An adapted vector autoregressive expectation maximization imputation algorithm for climate data networks

Missingness in historical climate data networks is a pervasive phenomenon due to the conditions under which these measurements are made. Accurate estimation of these data is a critical issue as projections of future climate depend on a reliable historical climate record. After all, how can the impac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wiley interdisciplinary reviews. Computational statistics Ročník 12; číslo 6; s. e1494 - n/a
Hlavní autoři: Washington, Benjamin J., Seymour, Lynne
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.11.2020
Wiley Subscription Services, Inc
Témata:
ISSN:1939-5108, 1939-0068
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Missingness in historical climate data networks is a pervasive phenomenon due to the conditions under which these measurements are made. Accurate estimation of these data is a critical issue as projections of future climate depend on a reliable historical climate record. After all, how can the impact of climate change be reliably forecasted when a large proportion of historical climate records are permeated with missing data? We propose an iterative multivariate infilling algorithm and explore its effectiveness on three United States temperature networks of varying densities (number of stations per unit area). Although other multivariate data are not explored here, the application of this infilling procedure is not restricted to climate networks exclusively. We also explore its utility as a function of the type of missing data (i.e., whether or not there is a mechanism or pattern behind the missing observations themselves) and the proportion of missing data within the network. As one may expect, we observe a slightly smaller root mean square error (RMSE) for temperature networks with more stations and less missingness. Somewhat surprisingly, the RMSE tends to be lower for data which is missing at random (there is some mechanism behind the missing data) rather than for data that is missing completely at random (no mechanism behind the missing data). Not surprisingly, the RMSE is largest for data which is missing not at random (missing data are directly related to the values of the observations themselves). Perhaps the most surprising result observed in these networks is that the inclusion of lagged temperature data does not necessarily improve the accuracy of data imputation. The typical RMSE for monthly minimum temperature networks varies from around 1.5 to 2.5°C. This article is categorized under: Data: Types and Structure > Massive Data Data: Types and Structure > Image and Spatial Data Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Applications of Computational Statistics > Computational Climate Change and Numerical Weather Forecasting The RMSE of an iterative adapted vector autoregressive expectation–maximization algorithm as a function of Iteration (left) and autoregressive order (right) for three types of missing data MCAR (top), MAR (middle) and MNAR (bottom).
AbstractList Missingness in historical climate data networks is a pervasive phenomenon due to the conditions under which these measurements are made. Accurate estimation of these data is a critical issue as projections of future climate depend on a reliable historical climate record. After all, how can the impact of climate change be reliably forecasted when a large proportion of historical climate records are permeated with missing data? We propose an iterative multivariate infilling algorithm and explore its effectiveness on three United States temperature networks of varying densities (number of stations per unit area). Although other multivariate data are not explored here, the application of this infilling procedure is not restricted to climate networks exclusively. We also explore its utility as a function of the type of missing data (i.e., whether or not there is a mechanism or pattern behind the missing observations themselves) and the proportion of missing data within the network. As one may expect, we observe a slightly smaller root mean square error (RMSE) for temperature networks with more stations and less missingness. Somewhat surprisingly, the RMSE tends to be lower for data which is missing at random (there is some mechanism behind the missing data) rather than for data that is missing completely at random (no mechanism behind the missing data). Not surprisingly, the RMSE is largest for data which is missing not at random (missing data are directly related to the values of the observations themselves). Perhaps the most surprising result observed in these networks is that the inclusion of lagged temperature data does not necessarily improve the accuracy of data imputation. The typical RMSE for monthly minimum temperature networks varies from around 1.5 to 2.5°C.This article is categorized under:Data: Types and Structure > Massive DataData: Types and Structure > Image and Spatial DataData: Types and Structure > Time Series, Stochastic Processes, and Functional DataApplications of Computational Statistics > Computational Climate Change and Numerical Weather Forecasting
