LASP: Fast global potential energy surface exploration
Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated b...
Uložené v:
| Vydané v: | Wiley interdisciplinary reviews. Computational molecular science Ročník 9; číslo 6; s. e1415 - n/a |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
Wiley Periodicals, Inc
01.11.2019
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1759-0876, 1759-0884 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented.
This article is categorized under:
Software > Simulation Methods
LASP is an atomistic simulation package targeted for solving the complex PES problems using the global neural network potentials. |
|---|---|
| AbstractList | Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented.
This article is categorized under:
Software > Simulation Methods
LASP is an atomistic simulation package targeted for solving the complex PES problems using the global neural network potentials. Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented. This article is categorized under: Software > Simulation Methods Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented.This article is categorized under:Software > Simulation Methods |
| Author | Zhang, Xiao‐Jie Huang, Si‐Da Shang, Cheng Liu, Zhi‐Pan Kang, Pei‐Lin |
| Author_xml | – sequence: 1 givenname: Si‐Da orcidid: 0000-0002-0055-1510 surname: Huang fullname: Huang, Si‐Da organization: Fudan University – sequence: 2 givenname: Cheng orcidid: 0000-0001-7486-1514 surname: Shang fullname: Shang, Cheng email: cshang@fudan.edu.cn organization: Fudan University – sequence: 3 givenname: Pei‐Lin surname: Kang fullname: Kang, Pei‐Lin organization: Fudan University – sequence: 4 givenname: Xiao‐Jie surname: Zhang fullname: Zhang, Xiao‐Jie organization: Fudan University – sequence: 5 givenname: Zhi‐Pan orcidid: 0000-0002-2906-5217 surname: Liu fullname: Liu, Zhi‐Pan email: zpliu@fudan.edu.cn organization: Fudan University |
| BookMark | eNp9kMFLwzAUxoNMcM4d_A8Knjx0S16btvE2ilOhojDFY0jSdHR0TU0ytv33dpt4EPRd3nf4fd_jfZdo0JpWI3RN8IRgDNOtWrsJiQk9Q0OSUhbiLIsHPzpNLtDYuRXuJ2YEIjJESTFbvN4Fc-F8sGyMFE3QGa9bX_dKt9ou94Hb2EooHehd1xgrfG3aK3Reicbp8fceoff5_Vv-GBYvD0_5rAgVsJSGpVAypSDLCioGZaYymQFLBKRQYhZTSYGoEgtFhcJAcFKShIKWGlQkWaaiEbo55XbWfG6083xlNrbtT3KIcIIp7WN66vZEKWucs7rina3Xwu45wfzQDD80ww_N9Oz0F6tqf_zJW1E3_zm2daP3f0fzj_x5cXR8ATKJdoo |
| CitedBy_id | crossref_primary_10_1107_S2052520624007492 crossref_primary_10_1038_s41557_025_01898_6 crossref_primary_10_1016_j_ensm_2025_104546 crossref_primary_10_1021_acs_jctc_5c00051 crossref_primary_10_1002_ange_202401311 crossref_primary_10_1016_j_jclepro_2024_141410 crossref_primary_10_1021_acs_jpclett_5c02077 crossref_primary_10_1063_5_0070931 crossref_primary_10_1021_jacs_1c04624 crossref_primary_10_1038_s41929_024_01135_2 crossref_primary_10_1016_j_xcrp_2024_102043 crossref_primary_10_1038_s41467_020_19497_z crossref_primary_10_1002_adfm_202203894 crossref_primary_10_1039_D0SC03918G crossref_primary_10_1021_jacsau_5c00033 crossref_primary_10_1016_j_fuproc_2023_107807 crossref_primary_10_1063_5_0223453 crossref_primary_10_3390_molecules28052232 crossref_primary_10_6023_A22010003 crossref_primary_10_1088_1361_648X_ad44f9 crossref_primary_10_1016_j_nanoen_2025_111453 crossref_primary_10_1002_wcms_1654 crossref_primary_10_1016_j_actphy_2024_100041 crossref_primary_10_1016_j_jcat_2024_115587 crossref_primary_10_1021_jacs_4c10052 crossref_primary_10_1002_aelm_202300158 crossref_primary_10_1126_science_abi9828 crossref_primary_10_1021_jacs_3c09837 crossref_primary_10_3390_gels11010068 crossref_primary_10_1021_jacs_9b11535 crossref_primary_10_1038_s41929_019_0293_8 crossref_primary_10_1016_j_checat_2024_101231 crossref_primary_10_1021_acsami_5c09626 crossref_primary_10_1016_j_apcatb_2024_124462 crossref_primary_10_1002_cjoc_202100299 crossref_primary_10_1063_1_5113673 crossref_primary_10_1007_s11244_021_01473_6 crossref_primary_10_1063_5_0253847 crossref_primary_10_1016_j_mcat_2022_112500 crossref_primary_10_1021_jacs_2c06044 crossref_primary_10_1021_acscatal_5c00950 crossref_primary_10_1038_s41467_022_30522_1 crossref_primary_10_1038_s41467_025_58960_7 crossref_primary_10_1002_cssc_202000557 crossref_primary_10_1021_acs_jpclett_5c00181 crossref_primary_10_1038_s41929_022_00840_0 crossref_primary_10_1002_smll_202311161 crossref_primary_10_1038_s41467_025_59613_5 crossref_primary_10_1038_s41929_021_00703_0 crossref_primary_10_1016_j_apcatb_2024_124334 crossref_primary_10_26599_NR_2025_94907315 crossref_primary_10_1088_0256_307X_37_9_096802 crossref_primary_10_1039_D1SC03564A crossref_primary_10_1039_C9EE01564G crossref_primary_10_1021_jacs_3c10602 crossref_primary_10_1021_jacs_5c02046 crossref_primary_10_6023_A22110446 crossref_primary_10_1016_j_checat_2025_101458 crossref_primary_10_1360_SSC_2025_0096 crossref_primary_10_1021_acscatal_5c03463 crossref_primary_10_1002_aelm_202400911 crossref_primary_10_1038_s41467_025_59996_5 crossref_primary_10_1038_s41524_022_00959_5 crossref_primary_10_1016_j_jcat_2023_07_024 crossref_primary_10_1002_anie_202216383 crossref_primary_10_1021_jacs_1c02471 crossref_primary_10_1016_S1872_2067_21_64036_6 crossref_primary_10_1016_j_chempr_2022_07_026 crossref_primary_10_1063_5_0244175 crossref_primary_10_1002_anie_202401311 crossref_primary_10_1063_5_0016011 crossref_primary_10_1016_j_ces_2023_119176 crossref_primary_10_1021_acs_jpclett_5c01291 crossref_primary_10_1021_acs_jctc_5c00350 crossref_primary_10_1360_TB_2024_1207 crossref_primary_10_1002_adma_202305758 crossref_primary_10_1038_s41467_024_47997_9 crossref_primary_10_1016_j_cplett_2022_139813 crossref_primary_10_1021_jacs_4c01285 crossref_primary_10_1038_s41524_023_00967_z crossref_primary_10_1360_SSC_2025_0078 crossref_primary_10_1002_ange_202216383 crossref_primary_10_1016_j_mtcomm_2022_104319 crossref_primary_10_1126_science_adp6034 crossref_primary_10_1088_0256_307X_39_8_087101 crossref_primary_10_1039_D5SC01651G crossref_primary_10_1016_S1872_2067_23_64402_X crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1021_jacs_4c14404 crossref_primary_10_1063_5_0160079 crossref_primary_10_1038_s41586_022_05532_0 crossref_primary_10_1002_qua_27389 crossref_primary_10_1360_SSC_2025_0084 crossref_primary_10_1038_s41563_024_02002_y crossref_primary_10_1007_s12274_022_5012_0 crossref_primary_10_1007_s11244_021_01543_9 crossref_primary_10_1021_prechem_4c00051 crossref_primary_10_1021_acs_accounts_5c00416 crossref_primary_10_1063_1674_0068_cjcp2404057 |
| Cites_doi | 10.1002/wcms.66 10.1021/ct301010b 10.1021/acs.jctc.5b00641 10.1002/wcms.1159 10.1021/jp970984n 10.1039/C4CP04456H 10.1063/1.475562 10.1039/C7CP07060H 10.1039/C6CP06895B 10.1063/1.3457903 10.1080/00268970210162691 10.1063/1.1755655 10.1016/B978-012267351-1/50008-0 10.1021/ct4008475 10.1039/C7SC01459G 10.1006/jcph.1995.1039 10.1103/PhysRevLett.45.1196 10.1021/acs.jpcc.8b08896 10.1016/0927-0256(96)00008-0 10.1103/PhysRevLett.98.146401 10.1103/PhysRevB.68.134206 10.1039/C4CP01485E 10.1021/ct400238j 10.1098/rsta.2004.1497 10.1002/jcc.25636 10.1063/1.480097 10.1039/C8SC03427C 10.1021/ct9005147 10.1021/ct300250h 10.1021/ct400403y 10.1103/PhysRevB.46.21 10.1073/pnas.84.19.6611 10.1103/PhysRevB.59.1758 10.1063/1.4862410 10.1021/acscatal.8b03077 10.1143/PTPS.103.1 10.1021/jacs.7b12896 10.1103/PhysRevB.59.3969 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| DOI | 10.1002/wcms.1415 |
| DatabaseName | CrossRef Aqualine Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wcms_1415 WCMS1415 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2018YFA0208600 – fundername: Shanghai Pujiang Program funderid: 16PJ1401200 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 08DZ2270500 – fundername: National Natural Science Foundation of China funderid: 21533001; 21603035; 91645201; 91745201 |
| GroupedDBID | 05W 0R~ 1OC 1VH 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QH 7TN 7UA C1K F1W H96 JQ2 L.G |
| ID | FETCH-LOGICAL-c2975-dacb752bdf2f92d8c8b8296a272d0945b521cd0ac5ac02106d1652ebe2c3b98c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 215 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491351500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-0876 |
| IngestDate | Fri Jul 25 12:13:56 EDT 2025 Tue Nov 18 21:30:52 EST 2025 Sat Nov 29 02:23:38 EST 2025 Wed Jan 22 16:37:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2975-dacb752bdf2f92d8c8b8296a272d0945b521cd0ac5ac02106d1652ebe2c3b98c3 |
| Notes | Funding information National Key Research and Development Program of China, Grant/Award Number: 2018YFA0208600; National Natural Science Foundation of China, Grant/Award Numbers: 21533001, 21603035, 91645201, 91745201; Shanghai Pujiang Program, Grant/Award Number: 16PJ1401200; the Science and Technology Commission of Shanghai Municipality, Grant/Award Number: 08DZ2270500 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7486-1514 0000-0002-2906-5217 0000-0002-0055-1510 |
| PQID | 2306055094 |
| PQPubID | 2034594 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2306055094 crossref_primary_10_1002_wcms_1415 crossref_citationtrail_10_1002_wcms_1415 wiley_primary_10_1002_wcms_1415_WCMS1415 |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2019 2019-11-00 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November/December 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2019 |
| Publisher | Wiley Periodicals, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc – name: Wiley Subscription Services, Inc |
| References | e_1_2_10_2_18_1 e_1_2_10_2_17_1 e_1_2_10_2_39_1 e_1_2_10_2_19_1 e_1_2_10_2_3_1 e_1_2_10_2_2_1 e_1_2_10_2_5_1 e_1_2_10_2_4_1 Frisch MJ (e_1_2_10_2_14_1) 2016 e_1_2_10_2_30_1 e_1_2_10_2_7_1 e_1_2_10_2_32_1 e_1_2_10_2_6_1 e_1_2_10_2_10_1 e_1_2_10_2_31_1 e_1_2_10_2_9_1 e_1_2_10_2_11_1 e_1_2_10_2_34_1 e_1_2_10_2_8_1 e_1_2_10_2_12_1 e_1_2_10_2_33_1 e_1_2_10_2_13_1 e_1_2_10_2_36_1 e_1_2_10_2_35_1 e_1_2_10_2_16_1 e_1_2_10_2_38_1 e_1_2_10_2_15_1 e_1_2_10_2_37_1 e_1_2_10_2_29_1 e_1_2_10_2_28_1 e_1_2_10_1_2_1 e_1_2_10_2_40_1 e_1_2_10_2_21_1 e_1_2_10_2_20_1 e_1_2_10_2_23_1 e_1_2_10_2_22_1 e_1_2_10_2_25_1 e_1_2_10_2_24_1 e_1_2_10_2_27_1 e_1_2_10_2_26_1 |
| References_xml | – ident: e_1_2_10_2_34_1 doi: 10.1002/wcms.66 – ident: e_1_2_10_2_2_1 doi: 10.1021/ct301010b – ident: e_1_2_10_2_12_1 doi: 10.1021/acs.jctc.5b00641 – ident: e_1_2_10_2_15_1 doi: 10.1002/wcms.1159 – ident: e_1_2_10_2_19_1 doi: 10.1021/jp970984n – ident: e_1_2_10_2_26_1 doi: 10.1039/C4CP04456H – ident: e_1_2_10_2_27_1 doi: 10.1063/1.475562 – ident: e_1_2_10_2_17_1 doi: 10.1039/C7CP07060H – ident: e_1_2_10_2_9_1 doi: 10.1039/C6CP06895B – ident: e_1_2_10_2_28_1 doi: 10.1063/1.3457903 – ident: e_1_2_10_2_29_1 doi: 10.1080/00268970210162691 – ident: e_1_2_10_2_39_1 doi: 10.1063/1.1755655 – ident: e_1_2_10_2_31_1 doi: 10.1016/B978-012267351-1/50008-0 – ident: e_1_2_10_2_11_1 doi: 10.1021/ct4008475 – ident: e_1_2_10_2_4_1 doi: 10.1039/C7SC01459G – ident: e_1_2_10_2_16_1 doi: 10.1006/jcph.1995.1039 – ident: e_1_2_10_2_33_1 doi: 10.1103/PhysRevLett.45.1196 – ident: e_1_2_10_2_6_1 doi: 10.1021/acs.jpcc.8b08896 – ident: e_1_2_10_1_2_1 – ident: e_1_2_10_2_13_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_10_2_35_1 doi: 10.1103/PhysRevLett.98.146401 – volume-title: Gaussian 09, revision A02 year: 2016 ident: e_1_2_10_2_14_1 – ident: e_1_2_10_2_38_1 doi: 10.1103/PhysRevB.68.134206 – ident: e_1_2_10_2_3_1 doi: 10.1039/C4CP01485E – ident: e_1_2_10_2_8_1 doi: 10.1021/ct400238j – ident: e_1_2_10_2_20_1 doi: 10.1098/rsta.2004.1497 – ident: e_1_2_10_2_36_1 doi: 10.1002/jcc.25636 – ident: e_1_2_10_2_22_1 doi: 10.1063/1.480097 – ident: e_1_2_10_2_5_1 doi: 10.1039/C8SC03427C – ident: e_1_2_10_2_10_1 doi: 10.1021/ct9005147 – ident: e_1_2_10_2_25_1 doi: 10.1021/ct300250h – ident: e_1_2_10_2_21_1 doi: 10.1021/ct400403y – ident: e_1_2_10_2_40_1 doi: 10.1103/PhysRevB.46.21 – ident: e_1_2_10_2_18_1 doi: 10.1073/pnas.84.19.6611 – ident: e_1_2_10_2_37_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_10_2_24_1 doi: 10.1063/1.4862410 – ident: e_1_2_10_2_7_1 doi: 10.1021/acscatal.8b03077 – ident: e_1_2_10_2_32_1 doi: 10.1143/PTPS.103.1 – ident: e_1_2_10_2_30_1 doi: 10.1021/jacs.7b12896 – ident: e_1_2_10_2_23_1 doi: 10.1103/PhysRevB.59.3969 |
| SSID | ssj0000491231 |
| Score | 2.602141 |
| SecondaryResourceType | review_article |
| Snippet | Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1415 |
| SubjectTerms | Computer architecture Computer programs Computer simulation Exploration First principles Global optimization Interfaces LASP Molecular dynamics neural network Neural networks Potential energy potential energy surface Simulation Software SSW |
| Title | LASP: Fast global potential energy surface exploration |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1415 https://www.proquest.com/docview/2306055094 |
| Volume | 9 |
| WOSCitedRecordID | wos000491351500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1759-0884 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491231 issn: 1759-0876 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lFfTiW6xWWcSDl9BtdpPd6KlUi4dairXY25JksyBoW7pb_ftmso8qKAjecph9MJPJfJNkvkHokrJEaj-hWCsvwD5zfcx97WEWd0KRmBirpbDNJoLhMJxO-aiGbspamJwfotpwA8-w6zU4uJBpe00a-qHeUuPnUGDegKIqk3k1bh_7k0G1xWLAr1mXbcoVUI6BfK3kFnJJu3r-e0Raw8yvYNVGm_7Ov_5zF20XINPp5rNiD9X0bB9t9srebgeIDbrj0bXTF2nm5JQgzmKewcUhM9K2HNBJV8tEKO1oe0vPGvAQTfp3T717XHRQwAoqZnEslAwokXFCEk7iUIUyJJwJEpDY5HVUmuCtYlcoKhQkf8ZCjBJjV6I8yUPlHaH6bD7Tx8jx4EDSZ9LzBPc7biII10wa-AMQUEm_ia5KLUaqoBeHLhevUU6MTCJQRASKaKKLSnSRc2r8JNQqTREVbpVGkC-5FDj_zOes0n9_QfTcexjD4OTvoqdoywAintcatlA9W670GdpQ79lLujwv5tcn4u7TSw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJswXv8Xp1CI--BJW0zZtxJcxLRO7MdyGeytJmoKg21g7_fdN-rEpKAi-5eH6wV0u97sk9zuAS4fEXNqxg6SwXGQT00bUlhYi0bXHYhVjJWdZswm33_cmEzqowG1ZC5PzQ6w23LRnZOu1dnC9Id1as4Z-iLdEObquMK_ZxHK9KtTunvxxsNpjUehXLcxZzuU6FGn2tZJcyMSt1fPfQ9IaZ35Fq1m48bf_96M7sFXATKOdz4tdqMjpHtQ7ZXe3fSBBezi4MXyWpEZOCmLMZ6m-OqRGMisINJLlImZCGjK7p5eZ8ADG_v2o00VFDwUkdM0sipjgroN5FOOY4sgTHvcwJQy7OFKZncNV-BaRyYTDhE7_lI2Ig5VlsbA49YR1CNXpbCqPwLD0kaRNuGUxal-bMcNUEq4AkAaBgtsNuCrVGIqCYFz3uXgNc2pkHGpFhFoRDbhYic5zVo2fhJqlLcLCsZJQZ0ymo1n_1Ocyrf_-gvC50xvqwfHfRc-h3h31gjB46D-ewKaCRzSvPGxCNV0s5SlsiPf0JVmcFZPtE5Lk1zs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJuqL3-J0ahEffCl2adI24svYLIpzDOdwbyVJExB0G2un_75JPzYFBcG3PFw_uMvlfpfkfgdwTjzFJVbElsL1bew52KZYurYXNwOmdIyVnGXNJvxeLxiNaL8C12UtTM4PsdhwM56RrdfGweU0VpdL1tAP8ZZoRzcV5jVMKMFVqHUew2F3scei0a9emLOcyyfUNuxrJbmQgy4Xz38PSUuc-RWtZuEm3Pzfj27BRgEzrVY-L7ahIsc7sNYuu7vtgtdtDfpXVsiS1MpJQazpJDVXh_RIZgWBVjKfKSakJbN7epkJ92AY3jy1b-2ih4ItTM2sHTPBfYJ4rJCiKA5EwANEPYZ8FOvMjnAdvkXsMEGYMOmftpFHkLYsEi6ngXD3oTqejOUBWK45ksQed11GcdNRDFHpcQ2ADAgUHNfholRjJAqCcdPn4jXKqZFRZBQRGUXU4WwhOs1ZNX4SapS2iArHSiKTMTnEsP7pz2Va__0F0XP7YWAGh38XPYXVfieMune9-yNY1-iI5oWHDaims7k8hhXxnr4ks5Nirn0CWjzWtg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LASP%3A+Fast+global+potential+energy+surface+exploration&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Si%E2%80%90Da+Huang&rft.au=Cheng%2C+Shang&rft.au=Pei%E2%80%90Lin+Kang&rft.au=Xiao%E2%80%90Jie+Zhang&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=9&rft.issue=6&rft.spage=e1415&rft_id=info:doi/10.1002%2Fwcms.1415&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |