Variational Embedding for Quantum Many‐Body Problems
Quantum embedding theories are powerful tools for approximately solving large‐scale, strongly correlated quantum many‐body problems. The main idea of quantum embedding is to glue together a highly accurate quantum theory at the local scale and a less accurate quantum theory at the global scale. We i...
Saved in:
| Published in: | Communications on pure and applied mathematics Vol. 75; no. 9; pp. 2033 - 2068 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Melbourne
John Wiley & Sons Australia, Ltd
01.09.2022
John Wiley and Sons, Limited |
| Subjects: | |
| ISSN: | 0010-3640, 1097-0312 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Quantum embedding theories are powerful tools for approximately solving large‐scale, strongly correlated quantum many‐body problems. The main idea of quantum embedding is to glue together a highly accurate quantum theory at the local scale and a less accurate quantum theory at the global scale. We introduce the first quantum embedding theory that is also variational, in that it is guaranteed to provide a one‐sided bound for the exact ground‐state energy. Our method, which we call the variational embedding method, provides a lower bound for this quantity. The method relaxes the representability conditions for quantum marginals to a set of linear and semidefinite constraints that operate at both local and global scales, resulting in a semidefinite program (SDP) to be solved numerically. The accuracy of the method can be systematically improved. The method is versatile and can be applied, in particular, to quantum many‐body problems for both quantum spin systems and fermionic systems, such as those arising from electronic structure calculations. We describe how the proper notion of quantum marginal, sufficiently general to accommodate both of these settings, should be phrased in terms of certain algebras of operators. We also investigate the duality theory for our SDPs, which offers valuable perspective on our method as an embedding theory. As a byproduct of this investigation, we describe a formulation for efficiently implementing the variational embedding method via a partial dualization procedure and the solution of quantum analogues of the Kantorovich problem from optimal transport theory. © 2021 Wiley Periodicals LLC. |
|---|---|
| AbstractList | Quantum embedding theories are powerful tools for approximately solving large‐scale, strongly correlated quantum many‐body problems. The main idea of quantum embedding is to glue together a highly accurate quantum theory at the local scale and a less accurate quantum theory at the global scale. We introduce the first quantum embedding theory that is also variational, in that it is guaranteed to provide a one‐sided bound for the exact ground‐state energy. Our method, which we call the variational embedding method, provides a lower bound for this quantity. The method relaxes the representability conditions for quantum marginals to a set of linear and semidefinite constraints that operate at both local and global scales, resulting in a semidefinite program (SDP) to be solved numerically. The accuracy of the method can be systematically improved. The method is versatile and can be applied, in particular, to quantum many‐body problems for both quantum spin systems and fermionic systems, such as those arising from electronic structure calculations. We describe how the proper notion of quantum marginal, sufficiently general to accommodate both of these settings, should be phrased in terms of certain algebras of operators. We also investigate the duality theory for our SDPs, which offers valuable perspective on our method as an embedding theory. As a byproduct of this investigation, we describe a formulation for efficiently implementing the variational embedding method via a partial dualization procedure and the solution of quantum analogues of the Kantorovich problem from optimal transport theory. © 2021 Wiley Periodicals LLC. |
| Author | Lindsey, Michael Lin, Lin |
| Author_xml | – sequence: 1 givenname: Lin surname: Lin fullname: Lin, Lin email: linlin@math.berkeley.edu organization: University of California, Berkeley – sequence: 2 givenname: Michael surname: Lindsey fullname: Lindsey, Michael email: michael.lindsey@cims.nyu.edu organization: Courant Institute |
| BookMark | eNp1kMtOwzAQRS1UJNrCgj-IxIpFWr_y8LJU5SEVUSRgazn2BKVK4mInqrLjE_hGvoT0sUKwmdFI596ZuSM0qG0NCF0SPCEY06neqAklIuUnaEiwSELMCB2gIcYEhyzm-AyNvF_3I-EpG6L4TblCNYWtVRksqgyMKer3ILcueG5V3bRV8Kjq7vvz68aaLlg5m5VQ-XN0mqvSw8Wxj9Hr7eJlfh8un-4e5rNlqKlIeAgi46IvJKWMGZ3mCvrNqQbGMIY4oqBpakzG8kQo4JEGk3EFoESUJyblbIyuDr4bZz9a8I1c29b1t3pJY0EjzGO6o6YHSjvrvYNc6qLZP9U4VZSSYLkLR_bhyH04veL6l2Ljikq57k_26L4tSuj-B-V8NTsofgBESXYw |
| CitedBy_id | crossref_primary_10_1007_s10915_024_02676_1 crossref_primary_10_1016_j_jcp_2024_113041 crossref_primary_10_1002_cpa_22244 crossref_primary_10_1016_j_jcp_2025_114331 crossref_primary_10_1038_s41467_023_43785_z crossref_primary_10_1007_s00205_024_02080_x |
| Cites_doi | 10.1103/PhysRevLett.108.200404 10.1103/PhysRevB.99.081110 10.1088/1742‐6596/36/1/014 10.1007/978-3-540-71050-9 10.1021/acs.accounts.6b00356 10.1103/PhysRevLett.106.080403 10.1021/acs.jctc.9b00529 10.1103/RevModPhys.78.865 10.1063/1.1636721 10.1063/1.1360199 10.1142/p665 10.1103/PhysRevLett.109.186404 10.1103/PhysRevB.69.205108 10.1063/1.5007779 10.1103/PhysRevLett.93.213001 10.2996/kmj/1138038812 10.1103/PhysRevA.57.4219 10.1063/1.2222358 10.1063/1.3283052 10.1137/20M1310977 10.1137/090748330 10.1063/1.5023210 10.1103/RevModPhys.68.13 10.1007/s00220‐015‐2485‐7 10.1016/j.tcs.2019.08.026 10.1021/ct301044e 10.1103/PhysRevLett.108.263002 10.1137/18M1188069 10.1016/j.aop.2014.06.013 10.1103/PhysRevA.75.042511 10.1017/S0956792519000172 10.1016/j.comptc.2012.08.018 10.1016/j.aop.2007.10.001 10.1103/PhysRevB.81.224505 10.1103/PhysRevA.59.51 10.1103/PhysRevLett.69.2863 10.1103/PhysRevB.87.205126 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1002/cpa.21984 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1097-0312 |
| EndPage | 2068 |
| ExternalDocumentID | 10_1002_cpa_21984 CPA21984 |
| Genre | article |
| GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ABUFD ADXHL AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X JQ2 |
| ID | FETCH-LOGICAL-c2974-e9b49e9b18233dc8fae0018ce3300e652ec28ddb3f79ae45cedb4aeea95f7d843 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622310900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-3640 |
| IngestDate | Fri Jul 25 19:09:51 EDT 2025 Sat Nov 29 04:07:14 EST 2025 Tue Nov 18 22:17:36 EST 2025 Wed Jan 22 16:25:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2974-e9b49e9b18233dc8fae0018ce3300e652ec28ddb3f79ae45cedb4aeea95f7d843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2692504624 |
| PQPubID | 48818 |
| PageCount | 36 |
| ParticipantIDs | proquest_journals_2692504624 crossref_citationtrail_10_1002_cpa_21984 crossref_primary_10_1002_cpa_21984 wiley_primary_10_1002_cpa_21984_CPA21984 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Melbourne |
| PublicationPlace_xml | – name: Melbourne – name: New York |
| PublicationTitle | Communications on pure and applied mathematics |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons Australia, Ltd John Wiley and Sons, Limited |
| Publisher_xml | – name: John Wiley & Sons Australia, Ltd – name: John Wiley and Sons, Limited |
| References | 2004; 120 2013; 26 2015; 165–176 2012 2006; 78 2011 2010 2006; 36 2019; 15 2009 2016; 343 1988; 11 2008 2007 2006 2004 2018; 40 2008; 323 2013; 9 2014; 349 2009; 31 2013; 1003 2020 1999; 59 1987 2019 2018 1988; 68 1982 1992; 69 2013 1996; 68 2009; 1 2016; 49 2001; 114 1989 1998; 57 Cuturi M (e_1_2_1_9_1) 2013; 26 Szabo A. (e_1_2_1_40_1) 1989 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_23_1 e_1_2_1_46_1 Grant M. (e_1_2_1_14_1) 2013 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_26_1 e_1_2_1_47_1 Wainwright M. J. (e_1_2_1_43_1) 2008 Bratteli (e_1_2_1_5_1) 1987 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 Pearl J (e_1_2_1_32_1) 1982 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 Schilling C. (e_1_2_1_36_1) 2015 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 Negele J. W. (e_1_2_1_29_1) 1988 e_1_2_1_38_1 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_18_1 e_1_2_1_19_1 |
| References_xml | – year: 2011 – year: 2009 – volume: 78 start-page: 865 issue: 3 year: 2006 article-title: Electronic structure calculations with dynamical mean‐field theory publication-title: Rev. Mod. Phys. – volume: 31 start-page: 3744 issue: 5 year: 2009 end-page: 3759 article-title: Breaking the curse of dimensionality, or how to use svd in many dimensions publication-title: SIAM J. Sci. Comput. – volume: 1003 start-page: 22 year: 2013 end-page: 27 article-title: The second‐order reduced density matrix method and the two‐dimensional hubbard model publication-title: Comput. Theor. Chem. – volume: 349 start-page: 117 year: 2014 end-page: 158 article-title: A practical introduction to tensor networks: Matrix product states and projected entangled pair states publication-title: Ann. Phys. – volume: 9 start-page: 1428 issue: 3 year: 2013 end-page: 1432 article-title: Density matrix embedding: A strong‐coupling quantum embedding theory publication-title: J. Chem. Theory Comput. – volume: 49 start-page: 2705 issue: 12 year: 2016 end-page: 2712 article-title: Quantum embedding theories publication-title: Acc. Chem. Res. – volume: 11 start-page: 5 issue: 1 year: 1988 end-page: 7 article-title: Elementary proof for Sion's minimax theorem publication-title: Kodai Math. J. – volume: 68 year: 1988 – volume: 68 start-page: 13 issue: 1 year: 1996 end-page: 125 article-title: Dynamical mean‐field theory of strongly correlated fermion systems and the limit of infinite dimensions publication-title: Rev. Modern Phys. – volume: 40 start-page: A4131 issue: 6 year: 2018 end-page: A4157 publication-title: Yuan, Y.‐x. A semismooth Newton method for semidefinite programs and its applications in electronic structure calculations. SIAM J. Sci. Comput. – year: 1987 – year: 2007 – year: 1989 – volume: 15 start-page: 4497 issue: 8 year: 2019 end-page: 4506 article-title: Bootstrap embedding for molecules publication-title: J. Chem. Theory Comput. – volume: 120 start-page: 2095 issue: 5 year: 2004 end-page: 2104 article-title: The reduced density matrix method for electronic structure calculations and the role of three‐index representability conditions publication-title: J. Chem. Phys. – volume: 114 start-page: 8282 issue: 19 year: 2001 end-page: 8292 article-title: Variational calculations of fermion second‐order reduced density matrices by semidefinite programming algorithm publication-title: J. Chem. Phys. – year: 2018 – year: 2010 – year: 2012 – volume: 57 start-page: 4219 issue: 6 year: 1998 article-title: Determining quantum energies and two‐particle density matrices without wave functions. publication-title: Rev. A – volume: 1 year: 2009 – volume: 323 start-page: 1899 issue: 8 year: 2008 end-page: 1946 article-title: Quantum graphical models and belief propagation publication-title: Ann. Phys. – volume: 165–176 year: 2015 – year: 2008 – year: 2006 – year: 2004 – year: 2020 – volume: 26 start-page: 2292 year: 2013 end-page: 2300 article-title: Sinkhorn distances: Lightspeed computation of optimal transport publication-title: Advances in Neural Information Processing Systems – volume: 36 start-page: 72 year: 2006 publication-title: Conf. Ser. – year: 2019 – volume: 69 start-page: 2863 issue: 19 year: 1992 publication-title: Rev. Lett. – volume: 343 start-page: 165 issue: 1 year: 2016 end-page: 205 article-title: On the mean field and classical limits of quantum mechanics publication-title: Comm. Math. Phys. – start-page: 133 year: 1982 end-page: 136 article-title: Reverend Bayes on inference engines: a distributed hierarchical approach. publication-title: Artificial Intelligence – year: 2013 – volume: 59 start-page: 51 issue: 1 year: 1999 article-title: Strictly correlated electrons in density‐functional theory. publication-title: Rev. A – start-page: 133 year: 1982 ident: e_1_2_1_32_1 article-title: Reverend Bayes on inference engines: a distributed hierarchical approach. Proceedings of the Second National Conference on publication-title: Artificial Intelligence – ident: e_1_2_1_3_1 doi: 10.1103/PhysRevLett.108.200404 – ident: e_1_2_1_45_1 doi: 10.1103/PhysRevB.99.081110 – ident: e_1_2_1_16_1 doi: 10.1088/1742‐6596/36/1/014 – ident: e_1_2_1_42_1 doi: 10.1007/978-3-540-71050-9 – ident: e_1_2_1_39_1 doi: 10.1021/acs.accounts.6b00356 – ident: e_1_2_1_33_1 doi: 10.1103/PhysRevLett.106.080403 – ident: e_1_2_1_46_1 doi: 10.1021/acs.jctc.9b00529 – ident: e_1_2_1_20_1 doi: 10.1103/RevModPhys.78.865 – volume-title: Frontiers in Physics year: 1988 ident: e_1_2_1_29_1 – ident: e_1_2_1_47_1 doi: 10.1063/1.1636721 – ident: e_1_2_1_28_1 doi: 10.1063/1.1360199 – ident: e_1_2_1_21_1 doi: 10.1142/p665 – ident: e_1_2_1_17_1 doi: 10.1103/PhysRevLett.109.186404 – ident: e_1_2_1_4_1 doi: 10.1103/PhysRevB.69.205108 – ident: e_1_2_1_24_1 doi: 10.1063/1.5007779 – ident: e_1_2_1_26_1 doi: 10.1103/PhysRevLett.93.213001 – ident: e_1_2_1_19_1 doi: 10.2996/kmj/1138038812 – ident: e_1_2_1_25_1 doi: 10.1103/PhysRevA.57.4219 – ident: e_1_2_1_7_1 doi: 10.1063/1.2222358 – ident: e_1_2_1_10_1 doi: 10.1063/1.3283052 – ident: e_1_2_1_15_1 doi: 10.1137/20M1310977 – volume: 26 start-page: 2292 year: 2013 ident: e_1_2_1_9_1 article-title: Sinkhorn distances: Lightspeed computation of optimal transport publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_1_31_1 doi: 10.1137/090748330 – ident: e_1_2_1_35_1 doi: 10.1063/1.5023210 – ident: e_1_2_1_12_1 doi: 10.1103/RevModPhys.68.13 – volume-title: Mathematical results in quantum mechanics year: 2015 ident: e_1_2_1_36_1 – ident: e_1_2_1_13_1 doi: 10.1007/s00220‐015‐2485‐7 – ident: e_1_2_1_48_1 doi: 10.1016/j.tcs.2019.08.026 – volume-title: Boston‐Delft year: 2008 ident: e_1_2_1_43_1 – ident: e_1_2_1_6_1 – ident: e_1_2_1_18_1 doi: 10.1021/ct301044e – ident: e_1_2_1_27_1 doi: 10.1103/PhysRevLett.108.263002 – volume-title: Modern quantum chemistry: Introduction to advanced electronic structure theory year: 1989 ident: e_1_2_1_40_1 – ident: e_1_2_1_23_1 doi: 10.1137/18M1188069 – volume-title: CVX: Matlab software for disciplined convex programming year: 2013 ident: e_1_2_1_14_1 – ident: e_1_2_1_30_1 doi: 10.1016/j.aop.2014.06.013 – ident: e_1_2_1_37_1 doi: 10.1103/PhysRevA.75.042511 – volume-title: O.; Robinson, D. W. Operator algebras and quantum statistical mechanics. 1. C*‐ and W*‐algebras, symmetry groups, decomposition of states year: 1987 ident: e_1_2_1_5_1 – ident: e_1_2_1_41_1 – ident: e_1_2_1_8_1 doi: 10.1017/S0956792519000172 – ident: e_1_2_1_2_1 doi: 10.1016/j.comptc.2012.08.018 – ident: e_1_2_1_22_1 doi: 10.1016/j.aop.2007.10.001 – ident: e_1_2_1_34_1 doi: 10.1103/PhysRevB.81.224505 – ident: e_1_2_1_38_1 doi: 10.1103/PhysRevA.59.51 – ident: e_1_2_1_44_1 doi: 10.1103/PhysRevLett.69.2863 – ident: e_1_2_1_11_1 doi: 10.1103/PhysRevB.87.205126 |
| SSID | ssj0011483 |
| Score | 2.4577749 |
| Snippet | Quantum embedding theories are powerful tools for approximately solving large‐scale, strongly correlated quantum many‐body problems. The main idea of quantum... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2033 |
| SubjectTerms | Electronic structure Embedding Lower bounds Quantum theory Transport theory |
| Title | Variational Embedding for Quantum Many‐Body Problems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21984 https://www.proquest.com/docview/2692504624 |
| Volume | 75 |
| WOSCitedRecordID | wos000622310900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011483 issn: 0010-3640 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5014MefItvinjwUu0m6SN48rGLB5VVVPZWmmQCgq5iXcGbP8Hf6C9x0na7CgqCl1LaaQnTeXyTNN8AbEcB2pay6BM05r4QIfOzhLd8I61iUsQZxrpoNhGfnye9nuyOwf5wL0zJD1FPuDnPKOK1c_BM5Xsj0lD9mO2SuyViHJqM7FY0oHl82bk-rRcRCOmXC8wu1EQiGBILBWyvfvh7OhphzK9ItUg1nZl_DXIWpiuE6R2UJjEHY9ifh6mzmp41X4DohirkahbQa98rNC6DeYRfvYsBqXpw751RkPh4ez98MK9et2w6ky_Cdad9dXTiVw0UfM2oTvBRKiHpQDUE50YnNkPXhE8j50GAUchQs8QYxW0sMxShRqNEhpjJ0MYmEXwJGv2HPi6DR5WObhlGxTQaoVQoI0tXtFZKWoKYuAI7Qz2mumIXd00u7tKSF5mlpIq0UMUKbNWijyWlxk9C68OPkVZelacsko5xLWJ0e6dQ--8vSI-6B8XJ6t9F12CSud0NxS9k69B4fhrgBkzol-fb_GmzMq9PN2rTyA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt_g2iAcvselm81jwotVSsS1VVLyF7O4EBPugtYI3f4K_0V_ibJJGBQXBSwjJJCyTmdlvZrPfABz4DiYVmaBN0Ni1OfeYHYduxdYikUzwIMZApc0mglYrvL8X7Qk4Hu-FyfghioKb8Yw0XhsHNwXp8idrqOrHR-RvIZ-EKU5m5JVg6uy6dtsoVhEI6mcrzCbW-NwZMws5rFw8_H0--gSZX6FqOtfUFv43ykWYzzGmdZIZxRJMYHcZ5poFQetwBfw7ypHzOqB13pGozRxmEYK1rkak7FHHalKYeH99O-3pF6udtZ0ZrsJt7fymWrfzFgq2YpQp2CgkF3SgLMJ1tQqTGE0bPoWu6zjoewwVC7WWbhKIGLmnUEseI8bCSwIdcncNSt1eF9fBolxHVTSjdBo1l9ITfkJXlJJSJAQycQMOx4qMVM4vbtpcPEYZMzKLSBVRqooN2C9E-xmpxk9C2-OvEeV-NYyYLwznms_o9mGq999fEFXbJ-nJ5t9F92CmftNsRI2L1uUWzDKz1yH9oWwbSk-DEe7AtHp-ehgOdnNb-wDr7te4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UiujBt_g2iIdeYtPN5rHgRW2LopYqVryF7O4sCFqLsYI3f4K_0V_i5NFUQUHwEkIyCcuXndlvdrPfAOz5Dpq6NGgTNXZtzj1mx6Fbt7UwkgkexBiorNhE0G6Ht7eiMwYHw70wuT5EOeGWekYWr1MHx742tZFqqOrH--RvIR-HCveET25ZaVy1uuflKgJR_XyFOY01PneGykIOq5UPfx-PRiTzK1XNxprW3P9aOQ-zBce0DvNOsQBj2FuEmYtSoDVZAv-GcuRiHtBqPkjU6RhmEYO1LgcE9uDBuqAw8fH2fvSoX61OXnYmWYZuq3l9fGIXJRRsxShTsFFILuhAWYTrahWaGNMyfApd13HQ9xgqFmotXROIGLmnUEseI8bCM4EOubsCE73HHq6CRbmOqmtG6TRqLiUBbuiKUlIKQyQT16A6BDJShb54WubiPsqVkVlEUEQZFGuwW5r2c1GNn4w2h18jKvwqiZgvUs01n9Htaob77y-IjjuH2cn63013YKrTaEXnp-2zDZhm6VaH7H-yTZh4fhrgFkyql-e75Gm76GqfsrfXMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Embedding+for+Quantum+Many%E2%80%90Body+Problems&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Lin%2C+Lin&rft.au=Lindsey%2C+Michael&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=75&rft.issue=9&rft.spage=2033&rft.epage=2068&rft_id=info:doi/10.1002%2Fcpa.21984&rft.externalDBID=10.1002%252Fcpa.21984&rft.externalDocID=CPA21984 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |