LASP: Fast global potential energy surface exploration

Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Wiley interdisciplinary reviews. Computational molecular science Ročník 9; číslo 6; s. e1415 - n/a
Hlavní autori: Huang, Si‐Da, Shang, Cheng, Kang, Pei‐Lin, Zhang, Xiao‐Jie, Liu, Zhi‐Pan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA Wiley Periodicals, Inc 01.11.2019
Wiley Subscription Services, Inc
Predmet:
ISSN:1759-0876, 1759-0884
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented. This article is categorized under: Software > Simulation Methods LASP is an atomistic simulation package targeted for solving the complex PES problems using the global neural network potentials.
AbstractList Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented. This article is categorized under: Software > Simulation Methods LASP is an atomistic simulation package targeted for solving the complex PES problems using the global neural network potentials.
Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented. This article is categorized under: Software > Simulation Methods
Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software architecture and functionalities of LASP will be overviewed. LASP features with the global neural network (G‐NN) potential that is generated by learning the first principles dataset of global PES from stochastic surface walking (SSW) global optimization. The combination of the SSW method with global NN potential facilitates greatly the PES exploration for a wide range of complex materials. Not limited to SSW‐NN global optimization, the software implements standard interfaces to dock with other energy/force evaluation packages and can also perform common tasks for computing PES properties, such as single‐ended and double‐ended transition state search, the molecular dynamics simulation with and without restraints. A few examples are given to illustrate the efficiency and capabilities of LASP code. Our ongoing efforts for code developing and G‐NN potential library building are also presented.This article is categorized under:Software > Simulation Methods
Author Zhang, Xiao‐Jie
Huang, Si‐Da
Shang, Cheng
Liu, Zhi‐Pan
Kang, Pei‐Lin
Author_xml – sequence: 1
  givenname: Si‐Da
  orcidid: 0000-0002-0055-1510
  surname: Huang
  fullname: Huang, Si‐Da
  organization: Fudan University
– sequence: 2
  givenname: Cheng
  orcidid: 0000-0001-7486-1514
  surname: Shang
  fullname: Shang, Cheng
  email: cshang@fudan.edu.cn
  organization: Fudan University
– sequence: 3
  givenname: Pei‐Lin
  surname: Kang
  fullname: Kang, Pei‐Lin
  organization: Fudan University
– sequence: 4
  givenname: Xiao‐Jie
  surname: Zhang
  fullname: Zhang, Xiao‐Jie
  organization: Fudan University
– sequence: 5
  givenname: Zhi‐Pan
  orcidid: 0000-0002-2906-5217
  surname: Liu
  fullname: Liu, Zhi‐Pan
  email: zpliu@fudan.edu.cn
  organization: Fudan University
BookMark eNp9kMFLwzAUxoNMcM4d_A8Knjx0S16btvE2ilOhojDFY0jSdHR0TU0ytv33dpt4EPRd3nf4fd_jfZdo0JpWI3RN8IRgDNOtWrsJiQk9Q0OSUhbiLIsHPzpNLtDYuRXuJ2YEIjJESTFbvN4Fc-F8sGyMFE3QGa9bX_dKt9ou94Hb2EooHehd1xgrfG3aK3Reicbp8fceoff5_Vv-GBYvD0_5rAgVsJSGpVAypSDLCioGZaYymQFLBKRQYhZTSYGoEgtFhcJAcFKShIKWGlQkWaaiEbo55XbWfG6083xlNrbtT3KIcIIp7WN66vZEKWucs7rina3Xwu45wfzQDD80ww_N9Oz0F6tqf_zJW1E3_zm2daP3f0fzj_x5cXR8ATKJdoo