Missingness in historical climate data networks is a pervasive phenomenon due to the conditions under which these measurements are made. Accurate estimation of these data is a critical issue as projections of future climate depend on a reliable historical climate record. After all, how can the impact of climate change be reliably forecasted when a large proportion of historical climate records are permeated with missing data? We propose an iterative multivariate infilling algorithm and explore its effectiveness on three United States temperature networks of varying densities (number of stations per unit area). Although other multivariate data are not explored here, the application of this infilling procedure is not restricted to climate networks exclusively. We also explore its utility as a function of the type of missing data (i.e., whether or not there is a mechanism or pattern behind the missing observations themselves) and the proportion of missing data within the network. As one may expect, we observe a slightly smaller root mean square error (RMSE) for temperature networks with more stations and less missingness. Somewhat surprisingly, the RMSE tends to be lower for data which is missing at random (there is some mechanism behind the missing data) rather than for data that is missing completely at random (no mechanism behind the missing data). Not surprisingly, the RMSE is largest for data which is missing not at random (missing data are directly related to the values of the observations themselves). Perhaps the most surprising result observed in these networks is that the inclusion of lagged temperature data does not necessarily improve the accuracy of data imputation. The typical RMSE for monthly minimum temperature networks varies from around 1.5 to 2.5°C. This article is categorized under: Data: Types and Structure > Massive Data Data: Types and Structure > Image and Spatial Data Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Applications of Computational Statistics > Computational Climate Change and Numerical Weather Forecasting The RMSE of an iterative adapted vector autoregressive expectation–maximization algorithm as a function of Iteration (left) and autoregressive order (right) for three types of missing data MCAR (top), MAR (middle) and MNAR (bottom).
Missingness in historical climate data networks is a pervasive phenomenon due to the conditions under which these measurements are made. Accurate estimation of these data is a critical issue as projections of future climate depend on a reliable historical climate record. After all, how can the impact of climate change be reliably forecasted when a large proportion of historical climate records are permeated with missing data? We propose an iterative multivariate infilling algorithm and explore its effectiveness on three United States temperature networks of varying densities (number of stations per unit area). Although other multivariate data are not explored here, the application of this infilling procedure is not restricted to climate networks exclusively. We also explore its utility as a function of the type of missing data (i.e., whether or not there is a mechanism or pattern behind the missing observations themselves) and the proportion of missing data within the network. As one may expect, we observe a slightly smaller root mean square error (RMSE) for temperature networks with more stations and less missingness. Somewhat surprisingly, the RMSE tends to be lower for data which is missing at random (there is some mechanism behind the missing data) rather than for data that is missing completely at random (no mechanism behind the missing data). Not surprisingly, the RMSE is largest for data which is missing not at random (missing data are directly related to the values of the observations themselves). Perhaps the most surprising result observed in these networks is that the inclusion of lagged temperature data does not necessarily improve the accuracy of data imputation. The typical RMSE for monthly minimum temperature networks varies from around 1.5 to 2.5°C. This article is categorized under: Data: Types and Structure > Massive Data Data: Types and Structure > Image and Spatial Data Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Applications of Computational Statistics > Computational Climate Change and Numerical Weather Forecasting
Author Seymour, Lynne
Washington, Benjamin J.
Author_xml – sequence: 1
  givenname: Benjamin J.
  orcidid: 0000-0003-1816-5033
  surname: Washington
  fullname: Washington, Benjamin J.
  email: bwash318@uga.edu
  organization: University of Georgia
– sequence: 2
  givenname: Lynne
  orcidid: 0000-0002-8023-5269
  surname: Seymour
  fullname: Seymour, Lynne
  organization: University of Georgia
BookMark eNp9UMtOwzAQtBBItIUDfxCJE4e0tuPEybGqeFSqxAEQx8hN1q1LEgfb6YOvxyU9IYEsrXdHs7O7M0TnjW4AoRuCxwRjOtmpwo4Jy9gZGpAsykKMk_T8lMcEp5doaO3Go9y_AVpPm0CUonVQBlsonDaB6HyElQFr1RYC2LceF07pJqjFXtXqqy9U3XYnXFQrbZRb14H0AkWlauEgKIUTQQNup82HvUIXUlQWrk__CL093L_OnsLF8-N8Nl2EBc04CzOIcEyZpFGcRTgpJZEUWBYXS8qiRDKREE4I53QJcZGlMuUCJ4IkEigpsaDRCN32uq3Rnx1Yl290Zxo_MqfM-0IYJ9yz7npWYbS1BmTeGr-0OeQE50cj86OR-dFIz5384haqv9sZoar_OnaqgsPf0vn7fPby0_EN7cmJWQ
CitedBy_id crossref_primary_10_5194_ascmo_9_1_2023
Cites_doi 10.1175/1520-0442(1995)008<2787:CTSWPC>2.0.CO;2
10.1016/j.atmosenv.2004.02.026
10.1007/s00704-012-0723-x
10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2
10.1016/S1364-8152(01)00008-1
10.1017/S0003055401000235
10.1016/j.neucom.2017.03.097
10.1002/joc.6129
10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
10.1175/2011BAMS3015.1
10.1201/9781439821862
10.1007/978-3-319-24277-4
10.1093/biomet/63.3.581
10.2307/1912017
10.1201/b11826
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
JQ2
L.G
DOI 10.1002/wics.1494
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1939-0068
EndPage n/a
ExternalDocumentID 10_1002_wics_1494
WICS1494
Genre reviewArticle
GroupedDBID 05W
0R~
1OC
1VH
33P
4.4
53G
5DZ
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
DCZOG
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
RNS
ROL
SUPJJ
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WYJ
XBAML
XV2
ZZTAW
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
LH4
7QH
7UA
C1K
F1W
H96
H97
JQ2
L.G
ID FETCH-LOGICAL-c2974-9e30524f2359306df1f2e495cb2436f4a61711772be5c98f87a06a16fe21d0a23
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504200800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-5108
IngestDate Fri Jul 25 22:45:30 EDT 2025
Tue Nov 18 22:36:23 EST 2025
Sat Nov 29 03:49:26 EST 2025
Wed Jan 22 16:31:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2974-9e30524f2359306df1f2e495cb2436f4a61711772be5c98f87a06a16fe21d0a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8023-5269
0000-0003-1816-5033
PQID 2449414717
PQPubID 2034593
PageCount 15
ParticipantIDs proquest_journals_2449414717
crossref_primary_10_1002_wics_1494
crossref_citationtrail_10_1002_wics_1494
wiley_primary_10_1002_wics_1494_WICS1494
PublicationCentury 2000
PublicationDate November/December 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November/December 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational statistics
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 276
1976; 63
1980; 48
2012; 112
2001
2012
2000
2004; 38
2011; 92
2019; 39
1997
2018
2016
2001; 27
2014; 29
2013
2001; 14
2001; 95
1996; 9
1995; 8
1999
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
Krishnamoorthy A. (e_1_2_9_7_1) 2013
Raghunathan T. E. (e_1_2_9_10_1) 2001; 27
Ferrari G. T. (e_1_2_9_3_1) 2014; 29
e_1_2_9_9_1
e_1_2_9_15_1
Van Buuren S. (e_1_2_9_19_1) 1999
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_18_1
References_xml – volume: 95
  start-page: 49
  issue: 1
  year: 2001
  end-page: 69
  article-title: Analyzing incomplete political science data: An alternative algorithm for multiple imputation
  publication-title: American Political Science Review
– start-page: 70
  year: 2013
  end-page: 72
– volume: 29
  start-page: 21
  year: 2014
  end-page: 28
  article-title: Missing data imputation of climate datasets: Implications to modeling extreme drought events
  publication-title: Brazilian Journal of Meteorology
– volume: 14
  start-page: 853
  issue: 5
  year: 2001
  end-page: 871
  article-title: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
  publication-title: Journal of Climate
– volume: 48
  start-page: 1
  year: 1980
  end-page: 48
  article-title: Macroeconomics and reality
  publication-title: Econometrica: Journal of the Econometric Society
– volume: 92
  start-page: 704
  year: 2011
  end-page: 708
  article-title: The integrated surface database: Recent developments and partnerships
  publication-title: Bulletin of the American
– volume: 38
  start-page: 2895
  issue: 18
  year: 2004
  end-page: 2907
  article-title: Methods for imputation of missing values in air quality data sets
  publication-title: Atmospheric Environment
– volume: 27
  start-page: 85
  issue: 1
  year: 2001
  end-page: 96
  article-title: A multivariate technique for multiply imputing missing values using a sequence of regression models
  publication-title: Survey Methodology
– volume: 8
  start-page: 2787
  issue: 11
  year: 1995
  end-page: 2809
  article-title: Climatological time series with periodic correlation
  publication-title: Journal of Climate
– year: 2001
– volume: 9
  start-page: 1403
  issue: 6
  year: 1996
  end-page: 1420
  article-title: Reconstruction of historical sea surface temperatures using empirical orthogonal functions
  publication-title: Journal of Climate
– volume: 39
  start-page: 5104
  year: 2019
  end-page: 5123
  article-title: Simulation of temperature series and small networks from data
  publication-title: International Journal of Climatology
– volume: 63
  start-page: 581
  issue: 3
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– year: 1997
– year: 2000
– volume: 276
  start-page: 23
  year: 2018
  end-page: 30
  article-title: Handling missing data in multivariate time series using a vector autoregressive model‐imputation (VAR‐IM) algorithm
  publication-title: Neurocomputing
– year: 2016
– year: 2018
– volume: 112
  start-page: 143
  year: 2012
  end-page: 167
  article-title: Comparison of missing value imputation methods in time series: The case of Turkish meteorological data
  publication-title: Theoretical and Applied Climatology
– year: 1999
– year: 2012
– volume: 29
  start-page: 21
  year: 2014
  ident: e_1_2_9_3_1
  article-title: Missing data imputation of climate datasets: Implications to modeling extreme drought events
  publication-title: Brazilian Journal of Meteorology
– ident: e_1_2_9_8_1
  doi: 10.1175/1520-0442(1995)008<2787:CTSWPC>2.0.CO;2
– ident: e_1_2_9_5_1
  doi: 10.1016/j.atmosenv.2004.02.026
– volume: 27
  start-page: 85
  issue: 1
  year: 2001
  ident: e_1_2_9_10_1
  article-title: A multivariate technique for multiply imputing missing values using a sequence of regression models
  publication-title: Survey Methodology
– ident: e_1_2_9_22_1
  doi: 10.1007/s00704-012-0723-x
– ident: e_1_2_9_16_1
  doi: 10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2
– ident: e_1_2_9_4_1
  doi: 10.1016/S1364-8152(01)00008-1
– ident: e_1_2_9_6_1
  doi: 10.1017/S0003055401000235
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neucom.2017.03.097
– ident: e_1_2_9_20_1
  doi: 10.1002/joc.6129
– ident: e_1_2_9_13_1
  doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
– ident: e_1_2_9_17_1
– ident: e_1_2_9_15_1
  doi: 10.1175/2011BAMS3015.1
– ident: e_1_2_9_12_1
  doi: 10.1201/9781439821862
– ident: e_1_2_9_23_1
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_9_9_1
– ident: e_1_2_9_11_1
  doi: 10.1093/biomet/63.3.581
– ident: e_1_2_9_14_1
  doi: 10.2307/1912017
– volume-title: Flexible multivariate imputation by MICE
  year: 1999
  ident: e_1_2_9_19_1
– start-page: 70
  volume-title: 2013 signal processing: Algorithms, architectures, arrangements, and applications (SPA)
  year: 2013
  ident: e_1_2_9_7_1
– ident: e_1_2_9_18_1
  doi: 10.1201/b11826
SSID ssj0067676
Score 2.1823347
SecondaryResourceType review_article
Snippet Missingness in historical climate data networks is a pervasive phenomenon due to the conditions under which these measurements are made. Accurate estimation of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1494
SubjectTerms Algorithms
Climate change
climate data
Climatic data
Computer applications
Environmental impact
expectation–maximization
Iterative methods
Missing data
Multivariate analysis
multivariate infilling
Networks
Numerical weather forecasting
Root-mean-square errors
Stations
Statistical methods
Stochastic processes
Temperature data
vector autoregression
Weather forecasting
Title An adapted vector autoregressive expectation maximization imputation algorithm for climate data networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwics.1494
https://www.proquest.com/docview/2449414717
Volume 12
WOSCitedRecordID wos000504200800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-0068
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067676
  issn: 1939-5108
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcIADb8RjoAhx4FKxulnTiBMCJpAGQrxvVZqlrNLWTet4_HycPgZIICFxy8FNqsR2PsfJZ4B9GfnCoEAHfZtm1LQWAYUhDnfjCJV2pcqPLh7a4uoqeHqS11NwVL2FKfghJgdu1jJyf20NXEXZ4Sdp6FuiM7JzyadhBklveQ1mTm9a9-3KEVsqMr9IKkuHVC-oiIUaeDj5-Pt29IkxvyLVfKtpLf7rJ5dgoUSY7LhQiWWYMukKzF9O6FmzVegep0x11JDQJnvNj-2ZslwGJg--yf8xS_yviyw966v3pF8-12SJLQJRNFXveTBKxt0-I-DLdC-h7g2zV05ZWlwuz9bgvnV2d3LulCUXHI0UWTjSkP0jj9FrSgomOrEbo6EYSkfIPT_migCPTfNiZJpaBnEgVMNXrh8bdDsNhd461NJBajaANSLXb2oT2MQrRyFkU0RexDskL4Sn_U04qGY-1CUfuS2L0QsLJmUM7eSFdvI2YW8iOixIOH4SqlfLF5Z2mIUEXiR3aQMWNFy-UL93ED5enNzaxtbfRbdhDm0Anj9OrENtPHoxOzCrX8dJNtotFfIDOkHmBg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mFNQHv8X5GcQHX4prmjYN-DLUobgN8futpFmqha2OdU7_fC_9mAoKgm95uCYlubv87i75BeBAhB7XlFOLeqbMqHAtfAxDLGZHIZXKFjJLXdy3eKfjPz6Kqwocl3dhcn6IScLNWEbmr42Bm4T00Sdr6FusUjR0waZgmqEauVWYPr1u3rVKT2y4yLy8qiws1D2_ZBaq06PJx9_3o0-Q-RWqZntNc_F_f7kECwXGJI1cKZahopMVmG9PCFrTVXhuJER25QDxJhlniXsiDZuBzsJv9IDEUP-rvE5P-vI97hcXNklsnoHIm7L39DKMR899gtCXqF6M3WtiDp2SJD9enq7BXfPs9uTcKh5dsBTF2MISGj0AZRF1XIHhRDeyI6oxilIhZY4XMYmQxxR6aahdJfzI57LuSduLNLW7dUmddagmL4neAFIPbc9V2jelV0Y5Fy4PnZB1UZ5zR3k1OCynPlAFI7l5GKMX5FzKNDCTF5jJq8H-RHSQ03D8JLRdrl9QWGIaIHwRzMYtmONw2Ur93kHwcHFyYxqbfxfdg9nz23YraF10LrdgjppwPLuquA3V0fBV78CMGo_idLhbaOcH_K_p9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLb4N4sFLcZumSQNeRF0U10V830qaplrYrct2ffx8J32sCgqCtxymSUkyM9_MJF8AdmXEhaGCOpTbMqPGtQgwDHGYm0RUaVeqInVx1xLtdvDwIC9H4KC-C1PyQwwTblYzCnttFdz04mT_kzX0LdU5KrpkozDOfMlRLcePr5q3rdoSWy4yXlaVpYN7L6iZhRp0f_jxd3_0CTK_QtXC1zRn__eXczBTYUxyWG6KeRgx2QJMXwwJWvNFeDrMiIpVD_EmeS0S90RZNgNThN9oAYml_tdlnZ501XvarS5sktQ-A1E2VefxuZ8OnroEoS_RnRS7N8QeOiVZebw8X4Lb5snN0alTPbrgaIqxhSMNWgDKEur5EsOJOHETajCK0hFlHk-YQshjC700Mr6WQRII1eDK5YmhbtxQ1FuGsew5MytAGpHLfW0CW3plVAjpi8iLWIzyQniar8JePfWhrhjJ7cMYnbDkUqahnbzQTt4q7AxFeyUNx09CG_X6hZUm5iHCF8lcdMEChytW6vcOwvuzo2vbWPu76DZMXh43w9ZZ-3wdpqiNxoubihswNui_mE2Y0K-DNO9vVZvzA6kv6XE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adapted+vector+autoregressive+expectation+maximization+imputation+algorithm+for+climate+data+networks&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+statistics&rft.au=Washington%2C+Benjamin+J.&rft.au=Seymour%2C+Lynne&rft.date=2020-11-01&rft.issn=1939-5108&rft.eissn=1939-0068&rft.volume=12&rft.issue=6&rft_id=info:doi/10.1002%2Fwics.1494&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wics_1494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5108&client=summon