Efficient approximation algorithm for the Schrödinger–Possion system

In this article, we study an efficient approximation algorithm for the Schrödinger–Possion system arising in the resonant tunneling diode (RTD) structure. By following the classical Gummel iterative procedure, we first decouple this nonlinear system and prove the convergence of the iteration method....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical methods for partial differential equations Ročník 37; číslo 1; s. 422 - 443
Hlavní autoři: He, Xuefei, Wang, Kun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.01.2021
Wiley Subscription Services, Inc
Témata:
ISSN:0749-159X, 1098-2426
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we study an efficient approximation algorithm for the Schrödinger–Possion system arising in the resonant tunneling diode (RTD) structure. By following the classical Gummel iterative procedure, we first decouple this nonlinear system and prove the convergence of the iteration method. Then via introducing a novel spatial discrete method, we solve efficiently the decoupled Schrödinger and Possion equations with discontinuous coefficients on no‐uniform meshes at each iterative step, respectively. Compared with the traditional ones, the algorithm considered here not only has a less restriction on the discrete mesh, but also is more accurate. Finally, some numerical experiments are shown to confirm the efficiency of the proposed algorithm.
Bibliografie:Funding information
Chongqing University Graduate Key Courses, 201805032; Fundamental Research Funds for the Central Universities, 2019CDXYST0016; National Natural Science Foundation of China, 91630205
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22534