CitedBy_id crossref_primary_10_1107_S2052520624007492
crossref_primary_10_1038_s41557_025_01898_6
crossref_primary_10_1016_j_ensm_2025_104546
crossref_primary_10_1021_acs_jctc_5c00051
crossref_primary_10_1002_ange_202401311
crossref_primary_10_1016_j_jclepro_2024_141410
crossref_primary_10_1021_acs_jpclett_5c02077
crossref_primary_10_1063_5_0070931
crossref_primary_10_1021_jacs_1c04624
crossref_primary_10_1038_s41929_024_01135_2
crossref_primary_10_1016_j_xcrp_2024_102043
crossref_primary_10_1038_s41467_020_19497_z
crossref_primary_10_1002_adfm_202203894
crossref_primary_10_1039_D0SC03918G
crossref_primary_10_1021_jacsau_5c00033
crossref_primary_10_1016_j_fuproc_2023_107807
crossref_primary_10_1063_5_0223453
crossref_primary_10_3390_molecules28052232
crossref_primary_10_6023_A22010003
crossref_primary_10_1088_1361_648X_ad44f9
crossref_primary_10_1016_j_nanoen_2025_111453
crossref_primary_10_1002_wcms_1654
crossref_primary_10_1016_j_actphy_2024_100041
crossref_primary_10_1016_j_jcat_2024_115587
crossref_primary_10_1021_jacs_4c10052
crossref_primary_10_1002_aelm_202300158
crossref_primary_10_1126_science_abi9828
crossref_primary_10_1021_jacs_3c09837
crossref_primary_10_3390_gels11010068
crossref_primary_10_1021_jacs_9b11535
crossref_primary_10_1038_s41929_019_0293_8
crossref_primary_10_1016_j_checat_2024_101231
crossref_primary_10_1021_acsami_5c09626
crossref_primary_10_1016_j_apcatb_2024_124462
crossref_primary_10_1002_cjoc_202100299
crossref_primary_10_1063_1_5113673
crossref_primary_10_1007_s11244_021_01473_6
crossref_primary_10_1063_5_0253847
crossref_primary_10_1016_j_mcat_2022_112500
crossref_primary_10_1021_jacs_2c06044
crossref_primary_10_1021_acscatal_5c00950
crossref_primary_10_1038_s41467_022_30522_1
crossref_primary_10_1038_s41467_025_58960_7
crossref_primary_10_1002_cssc_202000557
crossref_primary_10_1021_acs_jpclett_5c00181
crossref_primary_10_1038_s41929_022_00840_0
crossref_primary_10_1002_smll_202311161
crossref_primary_10_1038_s41467_025_59613_5
crossref_primary_10_1038_s41929_021_00703_0
crossref_primary_10_1016_j_apcatb_2024_124334
crossref_primary_10_26599_NR_2025_94907315
crossref_primary_10_1088_0256_307X_37_9_096802
crossref_primary_10_1039_D1SC03564A
crossref_primary_10_1039_C9EE01564G
crossref_primary_10_1021_jacs_3c10602
crossref_primary_10_1021_jacs_5c02046
crossref_primary_10_6023_A22110446
crossref_primary_10_1016_j_checat_2025_101458
crossref_primary_10_1360_SSC_2025_0096
crossref_primary_10_1021_acscatal_5c03463
crossref_primary_10_1002_aelm_202400911
crossref_primary_10_1038_s41467_025_59996_5
crossref_primary_10_1038_s41524_022_00959_5
crossref_primary_10_1016_j_jcat_2023_07_024
crossref_primary_10_1002_anie_202216383
crossref_primary_10_1021_jacs_1c02471
crossref_primary_10_1016_S1872_2067_21_64036_6
crossref_primary_10_1016_j_chempr_2022_07_026
crossref_primary_10_1063_5_0244175
crossref_primary_10_1002_anie_202401311
crossref_primary_10_1063_5_0016011
crossref_primary_10_1016_j_ces_2023_119176
crossref_primary_10_1021_acs_jpclett_5c01291
crossref_primary_10_1021_acs_jctc_5c00350
crossref_primary_10_1360_TB_2024_1207
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1038_s41467_024_47997_9
crossref_primary_10_1016_j_cplett_2022_139813
