Insight into three‐dimensional flow of three different dynamics of nanofluids subject to thermal radiation: The case of water–cobalt ferrite, water–manganese–zinc ferrite, and water–magnetite

Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNF...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer (Hoboken, N.J. Print) Vol. 51; no. 5; pp. 4434 - 4450
Main Authors: Khashi'ie, Najiyah S., Wahid, Nur S., Arifin, Norihan Md, Pop, Ioan
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.07.2022
Subjects:
ISSN:2688-4534, 2688-4542
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNFs (Fe3O4–water, CoFe2O4–water, Mn–ZnFe2O4–water) over a shrinking surface with suction and thermal radiation effects. The single‐phase nanofluid model is reduced into a system of ordinary differential equations by applying the similarity transformation. The results are then, obtained using the bvp4c solver in the Matlab software. The results reveal that for the shrinking case, the Mn–ZnFe2O4–water nanofluid has the maximum thermal rate followed by CoFe2O4–water and Fe3O4–water, respectively. Meanwhile, Fe3O4–water expands the separation value of boundary layer flow greater than other tested MNFs. Besides this, the suction parameter is also a contributing factor for the thermal enhancement of all MNFs.
AbstractList Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNFs (Fe3O4–water, CoFe2O4–water, Mn–ZnFe2O4–water) over a shrinking surface with suction and thermal radiation effects. The single‐phase nanofluid model is reduced into a system of ordinary differential equations by applying the similarity transformation. The results are then, obtained using the bvp4c solver in the Matlab software. The results reveal that for the shrinking case, the Mn–ZnFe2O4–water nanofluid has the maximum thermal rate followed by CoFe2O4–water and Fe3O4–water, respectively. Meanwhile, Fe3O4–water expands the separation value of boundary layer flow greater than other tested MNFs. Besides this, the suction parameter is also a contributing factor for the thermal enhancement of all MNFs.
Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and experimental studies. Hence, in view of the unique properties in MNFs, the aim of this study is to analyze numerically the three‐dimensional flow of MNFs (Fe 3 O 4 –water, CoFe 2 O 4 –water, Mn–ZnFe 2 O 4 –water) over a shrinking surface with suction and thermal radiation effects. The single‐phase nanofluid model is reduced into a system of ordinary differential equations by applying the similarity transformation. The results are then, obtained using the bvp4c solver in the Matlab software. The results reveal that for the shrinking case, the Mn–ZnFe 2 O 4 –water nanofluid has the maximum thermal rate followed by CoFe 2 O 4 –water and Fe 3 O 4 –water, respectively. Meanwhile, Fe 3 O 4 –water expands the separation value of boundary layer flow greater than other tested MNFs. Besides this, the suction parameter is also a contributing factor for the thermal enhancement of all MNFs.
Author Khashi'ie, Najiyah S.
Wahid, Nur S.
Pop, Ioan
Arifin, Norihan Md
Author_xml – sequence: 1
  givenname: Najiyah S.
  surname: Khashi'ie
  fullname: Khashi'ie, Najiyah S.
  email: najiyah@utem.edu.my
  organization: Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya
– sequence: 2
  givenname: Nur S.
  surname: Wahid
  fullname: Wahid, Nur S.
  organization: Universiti Putra Malaysia
– sequence: 3
  givenname: Norihan Md
  surname: Arifin
  fullname: Arifin, Norihan Md
  organization: Universiti Putra Malaysia
– sequence: 4
  givenname: Ioan
  surname: Pop
  fullname: Pop, Ioan
  organization: Babeş‐Bolyai University
BookMark eNp1kc1qGzEUhUVJoamTRd9A0FWhTkYaWTOTXQnNH4Fs3PVwpbmyZWakVJIxziqPUMhT5TXyJJHtkIbQriTuPefjcs5nsue8Q0K-sOKIFQU_nqfFEeeTQn4g-1zW9VhMBN97_ZfiEzmMcVFk7YSxist98njpop3NE7UueZrmAfHp_k9nB8xz76Cnpvcr6s1uRztrDAZ0iXZrB4PVcbNz4Lzpl7aLNC7VAnWiWxqGIRMCdBZSpp3Q6Ryphogb0woShqf7B-0V9IlmbLAJv7_OB3AzcBjzQQ931um_CnDdG9XMYcrjA_LRQB_x8OUdkV9nP6enF-Prm_PL0x_XY82bSo4bUAKUYlgK0yhUNa9ZYyolTcdkKVRdy64GVZQaJqhQNqKSuhLAQQutWVmOyNcd9zb430uMqV34ZchJxbbkXJSiKnLUI3K8U-ngYwxoWm3TNoQUwPYtK9pNZW2urN1Wlh3f3jlugx0grP-pfaGvbI_r_wvbi-nVzvEM68mygg
CitedBy_id crossref_primary_10_1002_zamm_202200213
crossref_primary_10_1002_zamm_202400709
crossref_primary_10_3390_math10224259
crossref_primary_10_1002_zamm_202200384
crossref_primary_10_1007_s00521_024_10834_7
crossref_primary_10_3390_sym14102057
crossref_primary_10_1016_j_cjph_2023_07_016
crossref_primary_10_1016_j_jtice_2023_104927
Cites_doi 10.1038/s41598-021-81417-y
10.1515/zna-2019-0180
10.1016/j.jmmm.2016.11.099
10.1016/j.rinp.2016.11.049
10.1016/j.aej.2016.04.030
10.1016/j.expthermflusci.2013.04.018
10.3390/app9101976
10.1016/j.rinp.2017.11.038
10.1016/j.est.2020.101236
10.1016/S0017-9310(01)00175-2
10.1016/j.amc.2011.02.029
10.3390/ma12193173
10.1016/j.jmmm.2014.08.004
10.1017/CBO9780511615542
10.1108/HFF-01-2021-0017
10.1615/JPorMedia.2021036038
10.1090/S0033-569X-06-01002-5
10.1108/HFF-03-2020-0126
10.1002/htj.22193
10.1115/1.4028807
10.1007/s40819-021-00999-3
10.1016/j.ijheatmasstransfer.2006.09.034
10.1016/j.icheatmasstransfer.2021.105484
10.1016/j.icheatmasstransfer.2019.104451
10.1016/j.jppr.2020.11.006
10.1615/NanoSciTechnolIntJ.2018020102
10.1002/htj.22227
10.1016/j.rser.2012.04.003
10.1115/1.2150834
10.1016/j.aej.2016.08.035
10.1016/j.cjph.2020.03.032
10.3390/math9050538
10.1016/j.ijheatmasstransfer.2016.11.074
10.1088/0031-8949/87/01/015703
10.1063/1.864868
10.1016/j.jmmm.2018.06.020
10.1016/j.surfin.2021.101654
10.1016/j.ijheatfluidflow.2008.04.009
10.1016/j.csite.2022.101837
10.1016/j.wear.2017.01.113
10.1016/j.ijheatmasstransfer.2015.08.107
10.1016/j.ijheatmasstransfer.2012.10.037
10.1016/j.jmmm.2011.10.017
10.1007/978-3-662-26679-3
10.1002/htj.21964
10.1615/JPorMedia.2020024600
10.1007/s10973-021-10550-7
10.1515/zna-2020-0317
10.1201/9781315367637
10.1080/17455030.2021.1988757
10.3329/jsr.v6i2.17233
10.1016/j.icheatmasstransfer.2015.08.017
10.1016/j.csite.2021.101199
10.1155/2013/721578
10.1093/jcde/qwaa031
10.1016/j.molliq.2018.11.148
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/htj.22506
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2688-4542
EndPage 4450
ExternalDocumentID 10_1002_htj_22506
HTJ22506
Genre article
GrantInformation_xml – fundername: Ministry of Higher Education, Malaysia and Universiti Teknikal Malaysia Melaka
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCFJ
ACCZN
ACXBN
ADOZA
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
DCZOG
DRFUL
DRSTM
EBS
HGLYW
LATKE
LEEKS
MEWTI
SUPJJ
TUS
WXSBR
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ROL
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c2976-9ab4abb1e34f9beb82819f7b6fd1634b886d8ab03ca5ebe69476c74a2ac4cc133
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2688-4534
IngestDate Thu Jul 10 13:12:07 EDT 2025
Tue Nov 18 21:58:49 EST 2025
Sat Nov 29 05:41:43 EST 2025
Wed Jan 22 16:24:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2976-9ab4abb1e34f9beb82819f7b6fd1634b886d8ab03ca5ebe69476c74a2ac4cc133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3224347045
PQPubID 996354
PageCount 17
ParticipantIDs proquest_journals_3224347045
crossref_citationtrail_10_1002_htj_22506
crossref_primary_10_1002_htj_22506
wiley_primary_10_1002_htj_22506_HTJ22506
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Heat transfer (Hoboken, N.J. Print)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
2021; 27
2019; 11
2021; 126
1984; 27
2019; 12
1931
2012; 16
2012; 324
2022; 28
2020; 7
2018; 9
2020; 6
2018; 8
2021; 76
2006; 64
2021; 31
2015; 137
2013; 57
2002; 45
2008; 29
2015; 374
2022; 31
2022; 32
2014; 6
2006; 128
2019; 276
2021; 9
2021; 7
2019; 9
2011; 217
2013; 49
2019; 74
2018; 465
2008
1995
1873
2007; 50
2016; 92
2021; 144
2003
2021; 50
2017; 377
2007; 15
2016; 55
2015; 68
2016; 6
2021; 10
2013; 721578
2021; 11
2021
2017; 56
2020; 28
2016
2020; 111
2020; 23
2020; 66
2012; 87
2017; 107
2017; 426
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
Mohamed MK (e_1_2_10_30_1) 2019; 11
Blaney L (e_1_2_10_16_1) 2007; 15
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
Hakeem AKA (e_1_2_10_55_1) 2020; 6
Maxwell JC (e_1_2_10_2_1) 1873
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Das SK (e_1_2_10_5_1) 2008
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
Singh K (e_1_2_10_40_1) 2021
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 55
  start-page: 2375
  issue: 3
  year: 2016
  end-page: 2389
  article-title: 47nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction
  publication-title: Alex Eng J
– volume: 50
  start-page: 6572
  issue: 7
  year: 2021
  end-page: 6588
  article-title: Numerical solution for Sisko nanofluid flow through stretching surface in a Darcy–Forchheimer porous medium with thermal radiation
  publication-title: Heat Transfer
– volume: 6
  start-page: 1012
  issue: 4
  year: 2020
  end-page: 1029
  article-title: Three dimensional non‐linear radiative nanofluid flow over a Riga plate
  publication-title: J Appl Comp Mech
– volume: 76
  start-page: 231
  issue: 3
  year: 2021
  end-page: 243
  article-title: Ternary‐hybrid nanofluids: significance of suction and dual‐stretching on three‐dimensional flow of water conveying nanoparticles with various shapes and densities
  publication-title: Zeitschrift für Naturforschung A
– volume: 50
  start-page: 2002
  issue: 9‐10
  year: 2007
  end-page: 2018
  article-title: Heat transfer augmentation in a two‐sided lid‐driven differentially heated square cavity utilizing nanofluids
  publication-title: Int J Heat Mass Transfer
– volume: 50
  start-page: 7251
  issue: 7
  year: 2021
  end-page: 7270
  article-title: Mixed convective flow of Ag–H O magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity
  publication-title: Heat Transfer
– volume: 66
  start-page: 157
  year: 2020
  end-page: 171
  article-title: Three‐dimensional hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking sheet with velocity slip and convective condition
  publication-title: Chinese J Phys
– volume: 31
  year: 2022
  article-title: Heat transfer analysis of radiator using different shaped nanoparticles water‐based ternary hybrid nanofluids with applications: a fractional model
  publication-title: Case Stud Thermal Eng
– volume: 32
  start-page: 568
  issue: 2
  year: 2022
  end-page: 588
  article-title: Three‐dimensional flow of radiative hybrid nanofluid past a permeable stretching/shrinking sheet with homogeneous‐heterogeneous reaction
  publication-title: Int J Num Methods Heat Fluid Flow
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  article-title: Significance of nanoparticle's radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of water conveying copper nanoparticles
  publication-title: Sci Rep
– volume: 217
  start-page: 7564
  year: 2011
  end-page: 7572
  article-title: Heat and fluid flow due to non‐linearly stretching surfaces
  publication-title: Appl Math Comput
– volume: 68
  start-page: 85
  year: 2015
  end-page: 90
  article-title: A review on the application of nanofluids in vehicle engine cooling system
  publication-title: Int Commun Heat Mass Transfer
– volume: 11
  start-page: 17
  issue: 1
  year: 2019
  end-page: 27
  article-title: MHD slip flow and heat transfer on stagnation point of a magnetite (Fe O ) ferrofluid towards a stretching sheet with Newtonian heating
  publication-title: CFD Lett
– volume: 9
  start-page: 1976
  issue: 10
  year: 2019
  article-title: Applications of nanofluids for the thermal enhancement in radiative and dissipative flow over a wedge
  publication-title: Appl Sci
– year: 2008
– volume: 465
  start-page: 365
  year: 2018
  end-page: 374
  article-title: Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet
  publication-title: J Magn Magn Mater
– start-page: 360
  year: 1873
  end-page: 366
– volume: 31
  start-page: 858
  issue: 3
  year: 2021
  end-page: 879
  article-title: MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume:
  start-page: 1
  year: 2021
  end-page: 26
  article-title: Numerical approach for chemical reaction and suction/injection impacts on magnetic micropolar fluid flow through porous wedge with Hall and ion‐slip using Keller Box method
  publication-title: Wave Random Complex
– volume: 276
  start-page: 441
  year: 2019
  end-page: 452
  article-title: Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition
  publication-title: J Mol Liq
– volume: 29
  start-page: 1326
  issue: 5
  year: 2008
  end-page: 1336
  article-title: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids
  publication-title: Int J Heat Fluid Flow
– volume: 49
  start-page: 193
  year: 2013
  end-page: 200
  article-title: Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field
  publication-title: Exp Therm Fluid Sci
– volume: 6
  start-page: 257
  year: 2014
  end-page: 272
  article-title: Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet
  publication-title: J Sci Res
– volume: 15
  start-page: 33
  year: 2007
  end-page: 68
  article-title: Magnetite (Fe O ): properties, synthesis, and applications
  publication-title: Lehigh Rev
– volume: 50
  start-page: 1951
  issue: 3
  year: 2021
  end-page: 1984
  article-title: Thermohydraulic and entropy characteristics of Al O ‐water nanofluid in a ribbed interrupted microchannel heat exchanger
  publication-title: Heat Transfer
– volume: 7
  start-page: 386
  issue: 3
  year: 2020
  end-page: 396
  article-title: Thermophoresis and suction/injection roles on free convective MHD flow of Ag–kerosene oil nanofluid
  publication-title: J Comp Design Eng
– volume: 107
  start-page: 778
  year: 2017
  end-page: 791
  article-title: Nanofluid flow and heat transfer in porous media: a review of the latest developments
  publication-title: Int J Heat Mass Transfer
– volume: 28
  year: 2022
  article-title: Dynamics of ternary‐hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface
  publication-title: Surf Interfaces
– volume: 721578
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Exact analytical solution for suction and injection flow with thermal enhancement of five nanofluids over an isothermal stretching sheet with effect of the slip model: a comparative study
  publication-title: Abstr Appl Anal
– volume: 24
  start-page: 35
  issue: 3
  year: 2021
  end-page: 50
  article-title: Assessment of entropy generation and heat transfer in three‐dimensional hybrid nanofluids flow due to convective surface and base fluids
  publication-title: J Porous Media
– year: 1931
– volume: 64
  start-page: 283
  issue: 2
  year: 2006
  end-page: 290
  article-title: Viscous flow due to a shrinking sheet
  publication-title: Quarterly Appl Math
– year: 2003
– volume: 28
  year: 2020
  article-title: Natural convection flow of a suspension containing nano‐encapsulated phase change particles in an eccentric annulus
  publication-title: J Energy Storage
– start-page: 99
  year: 1995
  end-page: 105
– volume: 9
  start-page: 207
  issue: 3
  year: 2018
  end-page: 229
  article-title: MHD flow and nonlinear radiative heat transfer of a Casson nanofluid past a nonlinearly stretching sheet in the presence of chemical reaction
  publication-title: NanoSci Tech Int J
– volume: 45
  start-page: 855
  year: 2002
  end-page: 863
  article-title: Mechanisms of heat flow in suspensions of nano‐sized particles (nanofluids)
  publication-title: Int J Heat Mass Transfer
– volume: 374
  start-page: 125
  year: 2015
  end-page: 138
  article-title: Flow and heat transfer characteristics of magnetic nanofluids: a review
  publication-title: J Magn Magn Mater
– year: 2016
– volume: 87
  issue: 1
  year: 2012
  article-title: Sakiadis flow with nonlinear Rosseland thermal radiation
  publication-title: Phys Scr
– volume: 12
  start-page: 3173
  issue: 19
  year: 2019
  article-title: Magnetic properties of manganese‐zinc soft ferrite ceramic for high frequency applications
  publication-title: Mater
– volume: 8
  start-page: 268
  year: 2018
  end-page: 275
  article-title: Three dimensional radiative flow of magnetite‐nanofluid with homogeneous‐heterogeneous reactions
  publication-title: Results Phys
– volume: 377
  start-page: 1877
  year: 2017
  end-page: 1884
  article-title: Experimental performance analysis of ferrofluid based hydrodynamic journal bearing with different combination of materials
  publication-title: Wear
– volume: 7
  start-page: 1
  issue: 3
  year: 2021
  end-page: 7
  article-title: Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation
  publication-title: Int J Appl Comp Math
– volume: 9
  start-page: 538
  issue: 5
  year: 2021
  article-title: Hybrid nanofluid flow over a permeable non‐isothermal shrinking surface
  publication-title: Mathematics
– volume: 57
  start-page: 582
  year: 2013
  end-page: 594
  article-title: A review of the applications of nanofluids in solar energy
  publication-title: Int J Heat Mass Transfer
– volume: 111
  year: 2020
  article-title: Development of a new correlation to determine the viscosity of ternary hybrid nanofluid
  publication-title: Int Commun Heat Mass Transfer
– volume: 56
  start-page: 55
  issue: 1
  year: 2017
  end-page: 62
  article-title: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation
  publication-title: Alex Eng J
– volume: 128
  start-page: 240
  year: 2006
  end-page: 250
  article-title: Convective transport in nanofluids
  publication-title: J Heat Transfer
– volume: 27
  start-page: 1915
  year: 1984
  end-page: 1917
  article-title: The three‐dimensional flow due to a stretching sheet
  publication-title: Phys Fluids
– volume: 92
  start-page: 1041
  year: 2016
  end-page: 1052
  article-title: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers
  publication-title: Int J Heat Mass Transfer
– volume: 426
  start-page: 334
  year: 2017
  end-page: 339
  article-title: Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers
  publication-title: J Magn Magn Mater
– volume: 144
  start-page: 2369
  year: 2021
  end-page: 2384
  article-title: Significance of buoyancy and Lorentz forces on water‐conveying iron (III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins: heat transfer analysis
  publication-title: J Therm Anal Calorim
– volume: 10
  start-page: 194
  issue: 2
  year: 2021
  end-page: 207
  article-title: Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller‐Box method
  publication-title: Propuls Power Res
– volume: 74
  start-page: 879
  issue: 10
  year: 2019
  end-page: 904
  article-title: A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles
  publication-title: Zeitschrift Für Naturforschung A
– volume: 23
  start-page: 767
  issue: 8
  year: 2020
  end-page: 781
  article-title: Melting and chemical reaction effects in stagnation point flow of micropolar fluid over a stretchable porous medium in the presence of nonuniform heat source/sink
  publication-title: J Porous Media
– volume: 324
  start-page: 903
  issue: 6
  year: 2012
  end-page: 915
  article-title: Ferrite‐based magnetic nanofluids used in hyperthermia applications
  publication-title: J Magn Magn Mater
– volume: 27
  year: 2021
  article-title: Shape factor effect of radiative Cu–Al O /H O hybrid nanofluid flow towards an EMHD plate
  publication-title: Case Stud Therm Eng
– volume: 126
  year: 2021
  article-title: Dynamics of water conveying single‐wall carbon nanotubes and magnetite nanoparticles subject to induced magnetic field: a bioconvective model for theranostic applications
  publication-title: Int Comm Heat Mass Transfer
– volume: 137
  year: 2015
  article-title: A note on the correspondence between certain nanofluid flows and standard fluid flows
  publication-title: J Heat Transfer
– volume: 16
  start-page: 5363
  year: 2012
  end-page: 5378
  article-title: A review on natural convective heat transfer of nanofluids
  publication-title: Renew Sust Energy Rev
– volume: 6
  start-page: 1080
  year: 2016
  end-page: 1087
  article-title: Thermophoretic diffusion and nonlinear radiative heat transfer due to a contracting cylinder in a nanofluid with generalized slip condition
  publication-title: Results Phys
– ident: e_1_2_10_46_1
  doi: 10.1038/s41598-021-81417-y
– ident: e_1_2_10_53_1
  doi: 10.1515/zna-2019-0180
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jmmm.2016.11.099
– ident: e_1_2_10_25_1
  doi: 10.1016/j.rinp.2016.11.049
– volume: 11
  start-page: 17
  issue: 1
  year: 2019
  ident: e_1_2_10_30_1
  article-title: MHD slip flow and heat transfer on stagnation point of a magnetite (Fe3O4) ferrofluid towards a stretching sheet with Newtonian heating
  publication-title: CFD Lett
– volume: 15
  start-page: 33
  year: 2007
  ident: e_1_2_10_16_1
  article-title: Magnetite (Fe3O4): properties, synthesis, and applications
  publication-title: Lehigh Rev
– ident: e_1_2_10_63_1
  doi: 10.1016/j.aej.2016.04.030
– ident: e_1_2_10_20_1
  doi: 10.1016/j.expthermflusci.2013.04.018
– ident: e_1_2_10_28_1
  doi: 10.3390/app9101976
– ident: e_1_2_10_29_1
  doi: 10.1016/j.rinp.2017.11.038
– ident: e_1_2_10_59_1
  doi: 10.1016/j.est.2020.101236
– ident: e_1_2_10_3_1
  doi: 10.1016/S0017-9310(01)00175-2
– ident: e_1_2_10_49_1
  doi: 10.1016/j.amc.2011.02.029
– volume: 6
  start-page: 1012
  issue: 4
  year: 2020
  ident: e_1_2_10_55_1
  article-title: Three dimensional non‐linear radiative nanofluid flow over a Riga plate
  publication-title: J Appl Comp Mech
– ident: e_1_2_10_19_1
  doi: 10.3390/ma12193173
– ident: e_1_2_10_18_1
  doi: 10.1016/j.jmmm.2014.08.004
– ident: e_1_2_10_54_1
  doi: 10.1017/CBO9780511615542
– ident: e_1_2_10_35_1
  doi: 10.1108/HFF-01-2021-0017
– ident: e_1_2_10_38_1
  doi: 10.1615/JPorMedia.2021036038
– ident: e_1_2_10_60_1
  doi: 10.1090/S0033-569X-06-01002-5
– ident: e_1_2_10_61_1
  doi: 10.1108/HFF-03-2020-0126
– ident: e_1_2_10_37_1
  doi: 10.1002/htj.22193
– ident: e_1_2_10_58_1
  doi: 10.1115/1.4028807
– ident: e_1_2_10_45_1
  doi: 10.1007/s40819-021-00999-3
– ident: e_1_2_10_4_1
– ident: e_1_2_10_27_1
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– ident: e_1_2_10_31_1
  doi: 10.1016/j.icheatmasstransfer.2021.105484
– ident: e_1_2_10_12_1
  doi: 10.1016/j.icheatmasstransfer.2019.104451
– ident: e_1_2_10_42_1
  doi: 10.1016/j.jppr.2020.11.006
– start-page: 360
  volume-title: A Treatise on Electricity and Magnetism
  year: 1873
  ident: e_1_2_10_2_1
– ident: e_1_2_10_39_1
  doi: 10.1615/NanoSciTechnolIntJ.2018020102
– ident: e_1_2_10_43_1
  doi: 10.1002/htj.22227
– ident: e_1_2_10_6_1
  doi: 10.1016/j.rser.2012.04.003
– ident: e_1_2_10_26_1
  doi: 10.1115/1.2150834
– ident: e_1_2_10_33_1
  doi: 10.1016/j.aej.2016.08.035
– ident: e_1_2_10_34_1
  doi: 10.1016/j.cjph.2020.03.032
– ident: e_1_2_10_62_1
  doi: 10.3390/math9050538
– ident: e_1_2_10_11_1
  doi: 10.1016/j.ijheatmasstransfer.2016.11.074
– ident: e_1_2_10_51_1
  doi: 10.1088/0031-8949/87/01/015703
– ident: e_1_2_10_56_1
  doi: 10.1063/1.864868
– ident: e_1_2_10_48_1
  doi: 10.1016/j.jmmm.2018.06.020
– ident: e_1_2_10_14_1
  doi: 10.1016/j.surfin.2021.101654
– ident: e_1_2_10_57_1
  doi: 10.1016/j.ijheatfluidflow.2008.04.009
– ident: e_1_2_10_15_1
  doi: 10.1016/j.csite.2022.101837
– ident: e_1_2_10_22_1
  doi: 10.1016/j.wear.2017.01.113
– ident: e_1_2_10_10_1
  doi: 10.1016/j.ijheatmasstransfer.2015.08.107
– ident: e_1_2_10_7_1
  doi: 10.1016/j.ijheatmasstransfer.2012.10.037
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jmmm.2011.10.017
– ident: e_1_2_10_50_1
  doi: 10.1007/978-3-662-26679-3
– ident: e_1_2_10_32_1
  doi: 10.1002/htj.21964
– ident: e_1_2_10_41_1
  doi: 10.1615/JPorMedia.2020024600
– ident: e_1_2_10_47_1
  doi: 10.1007/s10973-021-10550-7
– ident: e_1_2_10_13_1
  doi: 10.1515/zna-2020-0317
– ident: e_1_2_10_8_1
  doi: 10.1201/9781315367637
– start-page: 1
  year: 2021
  ident: e_1_2_10_40_1
  article-title: Numerical approach for chemical reaction and suction/injection impacts on magnetic micropolar fluid flow through porous wedge with Hall and ion‐slip using Keller Box method
  publication-title: Wave Random Complex
  doi: 10.1080/17455030.2021.1988757
– ident: e_1_2_10_24_1
  doi: 10.3329/jsr.v6i2.17233
– ident: e_1_2_10_9_1
  doi: 10.1016/j.icheatmasstransfer.2015.08.017
– ident: e_1_2_10_36_1
  doi: 10.1016/j.csite.2021.101199
– volume-title: Nanofluids: Science and Technology
  year: 2008
  ident: e_1_2_10_5_1
– ident: e_1_2_10_23_1
  doi: 10.1155/2013/721578
– ident: e_1_2_10_44_1
  doi: 10.1093/jcde/qwaa031
– ident: e_1_2_10_52_1
  doi: 10.1016/j.molliq.2018.11.148
SSID ssj0002511726
Score 2.259809
Snippet Magnetic nanofluids (MNFs) have been widely applied in both biomedical and environmental sectors along with the substantial growth of numerical and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4434
SubjectTerms Boundary layer flow
Cobalt ferrites
Differential equations
Iron oxides
magnetic nanofluids
Manganese
Nanofluids
Radiation effects
shrinking sheet
Suction
Thermal radiation
three‐dimensional flow
Zinc ferrites
Title Insight into three‐dimensional flow of three different dynamics of nanofluids subject to thermal radiation: The case of water–cobalt ferrite, water–manganese–zinc ferrite, and water–magnetite
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhtj.22506
https://www.proquest.com/docview/3224347045
Volume 51
WOSCitedRecordID wos000768453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2688-4542
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511726
  issn: 2688-4534
  databaseCode: DRFUL
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFA6yWvBFq614awnigw-dujuTncnqk7RdrIhIUfBtyFVX1ozszCr45E8Q_FX-DX-J52Qua6EFwbcwOckMnO9ckkm-Q8imlYp3BOOBhdgQsMSASXGRBBKiKUTndltqT5l_mBwd8bOz3vEU2a3vwpT8EM2GG1qG99do4ELm2xPS0Ivi8juAEem2p0PAbbdFpn_-6Z8eNlssmD0nvuBaGAMeWDdiNbdQO9xuxv8dkSZp5utk1Ueb_vy7vvMjmauSTLpXomKBTBm3SD74w54q_0Sefrsc1-R04IqMFqBN83z_oJHnv-TooHaY3dLMln20LqJSUF3Wr8-xzwmX2eF4oHOajyVu51A_G7r6IR0h5wEqfYcCEqmCYImDbiG1HT3fPyqkISmoRV7Iwnxrnl8Jdy6wKCa07wZOTSSE06-kzh3ejjOfyWn_18mP_aAq6RCoEBKfoCckE1J2TMRsTxrJ8T-eTWRsNSSGTHIeay5kO1KiC_CKeyyJVcJEKBRTCtbTS6TlMmeWCYWlHUxgbMdG4Ii4FEoLXB1pY-OujMwK2arVmqqK7xzLbgzTkqk5TEEzqdfMCtloRK9Lko9_Ca3X2EgrO89TcIcsYgnkxfA6j4L_T5Dunxz4xurbRdfIbIj3Lfz54HXSKkZj84XMqJtikI--VoB_ActBDoY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dShwxFA6iLe1Nq21FW7Wh9MKLTt2dyc5kS29Eu6x2u4is4N2QX92yZmRntkKvfIRCn6qv4ZP0nMzPKlQQehcmJ5mB8-X8ZJLvEPLeSsXbgvHAgm8IWGJgSXGRBBK8KXjnVktqT5k_SIZDfnraPVogn-u7MCU_RLPhhivD22tc4LghvTNnDT0vvn8ENCLf9hIDGAG-l_aPeyeDZo8Fw-fEV1wLYwAE60SsJhdqhTvN-LsuaR5n3o5WvbvpPf-_D10mz6owk-6WuFghC8a9II_9cU-VvyR_DlyOWTkduyKjBejT3Fz_0sj0X7J0UDvJrmhmyz5al1EpqC4r2OfY54TL7GQ21jnNZxI3dKifDY39hE6R9QDV_okCFqkCd4mDriC4nd5c_1ZIRFJQi8yQhfnQPL8Q7kxgWUxo_xw7NZcQTt-SOnN4P868Iie9L6O9flAVdQhUCKFP0BWSCSnbJmK2K43k-CfPJjK2GkJDJjmPNReyFSnRAYDFXZbEKmEiFIopBRn1Kll0mTNrhEJyBxMY27YRmCIuhdIC8yNtbNyRkVkn27VeU1UxnmPhjUlacjWHKWgm9ZpZJ-8a0cuS5uNfQhs1ONJqpecpGEQWsQQiY3idh8H9E6T90aFvvH646FvypD_6NkgHB8Ovb8jTEG9f-NPCG2SxmM7MJnmkfhTjfLpVof8v1DASdg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6UrYov3outVQfxwQdjd5PZZFZ8EevS6rIUaaFvYa51ZTspm6wFn_oTBH-Vf6O_xHMml62gIPg2ZM5MAuf2zWTmOwDPndJiILmIHOaGiGcWXUrILFKYTTE79_vKBMr8STadiuPj0cEavGnvwtT8EN2GG3lGiNfk4PbMuJ0Va-jn6ssrtEbi217nVESmB-u7n8ZHk26PheBzFiquxSkaBB8mvCUX6sc73fjfU9IKZ15FqyHdjG__34fegVsNzGRva7u4C2vW34Pr4binLu_Dz31f0qqczXxVsAr1aS8vvhti-q9ZOpibF-escHUfa8uoVMzUFexL6vPSF26-nJmSlUtFGzoszEbBfs4WxHpAan_N0BaZxnRJg84R3C4uL35oIiKpmCNmyMq-7J6fSn8iqSwmtr_NvF5JSG-uSJ14uh9nH8DR-P3hu72oKeoQ6RihTzSSikulBjbhbqSsEvQnz2UqdQahIVdCpEZI1U-0HKKBpSOepTrjMpaaa40r6g3o-cLbh8BwcYcTWDdwCYYioaQ2ktZHxrp0qBK7CS9avea6YTynwhvzvOZqjnPUTB40swnPOtGzmubjT0LbrXHkjaeXOQZEnvAMkTG-LpjB3yfI9w4_hMbWv4s-hRsHu-N8sj_9-AhuxnT5IhwW3oZetVjax3BNf61m5eJJY_y_AEkiEfE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+three%E2%80%90dimensional+flow+of+three+different+dynamics+of+nanofluids+subject+to+thermal+radiation%3A+The+case+of+water%E2%80%93cobalt+ferrite%2C+water%E2%80%93manganese%E2%80%93zinc+ferrite%2C+and+water%E2%80%93magnetite&rft.jtitle=Heat+transfer+%28Hoboken%2C+N.J.+Print%29&rft.au=Khashi%27ie%2C+Najiyah+S&rft.au=Wahid%2C+Nur+S&rft.au=Norihan+Md+Arifin&rft.au=Pop%2C+Ioan&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2688-4534&rft.eissn=2688-4542&rft.volume=51&rft.issue=5&rft.spage=4434&rft.epage=4450&rft_id=info:doi/10.1002%2Fhtj.22506&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4534&client=summon