375 issue: 3 year: 2016 end-page: 2389 article-title: 47nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction publication-title: Alex Eng J – volume: 50 start-page: 6572 issue: 7 year: 2021 end-page: 6588 article-title: Numerical solution for Sisko nanofluid flow through stretching surface in a Darcy–Forchheimer porous medium with thermal radiation publication-title: Heat Transfer – volume: 6 start-page: 1012 issue: 4 year: 2020 end-page: 1029 article-title: Three dimensional non‐linear radiative nanofluid flow over a Riga plate publication-title: J Appl Comp Mech – volume: 76 start-page: 231 issue: 3 year: 2021 end-page: 243 article-title: Ternary‐hybrid nanofluids: significance of suction and dual‐stretching on three‐dimensional flow of water conveying nanoparticles with various shapes and densities publication-title: Zeitschrift für Naturforschung A – volume: 50 start-page: 2002 issue: 9‐10 year: 2007 end-page: 2018 article-title: Heat transfer augmentation in a two‐sided lid‐driven differentially heated square cavity utilizing nanofluids publication-title: Int J Heat Mass Transfer – volume: 50 start-page: 7251 issue: 7 year: 2021 end-page: 7270 article-title: Mixed convective flow of Ag–H O magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity publication-title: Heat Transfer – volume: 66 start-page: 157 year: 2020 end-page: 171 article-title: Three‐dimensional hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking sheet with velocity slip and convective condition publication-title: Chinese J Phys – volume: 31 year: 2022 article-title: Heat transfer analysis of radiator using different shaped nanoparticles water‐based ternary hybrid nanofluids with applications: a fractional model publication-title: Case Stud Thermal Eng – volume: 32 start-page: 568 issue: 2 year: 2022 end-page: 588 article-title: Three‐dimensional flow of radiative hybrid nanofluid past a permeable stretching/shrinking sheet with homogeneous‐heterogeneous reaction publication-title: Int J Num Methods Heat Fluid Flow – volume: 11 start-page: 1 issue: 1 year: 2021 article-title: Significance of nanoparticle's radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of water conveying copper nanoparticles publication-title: Sci Rep – volume: 217 start-page: 7564 year: 2011 end-page: 7572 article-title: Heat and fluid flow due to non‐linearly stretching surfaces publication-title: Appl Math Comput – volume: 68 start-page: 85 year: 2015 end-page: 90 article-title: A review on the application of nanofluids in vehicle engine cooling system publication-title: Int Commun Heat Mass Transfer – volume: 11 start-page: 17 issue: 1 year: 2019 end-page: 27 article-title: MHD slip flow and heat transfer on stagnation point of a magnetite (Fe O ) ferrofluid towards a stretching sheet with Newtonian heating publication-title: CFD Lett – volume: 9 start-page: 1976 issue: 10 year: 2019 article-title: Applications of nanofluids for the thermal enhancement in radiative and dissipative flow over a wedge publication-title: Appl Sci – year: 2008 – volume: 465 start-page: 365 year: 2018 end-page: 374 article-title: Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet publication-title: J Magn Magn Mater – start-page: 360 year: 1873 end-page: 366 – volume: 31 start-page: 858 issue: 3 year: 2021 end-page: 879 article-title: MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation publication-title: Int J Numer Methods Heat Fluid Flow – volume: start-page: 1 year: 2021 end-page: 26 article-title: Numerical approach for chemical reaction and suction/injection impacts on magnetic micropolar fluid flow through porous wedge with Hall and ion‐slip using Keller Box method publication-title: Wave Random Complex – volume: 276 start-page: 441 year: 2019 end-page: 452 article-title: Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition publication-title: J Mol Liq – volume: 29 start-page: 1326 issue: 5 year: 2008 end-page: 1336 article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids publication-title: Int J Heat Fluid Flow – volume: 49 start-page: 193 year: 2013 end-page: 200 article-title: Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field publication-title: Exp Therm Fluid Sci – volume: 6 start-page: 257 year: 2014 end-page: 272 article-title: Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet publication-title: J Sci Res – volume: 15 start-page: 33 year: 2007 end-page: 68 article-title: Magnetite (Fe O ): properties, synthesis, and applications publication-title: Lehigh Rev – volume: 50 start-page: 1951 issue: 3 year: 2021 end-page: 1984 article-title: Thermohydraulic and entropy characteristics of Al O ‐water nanofluid in a ribbed interrupted microchannel heat exchanger publication-title: Heat Transfer – volume: 7 start-page: 386 issue: 3 year: 2020 end-page: 396 article-title: Thermophoresis and suction/injection roles on free convective MHD flow of Ag–kerosene oil nanofluid publication-title: J Comp Design Eng – volume: 107 start-page: 778 year: 2017 end-page: 791 article-title: Nanofluid flow and heat transfer in porous media: a review of the latest developments publication-title: Int J Heat Mass Transfer – volume: 28 year: 2022 article-title: Dynamics of ternary‐hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface publication-title: Surf Interfaces – volume: 721578 start-page: 1 year: 2013 end-page: 14 article-title: Exact analytical solution for suction and injection flow with thermal enhancement of five nanofluids over an isothermal stretching sheet with effect of the slip model: a comparative study publication-title: Abstr Appl Anal – volume: 24 start-page: 35 issue: 3 year: 2021 end-page: 50 article-title: Assessment of entropy generation and heat transfer in three‐dimensional hybrid nanofluids flow due to convective surface and base fluids publication-title: J Porous Media – year: 1931 – volume: 64 start-page: 283 issue: 2 year: 2006 end-page: 290 article-title: Viscous flow due to a shrinking sheet publication-title: Quarterly Appl Math – year: 2003 – volume: 28 year: 2020 article-title: Natural convection flow of a suspension containing nano‐encapsulated phase change particles in an eccentric annulus publication-title: J Energy Storage – start-page: 99 year: 1995 end-page: 105 – volume: 9 start-page: 207 issue: 3 year: 2018 end-page: 229 article-title: MHD flow and nonlinear radiative heat transfer of a Casson nanofluid past a nonlinearly stretching sheet in the presence of chemical reaction publication-title: NanoSci Tech Int J – volume: 45 start-page: 855 year: 2002 end-page: 863 article-title: Mechanisms of heat flow in suspensions of nano‐sized particles (nanofluids) publication-title: Int J Heat Mass Transfer – volume: 374 start-page: 125 year: 2015 end-page: 138 article-title: Flow and heat transfer characteristics of magnetic nanofluids: a review publication-title: J Magn Magn Mater – year: 2016 – volume: 87 issue: 1 year: 2012 article-title: Sakiadis flow with nonlinear Rosseland thermal radiation publication-title: Phys Scr – volume: 12 start-page: 3173 issue: 19 year: 2019 article-title: Magnetic properties of manganese‐zinc soft ferrite ceramic for high frequency applications publication-title: Mater – volume: 8 start-page: 268 year: 2018 end-page: 275 article-title: Three dimensional radiative flow of magnetite‐nanofluid with homogeneous‐heterogeneous reactions publication-title: Results Phys – volume: 377 start-page: 1877 year: 2017 end-page: 1884 article-title: Experimental performance analysis of ferrofluid based hydrodynamic journal bearing with different combination of materials publication-title: Wear – volume: 7 start-page: 1 issue: 3 year: 2021 end-page: 7 article-title: Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation publication-title: Int J Appl Comp Math – volume: 9 start-page: 538 issue: 5 year: 2021 article-title: Hybrid nanofluid flow over a permeable non‐isothermal shrinking surface publication-title: Mathematics – volume: 57 start-page: 582 year: 2013 end-page: 594 article-title: A review of the applications of nanofluids in solar energy publication-title: Int J Heat Mass Transfer – volume: 111 year: 2020 article-title: Development of a new correlation to determine the viscosity of ternary hybrid nanofluid publication-title: Int Commun Heat Mass Transfer – volume: 56 start-page: 55 issue: 1 year: 2017 end-page: 62 article-title: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation publication-title: Alex Eng J – volume: 128 start-page: 240 year: 2006 end-page: 250 article-title: Convective transport in nanofluids publication-title: J Heat Transfer – volume: 27 start-page: 1915 year: 1984 end-page: 1917 article-title: The three‐dimensional flow due to a stretching sheet publication-title: Phys Fluids – volume: 92 start-page: 1041 year: 2016 end-page: 1052 article-title: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers publication-title: Int J Heat Mass Transfer – volume: 426 start-page: 334 year: 2017 end-page: 339 article-title: Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers publication-title: J Magn Magn Mater – volume: 144 start-page: 2369 year: 2021 end-page: 2384 article-title: Significance of buoyancy and Lorentz forces on water‐conveying iron (III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins: heat transfer analysis publication-title: J Therm Anal Calorim – volume: 10 start-page: 194 issue: 2 year: 2021 end-page: 207 article-title: Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller‐Box method publication-title: Propuls Power Res – volume: 74 start-page: 879 issue: 10 year: 2019 end-page: 904 article-title: A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles publication-title: Zeitschrift Für Naturforschung A – volume: 23 start-page: 767 issue: 8 year: 2020 end-page: 781 article-title: Melting and chemical reaction effects in stagnation point flow of micropolar fluid over a stretchable porous medium in the presence of nonuniform heat source/sink publication-title: J Porous Media – volume: 324 start-page: 903 issue: 6 year: 2012 end-page: 915 article-title: Ferrite‐based magnetic nanofluids used in hyperthermia applications publication-title: J Magn Magn Mater – volume: 27 year: 2021 article-title: Shape factor effect of radiative Cu–Al O /H O hybrid nanofluid flow towards an EMHD plate publication-title: Case Stud Therm Eng – volume: 126 year: 2021 article-title: Dynamics of water conveying single‐wall carbon nanotubes and magnetite nanoparticles subject to induced magnetic field: a bioconvective model for theranostic applications publication-title: Int Comm Heat Mass Transfer – volume: 137 year: 2015 article-title: A note on the correspondence between certain nanofluid flows and standard fluid flows publication-title: J Heat Transfer – volume: 16 start-page: 5363 year: 2012 end-page: 5378 article-title: A review on natural convective heat transfer of nanofluids publication-title: Renew Sust Energy Rev – volume: 6 start-page: 1080 year: 2016 end-page: 1087 article-title: Thermophoretic diffusion and nonlinear radiative heat transfer due to a contracting cylinder in a nanofluid with generalized slip condition publication-title: Results Phys – ident: e_1_2_10_46_1 doi: 10.1038/s41598-021-81417-y – ident: e_1_2_10_53_1 doi: 10.1515/zna-2019-0180 – ident: e_1_2_10_21_1 doi: 10.1016/j.jmmm.2016.11.099 – ident: e_1_2_10_25_1 doi: 10.1016/j.rinp.2016.11.049 – volume: 11 start-page: 17 issue: 1 year: 2019 ident: e_1_2_10_30_1 article-title: MHD slip flow and heat transfer on stagnation point of a magnetite (Fe3O4) ferrofluid towards a stretching sheet with Newtonian heating publication-title: CFD Lett – volume: 15 start-page: 33 year: 2007 ident: e_1_2_10_16_1 article-title: Magnetite (Fe3O4): properties, synthesis, and applications publication-title: Lehigh Rev – ident: e_1_2_10_63_1 doi: 10.1016/j.aej.2016.04.030 – ident: e_1_2_10_20_1 doi: 10.1016/j.expthermflusci.2013.04.018 – ident: e_1_2_10_28_1 doi: 10.3390/app9101976 – ident: e_1_2_10_29_1 doi: 10.1016/j.rinp.2017.11.038 – ident: e_1_2_10_59_1 doi: 10.1016/j.est.2020.101236 – ident: e_1_2_10_3_1 doi: 10.1016/S0017-9310(01)00175-2 – ident: e_1_2_10_49_1 doi: 10.1016/j.amc.2011.02.029 – volume: 6 start-page: 1012 issue: 4 year: 2020 ident: e_1_2_10_55_1 article-title: Three dimensional non‐linear radiative nanofluid flow over a Riga plate publication-title: J Appl Comp Mech – ident: e_1_2_10_19_1 doi: 10.3390/ma12193173 – ident: e_1_2_10_18_1 doi: 10.1016/j.jmmm.2014.08.004 – ident: e_1_2_10_54_1 doi: 10.1017/CBO9780511615542 – ident: e_1_2_10_35_1 doi: 10.1108/HFF-01-2021-0017 – ident: e_1_2_10_38_1 doi: 10.1615/JPorMedia.2021036038 – ident: e_1_2_10_60_1 doi: 10.1090/S0033-569X-06-01002-5 – ident: e_1_2_10_61_1 doi: 10.1108/HFF-03-2020-0126 – ident: e_1_2_10_37_1 doi: 10.1002/htj.22193 – ident: e_1_2_10_58_1 doi: 10.1115/1.4028807 – ident: e_1_2_10_45_1 doi: 10.1007/s40819-021-00999-3 – ident: e_1_2_10_4_1 – ident: e_1_2_10_27_1 doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – ident: e_1_2_10_31_1 doi: 10.1016/j.icheatmasstransfer.2021.105484 – ident: e_1_2_10_12_1 doi: 10.1016/j.icheatmasstransfer.2019.104451 – ident: e_1_2_10_42_1 doi: 10.1016/j.jppr.2020.11.006 – start-page: 360 volume-title: A Treatise on Electricity and Magnetism year: 1873 ident: e_1_2_10_2_1 – ident: e_1_2_10_39_1 doi: 10.1615/NanoSciTechnolIntJ.2018020102 – ident: e_1_2_10_43_1 doi: 10.1002/htj.22227 – ident: e_1_2_10_6_1 doi: 10.1016/j.rser.2012.04.003 – ident: e_1_2_10_26_1 doi: 10.1115/1.2150834 – ident: e_1_2_10_33_1 doi: 10.1016/j.aej.2016.08.035 – ident: e_1_2_10_34_1 doi: 10.1016/j.cjph.2020.03.032 – ident: e_1_2_10_62_1 doi: 10.3390/math9050538 – ident: e_1_2_10_11_1 doi: 10.1016/j.ijheatmasstransfer.2016.11.074 – ident: e_1_2_10_51_1 doi: 10.1088/0031-8949/87/01/015703 – ident: e_1_2_10_56_1 doi: 10.1063/1.864868 – ident: e_1_2_10_48_1 doi: 10.1016/j.jmmm.2018.06.020 – ident: e_1_2_10_14_1 doi: 10.1016/j.surfin.2021.101654 – ident: e_1_2_10_57_1 doi: 10.1016/j.ijheatfluidflow.2008.04.009 – ident: e_1_2_10_15_1 doi: 10.1016/j.csite.2022.101837 – ident: e_1_2_10_22_1 doi: 10.1016/j.wear.2017.01.113 – ident: e_1_2_10_10_1 doi: 10.1016/j.ijheatmasstransfer.2015.08.107 – ident: e_1_2_10_7_1 doi: 10.1016/j.ijheatmasstransfer.2012.10.037 – ident: e_1_2_10_17_1 doi: 10.1016/j.jmmm.2011.10.017 – ident: e_1_2_10_50_1 doi: 10.1007/978-3-662-26679-3 – ident: e_1_2_10_32_1 doi: 10.1002/htj.21964 – ident: e_1_2_10_41_1 doi: 10.1615/JPorMedia.2020024600 – ident: e_1_2_10_47_1 doi: 10.1007/s10973-021-10550-7 – ident: e_1_2_10_13_1 doi: 10.1515/zna-2020-0317 – ident: e_1_2_10_8_1 doi: 10.1201/9781315367637 – start-page: 1 year: 2021 ident: e_1_2_10_40_1 article-title: Numerical approach for chemical reaction and suction/injection impacts on magnetic micropolar fluid flow through porous wedge with Hall and ion‐slip using Keller Box method publication-title: Wave Random Complex doi: 10.1080/17455030.2021.1988757 – ident: e_1_2_10_24_1 doi: 10.3329/jsr.v6i2.17233 – ident: e_1_2_10_9_1 doi: 10.1016/j.icheatmasstransfer.2015.08.017 – ident: e_1_2_10_36_1 doi: 10.1016/j.csite.2021.101199 – volume-title: Nanofluids: Science and Technology year: 2008 ident: e_1_2_10_5_1 – ident: e_1_2_10_23_1 doi: 10.1155/2013/721578 – ident: e_1_2_10_44_1 doi: 10.1093/jcde/qwaa031 – ident: e_1_2_10_52_1 doi: 10.1016/j.molliq.2018.11.148 |
| SSID | ssj0002511726 |
| Score | 2.259809 |
| Snippet | Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4434 |
| SubjectTerms | Boundary layer flow Cobalt ferrites Differential equations Iron oxides magnetic nanofluids Manganese Nanofluids Radiation effects shrinking sheet Suction Thermal radiation three‐dimensional flow Zinc ferrites |
| Title | Insight into three‐dimensional flow of three different dynamics of nanofluids subject to thermal radiation: The case of water–cobalt ferrite, water–manganese–zinc ferrite, and water–magnetite |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhtj.22506 https://www.proquest.com/docview/3224347045 |
| Volume | 51 |
| WOSCitedRecordID | wos000768453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2688-4542 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511726 issn: 2688-4534 databaseCode: DRFUL dateStart: 20200101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFA6yWvBFq614awnigw-dujuTncnqk7RdrIhIUfBtyFVX1ozszCr45E8Q_FX-DX-J52Qua6EFwbcwOckMnO9ckkm-Q8imlYp3BOOBhdgQsMSASXGRBBKiKUTndltqT5l_mBwd8bOz3vEU2a3vwpT8EM2GG1qG99do4ELm2xPS0Ivi8juAEem2p0PAbbdFpn_-6Z8eNlssmD0nvuBaGAMeWDdiNbdQO9xuxv8dkSZp5utk1Ueb_vy7vvMjmauSTLpXomKBTBm3SD74w54q_0Sefrsc1-R04IqMFqBN83z_oJHnv-TooHaY3dLMln20LqJSUF3Wr8-xzwmX2eF4oHOajyVu51A_G7r6IR0h5wEqfYcCEqmCYImDbiG1HT3fPyqkISmoRV7Iwnxrnl8Jdy6wKCa07wZOTSSE06-kzh3ejjOfyWn_18mP_aAq6RCoEBKfoCckE1J2TMRsTxrJ8T-eTWRsNSSGTHIeay5kO1KiC_CKeyyJVcJEKBRTCtbTS6TlMmeWCYWlHUxgbMdG4Ii4FEoLXB1pY-OujMwK2arVmqqK7xzLbgzTkqk5TEEzqdfMCtloRK9Lko9_Ca3X2EgrO89TcIcsYgnkxfA6j4L_T5Dunxz4xurbRdfIbIj3Lfz54HXSKkZj84XMqJtikI--VoB_ActBDoY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dShwxFA6iLe1Nq21FW7Wh9MKLTt2dyc5kS29Eu6x2u4is4N2QX92yZmRntkKvfIRCn6qv4ZP0nMzPKlQQehcmJ5mB8-X8ZJLvEPLeSsXbgvHAgm8IWGJgSXGRBBK8KXjnVktqT5k_SIZDfnraPVogn-u7MCU_RLPhhivD22tc4LghvTNnDT0vvn8ENCLf9hIDGAG-l_aPeyeDZo8Fw-fEV1wLYwAE60SsJhdqhTvN-LsuaR5n3o5WvbvpPf-_D10mz6owk-6WuFghC8a9II_9cU-VvyR_DlyOWTkduyKjBejT3Fz_0sj0X7J0UDvJrmhmyz5al1EpqC4r2OfY54TL7GQ21jnNZxI3dKifDY39hE6R9QDV_okCFqkCd4mDriC4nd5c_1ZIRFJQi8yQhfnQPL8Q7kxgWUxo_xw7NZcQTt-SOnN4P868Iie9L6O9flAVdQhUCKFP0BWSCSnbJmK2K43k-CfPJjK2GkJDJjmPNReyFSnRAYDFXZbEKmEiFIopBRn1Kll0mTNrhEJyBxMY27YRmCIuhdIC8yNtbNyRkVkn27VeU1UxnmPhjUlacjWHKWgm9ZpZJ-8a0cuS5uNfQhs1ONJqpecpGEQWsQQiY3idh8H9E6T90aFvvH646FvypD_6NkgHB8Ovb8jTEG9f-NPCG2SxmM7MJnmkfhTjfLpVof8v1DASdg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UrYov3outVQfxwQdjd5PZZFZ8EevS6rIUaaFvYa51ZTspm6wFn_oTBH-Vf6O_xHMml62gIPg2ZM5MAuf2zWTmOwDPndJiILmIHOaGiGcWXUrILFKYTTE79_vKBMr8STadiuPj0cEavGnvwtT8EN2GG3lGiNfk4PbMuJ0Va-jn6ssrtEbi217nVESmB-u7n8ZHk26PheBzFiquxSkaBB8mvCUX6sc73fjfU9IKZ15FqyHdjG__34fegVsNzGRva7u4C2vW34Pr4binLu_Dz31f0qqczXxVsAr1aS8vvhti-q9ZOpibF-escHUfa8uoVMzUFexL6vPSF26-nJmSlUtFGzoszEbBfs4WxHpAan_N0BaZxnRJg84R3C4uL35oIiKpmCNmyMq-7J6fSn8iqSwmtr_NvF5JSG-uSJ14uh9nH8DR-P3hu72oKeoQ6RihTzSSikulBjbhbqSsEvQnz2UqdQahIVdCpEZI1U-0HKKBpSOepTrjMpaaa40r6g3o-cLbh8BwcYcTWDdwCYYioaQ2ktZHxrp0qBK7CS9avea6YTynwhvzvOZqjnPUTB40swnPOtGzmubjT0LbrXHkjaeXOQZEnvAMkTG-LpjB3yfI9w4_hMbWv4s-hRsHu-N8sj_9-AhuxnT5IhwW3oZetVjax3BNf61m5eJJY_y_AEkiEfE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+three%E2%80%90dimensional+flow+of+three+different+dynamics+of+nanofluids+subject+to+thermal+radiation%3A+The+case+of+water%E2%80%93cobalt+ferrite%2C+water%E2%80%93manganese%E2%80%93zinc+ferrite%2C+and+water%E2%80%93magnetite&rft.jtitle=Heat+transfer+%28Hoboken%2C+N.J.+Print%29&rft.au=Khashi%27ie%2C+Najiyah+S&rft.au=Wahid%2C+Nur+S&rft.au=Norihan+Md+Arifin&rft.au=Pop%2C+Ioan&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2688-4534&rft.eissn=2688-4542&rft.volume=51&rft.issue=5&rft.spage=4434&rft.epage=4450&rft_id=info:doi/10.1002%2Fhtj.22506&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4534&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4534&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4534&client=summon |