crossref_primary_10_1021_jacs_4c01285
crossref_primary_10_1038_s41524_023_00967_z
crossref_primary_10_1360_SSC_2025_0078
crossref_primary_10_1002_ange_202216383
crossref_primary_10_1016_j_mtcomm_2022_104319
crossref_primary_10_1126_science_adp6034
crossref_primary_10_1088_0256_307X_39_8_087101
crossref_primary_10_1039_D5SC01651G
crossref_primary_10_1016_S1872_2067_23_64402_X
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1021_jacs_4c14404
crossref_primary_10_1063_5_0160079
crossref_primary_10_1038_s41586_022_05532_0
crossref_primary_10_1002_qua_27389
crossref_primary_10_1360_SSC_2025_0084
crossref_primary_10_1038_s41563_024_02002_y
crossref_primary_10_1007_s12274_022_5012_0
crossref_primary_10_1007_s11244_021_01543_9
crossref_primary_10_1021_prechem_4c00051
crossref_primary_10_1021_acs_accounts_5c00416
crossref_primary_10_1063_1674_0068_cjcp2404057
Cites_doi 10.1002/wcms.66
10.1021/ct301010b
10.1021/acs.jctc.5b00641
10.1002/wcms.1159
10.1021/jp970984n
10.1039/C4CP04456H
10.1063/1.475562
10.1039/C7CP07060H
10.1039/C6CP06895B
10.1063/1.3457903
10.1080/00268970210162691
10.1063/1.1755655
10.1016/B978-012267351-1/50008-0
10.1021/ct4008475
10.1039/C7SC01459G
10.1006/jcph.1995.1039
10.1103/PhysRevLett.45.1196
10.1021/acs.jpcc.8b08896
10.1016/0927-0256(96)00008-0
10.1103/PhysRevLett.98.146401
10.1103/PhysRevB.68.134206
10.1039/C4CP01485E
10.1021/ct400238j
10.1098/rsta.2004.1497
10.1002/jcc.25636
10.1063/1.480097
10.1039/C8SC03427C
10.1021/ct9005147
10.1021/ct300250h
10.1021/ct400403y
10.1103/PhysRevB.46.21
10.1073/pnas.84.19.6611
10.1103/PhysRevB.59.1758
10.1063/1.4862410
10.1021/acscatal.8b03077
10.1143/PTPS.103.1
10.1021/jacs.7b12896
10.1103/PhysRevB.59.3969
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
DOI 10.1002/wcms.1415
DatabaseName CrossRef
Aqualine
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 10_1002_wcms_1415
WCMS1415
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2018YFA0208600
– fundername: Shanghai Pujiang Program
  funderid: 16PJ1401200
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 08DZ2270500
– fundername: National Natural Science Foundation of China
  funderid: 21533001; 21603035; 91645201; 91745201
GroupedDBID 05W
0R~
1OC
1VH
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
LH4
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
ID FETCH-LOGICAL-c2975-dacb752bdf2f92d8c8b8296a272d0945b521cd0ac5ac02106d1652ebe2c3b98c3
IEDL.DBID DRFUL
ISICitedReferencesCount 215
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491351500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-0876
IngestDate Fri Jul 25 12:13:56 EDT 2025
Tue Nov 18 21:30:52 EST 2025
Sat Nov 29 02:23:38 EST 2025
Wed Jan 22 16:37:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2975-dacb752bdf2f92d8c8b8296a272d0945b521cd0ac5ac02106d1652ebe2c3b98c3
Notes Funding information
National Key Research and Development Program of China, Grant/Award Number: 2018YFA0208600; National Natural Science Foundation of China, Grant/Award Numbers: 21533001, 21603035, 91645201, 91745201; Shanghai Pujiang Program, Grant/Award Number: 16PJ1401200; the Science and Technology Commission of Shanghai Municipality, Grant/Award Number: 08DZ2270500
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7486-1514
0000-0002-2906-5217
0000-0002-0055-1510
PQID 2306055094
PQPubID 2034594
PageCount 11
ParticipantIDs proquest_journals_2306055094
crossref_primary_10_1002_wcms_1415
crossref_citationtrail_10_1002_wcms_1415
wiley_primary_10_1002_wcms_1415_WCMS1415
PublicationCentury 2000
PublicationDate November/December 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November/December 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2019
Publisher Wiley Periodicals, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Periodicals, Inc
– name: Wiley Subscription Services, Inc
References e_1_2_10_2_18_1
e_1_2_10_2_17_1
e_1_2_10_2_39_1
e_1_2_10_2_19_1
e_1_2_10_2_3_1
e_1_2_10_2_2_1
e_1_2_10_2_5_1
e_1_2_10_2_4_1
Frisch MJ (e_1_2_10_2_14_1) 2016
e_1_2_10_2_30_1
e_1_2_10_2_7_1
e_1_2_10_2_32_1
e_1_2_10_2_6_1
e_1_2_10_2_10_1
e_1_2_10_2_31_1
e_1_2_10_2_9_1
e_1_2_10_2_11_1
e_1_2_10_2_34_1
e_1_2_10_2_8_1
e_1_2_10_2_12_1
e_1_2_10_2_33_1
e_1_2_10_2_13_1
e_1_2_10_2_36_1
e_1_2_10_2_35_1
e_1_2_10_2_16_1
e_1_2_10_2_38_1
e_1_2_10_2_15_1
e_1_2_10_2_37_1
e_1_2_10_2_29_1
e_1_2_10_2_28_1
e_1_2_10_1_2_1
e_1_2_10_2_40_1
e_1_2_10_2_21_1
e_1_2_10_2_20_1
e_1_2_10_2_23_1
e_1_2_10_2_22_1
e_1_2_10_2_25_1
e_1_2_10_2_24_1
e_1_2_10_2_27_1
e_1_2_10_2_26_1
References_xml – ident: e_1_2_10_2_34_1
  doi: 10.1002/wcms.66
– ident: e_1_2_10_2_2_1
  doi: 10.1021/ct301010b
– ident: e_1_2_10_2_12_1
  doi: 10.1021/acs.jctc.5b00641
– ident: e_1_2_10_2_15_1
  doi: 10.1002/wcms.1159
– ident: e_1_2_10_2_19_1
  doi: 10.1021/jp970984n
– ident: e_1_2_10_2_26_1
  doi: 10.1039/C4CP04456H
– ident: e_1_2_10_2_27_1
  doi: 10.1063/1.475562
– ident: e_1_2_10_2_17_1
  doi: 10.1039/C7CP07060H
– ident: e_1_2_10_2_9_1
  doi: 10.1039/C6CP06895B
– ident: e_1_2_10_2_28_1
  doi: 10.1063/1.3457903
– ident: e_1_2_10_2_29_1
  doi: 10.1080/00268970210162691
– ident: e_1_2_10_2_39_1
  doi: 10.1063/1.1755655
– ident: e_1_2_10_2_31_1
  doi: 10.1016/B978-012267351-1/50008-0
– ident: e_1_2_10_2_11_1
  doi: 10.1021/ct4008475
– ident: e_1_2_10_2_4_1
  doi: 10.1039/C7SC01459G
– ident: e_1_2_10_2_16_1
  doi: 10.1006/jcph.1995.1039
– ident: e_1_2_10_2_33_1
  doi: 10.1103/PhysRevLett.45.1196
– ident: e_1_2_10_2_6_1
  doi: 10.1021/acs.jpcc.8b08896
– ident: e_1_2_10_1_2_1
– ident: e_1_2_10_2_13_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_10_2_35_1
  doi: 10.1103/PhysRevLett.98.146401
– volume-title: Gaussian 09, revision A02
  year: 2016
  ident: e_1_2_10_2_14_1
– ident: e_1_2_10_2_38_1
  doi: 10.1103/PhysRevB.68.134206
– ident: e_1_2_10_2_3_1
  doi: 10.1039/C4CP01485E
– ident: e_1_2_10_2_8_1
  doi: 10.1021/ct400238j
– ident: e_1_2_10_2_20_1
  doi: 10.1098/rsta.2004.1497
– ident: e_1_2_10_2_36_1
  doi: 10.1002/jcc.25636
– ident: e_1_2_10_2_22_1
  doi: 10.1063/1.480097
– ident: e_1_2_10_2_5_1
  doi: 10.1039/C8SC03427C
– ident: e_1_2_10_2_10_1
  doi: 10.1021/ct9005147
– ident: e_1_2_10_2_25_1
  doi: 10.1021/ct300250h
– ident: e_1_2_10_2_21_1
  doi: 10.1021/ct400403y
– ident: e_1_2_10_2_40_1
  doi: 10.1103/PhysRevB.46.21
– ident: e_1_2_10_2_18_1
  doi: 10.1073/pnas.84.19.6611
– ident: e_1_2_10_2_37_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_10_2_24_1
  doi: 10.1063/1.4862410
– ident: e_1_2_10_2_7_1
  doi: 10.1021/acscatal.8b03077
– ident: e_1_2_10_2_32_1
  doi: 10.1143/PTPS.103.1
– ident: e_1_2_10_2_30_1
  doi: 10.1021/jacs.7b12896
– ident: e_1_2_10_2_23_1
  doi: 10.1103/PhysRevB.59.3969
SSID ssj0000491231
Score 2.602141
SecondaryResourceType review_article
Snippet Here we introduce the LASP code, which is designed for large‐scale atomistic simulation of complex materials with neural network (NN) potential. The software...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1415
SubjectTerms Computer architecture
Computer programs
Computer simulation
Exploration
First principles
Global optimization
Interfaces
LASP
Molecular dynamics
neural network
Neural networks
Potential energy
potential energy surface
Simulation
Software
SSW
Title LASP: Fast global potential energy surface exploration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1415
https://www.proquest.com/docview/2306055094
Volume 9
WOSCitedRecordID wos000491351500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1759-0884
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491231
  issn: 1759-0876
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lFfTiW6xWWcSDl9BtdpPd6KlUi4dairXY25JksyBoW7pb_ftmso8qKAjecph9MJPJfJNkvkHokrJEaj-hWCsvwD5zfcx97WEWd0KRmBirpbDNJoLhMJxO-aiGbspamJwfotpwA8-w6zU4uJBpe00a-qHeUuPnUGDegKIqk3k1bh_7k0G1xWLAr1mXbcoVUI6BfK3kFnJJu3r-e0Raw8yvYNVGm_7Ov_5zF20XINPp5rNiD9X0bB9t9srebgeIDbrj0bXTF2nm5JQgzmKewcUhM9K2HNBJV8tEKO1oe0vPGvAQTfp3T717XHRQwAoqZnEslAwokXFCEk7iUIUyJJwJEpDY5HVUmuCtYlcoKhQkf8ZCjBJjV6I8yUPlHaH6bD7Tx8jx4EDSZ9LzBPc7biII10wa-AMQUEm_ia5KLUaqoBeHLhevUU6MTCJQRASKaKKLSnSRc2r8JNQqTREVbpVGkC-5FDj_zOes0n9_QfTcexjD4OTvoqdoywAintcatlA9W670GdpQ79lLujwv5tcn4u7TSw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJswXv8Xp1CI--BJW0zZtxJcxLRO7MdyGeytJmoKg21g7_fdN-rEpKAi-5eH6wV0u97sk9zuAS4fEXNqxg6SwXGQT00bUlhYi0bXHYhVjJWdZswm33_cmEzqowG1ZC5PzQ6w23LRnZOu1dnC9Id1as4Z-iLdEObquMK_ZxHK9KtTunvxxsNpjUehXLcxZzuU6FGn2tZJcyMSt1fPfQ9IaZ35Fq1m48bf_96M7sFXATKOdz4tdqMjpHtQ7ZXe3fSBBezi4MXyWpEZOCmLMZ6m-OqRGMisINJLlImZCGjK7p5eZ8ADG_v2o00VFDwUkdM0sipjgroN5FOOY4sgTHvcwJQy7OFKZncNV-BaRyYTDhE7_lI2Ig5VlsbA49YR1CNXpbCqPwLD0kaRNuGUxal-bMcNUEq4AkAaBgtsNuCrVGIqCYFz3uXgNc2pkHGpFhFoRDbhYic5zVo2fhJqlLcLCsZJQZ0ymo1n_1Ocyrf_-gvC50xvqwfHfRc-h3h31gjB46D-ewKaCRzSvPGxCNV0s5SlsiPf0JVmcFZPtE5Lk1zs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GJuqL3-J0ahEffCl2adI24svYLIpzDOdwbyVJExB0G2un_75JPzYFBcG3PFw_uMvlfpfkfgdwTjzFJVbElsL1bew52KZYurYXNwOmdIyVnGXNJvxeLxiNaL8C12UtTM4PsdhwM56RrdfGweU0VpdL1tAP8ZZoRzcV5jVMKMFVqHUew2F3scei0a9emLOcyyfUNuxrJbmQgy4Xz38PSUuc-RWtZuEm3Pzfj27BRgEzrVY-L7ahIsc7sNYuu7vtgtdtDfpXVsiS1MpJQazpJDVXh_RIZgWBVjKfKSakJbN7epkJ92AY3jy1b-2ih4ItTM2sHTPBfYJ4rJCiKA5EwANEPYZ8FOvMjnAdvkXsMEGYMOmftpFHkLYsEi6ngXD3oTqejOUBWK45ksQed11GcdNRDFHpcQ2ADAgUHNfholRjJAqCcdPn4jXKqZFRZBQRGUXU4WwhOs1ZNX4SapS2iArHSiKTMTnEsP7pz2Va__0F0XP7YWAGh38XPYXVfieMune9-yNY1-iI5oWHDaims7k8hhXxnr4ks5Nirn0CWjzWtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LASP%3A+Fast+global+potential+energy+surface+exploration&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Si%E2%80%90Da+Huang&rft.au=Cheng%2C+Shang&rft.au=Pei%E2%80%90Lin+Kang&rft.au=Xiao%E2%80%90Jie+Zhang&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=9&rft.issue=6&rft.spage=e1415&rft_id=info:doi/10.1002%2Fwcms.1415&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon