Partial geometric designs having circulant concurrence matrices

We classify small partial geometric designs (PGDs) by spectral characteristics of their concurrence matrices. It is well known that the concurrence matrix of a PGD can have at most three distinct eigenvalues, all of which are nonnegative integers. The matrix contains useful information on the incide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial designs Ročník 30; číslo 6; s. 420 - 460
Hlavní autoři: Song, Sung‐Yell, Tranel, Theodore
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.06.2022
Témata:
ISSN:1063-8539, 1520-6610
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We classify small partial geometric designs (PGDs) by spectral characteristics of their concurrence matrices. It is well known that the concurrence matrix of a PGD can have at most three distinct eigenvalues, all of which are nonnegative integers. The matrix contains useful information on the incidence structure of the design. An ordinary 2‐ ( v , k , λ ) $(v,k,\lambda )$ design has a single concurrence λ $\lambda $, and its concurrence matrix is circulant, a partial geometry has two concurrences 1 and 0, and a transversal design TD λ ( k , u ) ${\text{TD}}_{\lambda }(k,u)$ has two concurrences λ $\lambda $ and 0, and its concurrence matrix is circulant. In this paper, we survey the known PGDs by highlighting their concurrences and constructions. Then we investigate which symmetric circulant matrices are realized as the concurrence matrices of PGDs. In particular, we try to give a list of all PGDs of order up to 12 each of which has a circulant concurrence matrix. We then describe these designs along with their combinatorial properties and constructions. This work is part of the second author's Ph.D. dissertation [46].
AbstractList We classify small partial geometric designs (PGDs) by spectral characteristics of their concurrence matrices. It is well known that the concurrence matrix of a PGD can have at most three distinct eigenvalues, all of which are nonnegative integers. The matrix contains useful information on the incidence structure of the design. An ordinary 2‐(v,k,λ) $(v,k,\lambda )$ design has a single concurrence λ $\lambda $, and its concurrence matrix is circulant, a partial geometry has two concurrences 1 and 0, and a transversal design TDλ(k,u) ${\text{TD}}_{\lambda }(k,u)$ has two concurrences λ $\lambda $ and 0, and its concurrence matrix is circulant. In this paper, we survey the known PGDs by highlighting their concurrences and constructions. Then we investigate which symmetric circulant matrices are realized as the concurrence matrices of PGDs. In particular, we try to give a list of all PGDs of order up to 12 each of which has a circulant concurrence matrix. We then describe these designs along with their combinatorial properties and constructions. This work is part of the second author's Ph.D. dissertation [46].
We classify small partial geometric designs (PGDs) by spectral characteristics of their concurrence matrices. It is well known that the concurrence matrix of a PGD can have at most three distinct eigenvalues, all of which are nonnegative integers. The matrix contains useful information on the incidence structure of the design. An ordinary 2‐ ( v , k , λ ) $(v,k,\lambda )$ design has a single concurrence λ $\lambda $, and its concurrence matrix is circulant, a partial geometry has two concurrences 1 and 0, and a transversal design TD λ ( k , u ) ${\text{TD}}_{\lambda }(k,u)$ has two concurrences λ $\lambda $ and 0, and its concurrence matrix is circulant. In this paper, we survey the known PGDs by highlighting their concurrences and constructions. Then we investigate which symmetric circulant matrices are realized as the concurrence matrices of PGDs. In particular, we try to give a list of all PGDs of order up to 12 each of which has a circulant concurrence matrix. We then describe these designs along with their combinatorial properties and constructions. This work is part of the second author's Ph.D. dissertation [46].
We classify small partial geometric designs (PGDs) by spectral characteristics of their concurrence matrices. It is well known that the concurrence matrix of a PGD can have at most three distinct eigenvalues, all of which are nonnegative integers. The matrix contains useful information on the incidence structure of the design. An ordinary 2‐ design has a single concurrence , and its concurrence matrix is circulant, a partial geometry has two concurrences 1 and 0, and a transversal design has two concurrences and 0, and its concurrence matrix is circulant. In this paper, we survey the known PGDs by highlighting their concurrences and constructions. Then we investigate which symmetric circulant matrices are realized as the concurrence matrices of PGDs. In particular, we try to give a list of all PGDs of order up to 12 each of which has a circulant concurrence matrix. We then describe these designs along with their combinatorial properties and constructions. This work is part of the second author's Ph.D. dissertation [46].
Author Tranel, Theodore
Song, Sung‐Yell
Author_xml – sequence: 1
  givenname: Sung‐Yell
  orcidid: 0000-0002-6404-5430
  surname: Song
  fullname: Song, Sung‐Yell
  email: sysong@iastate.edu
  organization: Iowa State University
– sequence: 2
  givenname: Theodore
  surname: Tranel
  fullname: Tranel, Theodore
  organization: Iowa State University
BookMark eNp9kDtPwzAUhS1UJNrCwD-IxMSQ1o_YsSeESnmpEgwwW457U1yldrETUP89KWVCgume4TvnSt8IDXzwgNA5wROCMZ2u7XJCiWTFERoSTnEuBMGDPmPBcsmZOkGjlNYYY6WYGKKrZxNbZ5psBWEDbXQ2W0JyK5-yN_Ph_CqzLtquMb7NbPC2ixG8hWxj9iykU3RcmybB2c8do9fb-cvsPl883T3Mrhe5paos8lIKbghwwYAVpZTScig4B6oqA4SoGlPAsuKUVBxEUaseK0ohqVnasuKGjdHFYXcbw3sHqdXr0EXfv9RUFBJLwjHrqcsDZWNIKUKtt9FtTNxpgvXej-796G8_PTv9xVrXmtYF30bjmv8an66B3d_T-nF2c2h8Ack-d8c
CitedBy_id crossref_primary_10_1002_jcd_21889
Cites_doi 10.1090/S0002-9947-1938-1501951-4
10.1007/978-3-642-74341-2
10.1006/jcta.1997.2796
10.4153/CJM-1970-067-9
10.4153/CJM-1954-005-4
10.1007/s10114-016-6151-6
10.1214/aoms/1177729027
10.1006/ffta.1997.0184
10.1002/jcd.21416
10.1007/s10623-015-0111-5
10.1016/0012-365X(76)90088-1
10.1080/01621459.1952.10501161
10.1007/s10623-017-0400-2
10.1016/0012-365X(76)90030-3
10.1007/s10623-019-00644-7
10.1016/0097-3165(88)90043-X
10.1002/jcd.21354
10.1016/j.laa.2004.09.015
10.1002/jcd.21518
10.1016/0021-8693(78)90220-X
10.1214/aoms/1177729382
10.1016/0012-365X(74)90068-5
10.1017/CBO9780511987045
10.1016/j.ejc.2012.01.011
10.1007/BF01111042
10.1017/CBO9780511623714
10.1017/CBO9780511549533
10.1016/0097-3165(80)90067-9
10.1016/j.disc.2018.06.008
10.1007/s00373-013-1364-2
10.1214/aoms/1177705806
10.1142/S1005386717000232
10.2140/pjm.1963.13.389
10.1007/BF01835977
10.1002/jcd.21767
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
DOI 10.1002/jcd.21834
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1520-6610
EndPage 460
ExternalDocumentID 10_1002_jcd_21834
JCD21834
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
1ZS
24P
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
6TJ
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BNHUX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
FEDTE
FSPIC
G-S
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
LATKE
LAW
LC2
LC3
LEEKS
LH4
LP6
LP7
LW6
LYRES
M6L
MEWTI
MK4
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
VQA
W99
WH7
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~WT
AAMMB
AAYXX
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
ID FETCH-LOGICAL-c2974-7865a1e563e347888c5e455e29bae119f02e08b521b5e64f9e3447682adc7b5a3
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765259200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-8539
IngestDate Fri Jul 25 12:16:04 EDT 2025
Sat Nov 29 02:45:36 EST 2025
Tue Nov 18 22:16:05 EST 2025
Wed Jan 22 16:24:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2974-7865a1e563e347888c5e455e29bae119f02e08b521b5e64f9e3447682adc7b5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6404-5430
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21834
PQID 2648081503
PQPubID 1006355
PageCount 41
ParticipantIDs proquest_journals_2648081503
crossref_primary_10_1002_jcd_21834
crossref_citationtrail_10_1002_jcd_21834
wiley_primary_10_1002_jcd_21834_JCD21834
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of combinatorial designs
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 80
1980; 28
2018; 341
1974; 55
1938; 43
1960; 31
2005; 396
2013; 22
1978; 55
2021; 29
2017; 24
1968; 103
1976
2017; 293
1953; 6
1991
1974; 9
1997; 3
1966; 10
2012; 33
2018; 86
1979
1999
1963; 13
1942; 6
1952; 23
1952; 47
1976; 14
2001
2019; 87
1988; 47
2017; 33
1970; 22
1984
2016; 80
2014; 30
1953; 24
1976; 16
1976; 15
2016; 24
1989
2016; 45
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_48_1
Brouwer A. E. (e_1_2_8_13_1) 1984
e_1_2_8_3_1
e_1_2_8_2_1
Cameron P. J. (e_1_2_8_16_1) 2017; 293
Bose R. C. (e_1_2_8_4_1) 1942; 6
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
Feng R. (e_1_2_8_28_1) 2016; 45
e_1_2_8_40_1
e_1_2_8_17_1
Hanani H. (e_1_2_8_32_1) 1974
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
Elliot J. E. H. (e_1_2_8_27_1) 1966; 10
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 80
  start-page: 13
  issue: 1
  year: 1997
  end-page: 78
  article-title: A unifying construction for difference sets
  publication-title: J. Combin. Theory Ser. A
– volume: 9
  start-page: 1
  year: 1974
  end-page: 18
  article-title: Special partially balanced incomplete block designs and associated graphs
  publication-title: Discrete Math.
– volume: 103
  start-page: 239
  year: 1968
  end-page: 258
  article-title: Planes of order n with collineation groups of order
  publication-title: Math. Z
– volume: 14
  start-page: 251
  year: 1976
  end-page: 269
  article-title: Affine resolvable balanced incomplete block designs: a survey
  publication-title: Aequantiones Math.
– start-page: 85
  year: 1984
  end-page: 122
– volume: 23
  start-page: 367
  year: 1952
  end-page: 383
  article-title: Combinatorial properties of group divisible designs
  publication-title: Ann. Math. Stat.
– year: 2001
– year: 1989
– volume: 6
  start-page: 1
  year: 1942
  end-page: 15
  article-title: An affine analogue of Singer's theorem
  publication-title: J. Indian Math. Soc.
– volume: 24
  start-page: 381
  issue: 3
  year: 2017
  end-page: 392
  article-title: Constructions of ‐designs from unitary geometry over finite fields
  publication-title: Algebra Colloq.
– volume: 80
  start-page: 435
  issue: 3
  year: 2016
  end-page: 451
  article-title: Partial geometric designs with prescribed automorphisms
  publication-title: Des. Codes Cryptogr.
– volume: 13
  start-page: 389
  year: 1963
  end-page: 419
  article-title: Strongly regular graphs, partial geometries, and partially balanced designs
  publication-title: Pacific J. Math.
– volume: 16
  start-page: 1
  year: 1976
  end-page: 7
  article-title: A characterization of partial geometric designs
  publication-title: Discrete Math.
– volume: 87
  start-page: 2655
  issue: 11
  year: 2019
  end-page: 2670
  article-title: Partial geometric designs from group actions
  publication-title: Des. Codes Cryptogr
– year: 1979
– volume: 22
  start-page: 252
  issue: 6
  year: 2013
  end-page: 269
  article-title: Symmetric ‐designs and ‐difference sets
  publication-title: J. Combin. Des
– volume: 24
  start-page: 112
  issue: 3
  year: 2016
  end-page: 131
  article-title: Partial geometric difference families
  publication-title: J. Combin. Des
– volume: 6
  start-page: 35
  year: 1953
  end-page: 41
  article-title: An embedding theorem for balanced incomplete block designs
  publication-title: Canad. J. Math.
– volume: 24
  start-page: 167
  year: 1953
  end-page: 195
  article-title: On the construction of group divisible incomplete block designs
  publication-title: Ann. Math. Stat.
– volume: 47
  start-page: 151
  year: 1952
  end-page: 184
  article-title: Classification and analysis of partially balanced incomplete block designs with two associate classes
  publication-title: J. Amer. Statist. Assoc.
– year: 1984
– volume: 293
  start-page: 111
  issue: 1
  year: 2017
  end-page: 126
  article-title: Research problems from the 19th British combinatorial conference
  publication-title: Discrete Math.
– volume: 28
  start-page: 226
  year: 1980
  end-page: 248
  article-title: ‐designs
  publication-title: J. Combin. Theory Ser. A
– start-page: 49
  year: 1976
  end-page: 81
– volume: 45
  start-page: 817
  issue: 6
  year: 2016
  end-page: 839
  article-title: Directed strongly regular graphs and their constructions
  publication-title: Adv. Math. (China)
– volume: 10
  start-page: 517
  year: 1966
  end-page: 531
  article-title: Relative difference sets
  publication-title: Illinois J. Math.
– volume: 396
  start-page: 303
  year: 2005
  end-page: 316
  article-title: Combinatorial designs with two singular values II. Partial geometric designs
  publication-title: Linear Algebra Appl.
– volume: 31
  start-page: 789
  year: 1960
  end-page: 791
  article-title: On the block structure of certain P.B.I.B. designs with triangular and association schemes
  publication-title: Ann. Math. Statist.
– volume: 33
  start-page: 591
  issue: 5
  year: 2017
  end-page: 606
  article-title: New partial geometric difference sets and partial geometric difference families
  publication-title: Acta Math. Sin. (Engl. Ser.)
– volume: 33
  start-page: 1174
  issue: 6
  year: 2012
  end-page: 1177
  article-title: Directed strongly regular graphs from ‐designs
  publication-title: European J. Combin.
– volume: 29
  start-page: 271
  issue: 5
  year: 2021
  end-page: 306
  article-title: Partial geometric designs with block sizes three and four
  publication-title: J. Combin. Des.
– volume: 22
  start-page: 597
  year: 1970
  end-page: 614
  article-title: Strongly regular graphs derived from combinatorial designs
  publication-title: Canad. J. Math.
– volume: 86
  start-page: 1367
  issue: 6
  year: 2018
  end-page: 1375
  article-title: A framework for constructing partial geometric difference sets
  publication-title: Des. Codes Cryptogr.
– volume: 55
  start-page: 42
  year: 1974
  end-page: 52
– volume: 341
  start-page: 2490
  issue: 9
  year: 2018
  end-page: 2498
  article-title: Partial geometric difference sets and partial geometric difference families
  publication-title: Discrete Math.
– volume: 55
  start-page: 257
  year: 1978
  end-page: 280
  article-title: Strongly regular graphs with strongly regular subconstituents
  publication-title: J. Algebra.
– year: 1991
– volume: 3
  start-page: 234
  year: 1997
  end-page: 256
  article-title: On the existence of abelian Hadamard difference sets and a new family of difference sets
  publication-title: Finite Fields Appl.
– volume: 47
  start-page: 71
  issue: 1
  year: 1988
  end-page: 100
  article-title: A directed graph version of strongly regular graphs
  publication-title: J. Combin. Theory Ser. A
– volume: 15
  start-page: 263
  issue: 3
  year: 1976
  end-page: 296
  article-title: ‐Designs on hypergraphs
  publication-title: Discrete Math.
– volume: 43
  start-page: 377
  year: 1938
  end-page: 385
  article-title: A theorem in projective geometry and some applications to number theory
  publication-title: Trans. Amer. Math. Soc.
– volume: 24
  start-page: 533
  issue: 12
  year: 2016
  end-page: 552
  article-title: A family of partial geometric designs from three‐class association schemes
  publication-title: J. Combin. Des
– year: 1999
– volume: 30
  start-page: 1529
  year: 2014
  end-page: 1549
  article-title: Some families of directed strongly regular graphs obtained from certain finite incidence structures
  publication-title: Graphs Combin.
– start-page: 42
  volume-title: Combinatorics
  year: 1974
  ident: e_1_2_8_32_1
– ident: e_1_2_8_48_1
– ident: e_1_2_8_47_1
  doi: 10.1090/S0002-9947-1938-1501951-4
– ident: e_1_2_8_14_1
  doi: 10.1007/978-3-642-74341-2
– ident: e_1_2_8_22_1
  doi: 10.1006/jcta.1997.2796
– ident: e_1_2_8_30_1
  doi: 10.4153/CJM-1970-067-9
– ident: e_1_2_8_31_1
  doi: 10.4153/CJM-1954-005-4
– ident: e_1_2_8_35_1
  doi: 10.1007/s10114-016-6151-6
– volume: 6
  start-page: 1
  year: 1942
  ident: e_1_2_8_4_1
  article-title: An affine analogue of Singer's theorem
  publication-title: J. Indian Math. Soc.
– ident: e_1_2_8_9_1
  doi: 10.1214/aoms/1177729027
– volume: 45
  start-page: 817
  issue: 6
  year: 2016
  ident: e_1_2_8_28_1
  article-title: Directed strongly regular graphs and their constructions
  publication-title: Adv. Math. (China)
– ident: e_1_2_8_20_1
  doi: 10.1006/ffta.1997.0184
– ident: e_1_2_8_40_1
  doi: 10.1002/jcd.21416
– ident: e_1_2_8_38_1
  doi: 10.1007/s10623-015-0111-5
– ident: e_1_2_8_10_1
  doi: 10.1016/0012-365X(76)90088-1
– ident: e_1_2_8_6_1
  doi: 10.1080/01621459.1952.10501161
– ident: e_1_2_8_23_1
  doi: 10.1007/s10623-017-0400-2
– ident: e_1_2_8_33_1
  doi: 10.1016/0012-365X(76)90030-3
– ident: e_1_2_8_36_1
  doi: 10.1007/s10623-019-00644-7
– ident: e_1_2_8_26_1
  doi: 10.1016/0097-3165(88)90043-X
– ident: e_1_2_8_43_1
  doi: 10.1002/jcd.21354
– ident: e_1_2_8_2_1
– ident: e_1_2_8_21_1
  doi: 10.1016/j.laa.2004.09.015
– ident: e_1_2_8_39_1
  doi: 10.1002/jcd.21518
– ident: e_1_2_8_18_1
  doi: 10.1016/0021-8693(78)90220-X
– start-page: 85
  volume-title: Enumeration and Design
  year: 1984
  ident: e_1_2_8_13_1
– ident: e_1_2_8_24_1
– ident: e_1_2_8_7_1
  doi: 10.1214/aoms/1177729382
– ident: e_1_2_8_11_1
  doi: 10.1016/0012-365X(74)90068-5
– ident: e_1_2_8_49_1
  doi: 10.1017/CBO9780511987045
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ejc.2012.01.011
– ident: e_1_2_8_25_1
  doi: 10.1007/BF01111042
– ident: e_1_2_8_17_1
  doi: 10.1017/CBO9780511623714
– ident: e_1_2_8_41_1
– ident: e_1_2_8_3_1
  doi: 10.1017/CBO9780511549533
– ident: e_1_2_8_37_1
  doi: 10.1016/0097-3165(80)90067-9
– ident: e_1_2_8_19_1
  doi: 10.1016/j.disc.2018.06.008
– ident: e_1_2_8_8_1
– ident: e_1_2_8_44_1
  doi: 10.1007/s00373-013-1364-2
– ident: e_1_2_8_45_1
  doi: 10.1214/aoms/1177705806
– ident: e_1_2_8_29_1
  doi: 10.1142/S1005386717000232
– ident: e_1_2_8_5_1
  doi: 10.2140/pjm.1963.13.389
– ident: e_1_2_8_12_1
– volume: 10
  start-page: 517
  year: 1966
  ident: e_1_2_8_27_1
  article-title: Relative difference sets
  publication-title: Illinois J. Math.
– volume: 293
  start-page: 111
  issue: 1
  year: 2017
  ident: e_1_2_8_16_1
  article-title: Research problems from the 19th British combinatorial conference
  publication-title: Discrete Math.
– ident: e_1_2_8_46_1
  doi: 10.1007/BF01835977
– ident: e_1_2_8_42_1
– ident: e_1_2_8_34_1
  doi: 10.1002/jcd.21767
SSID ssj0009936
Score 2.2568755
Snippet We classify small partial geometric designs (PGDs) by spectral characteristics of their concurrence matrices. It is well known that the concurrence matrix of a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 420
SubjectTerms 1 1 2 $1\frac{1}{2}$‐design
association scheme
Combinatorial analysis
Eigenvalues
Mathematical analysis
Matrices (mathematics)
partial geometric difference set
partial geometry
special partially balanced incomplete block design
strongly regular graph
t $t$‐design
Title Partial geometric designs having circulant concurrence matrices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21834
https://www.proquest.com/docview/2648081503
Volume 30
WOSCitedRecordID wos000765259200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1520-6610
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009936
  issn: 1063-8539
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEICH2nrQg2-xWksQD15ik30kWTyIVItILUUs9BY2m02p2FSa6u93d_OogoLgLYTJg8lMZnaZ-Qbg3BGCIpWJ2EjQxCaMxDYnWNo8ShwDQEm4oev3_cEgGI_ZsAZXZS9MzoeoNty0Z5j_tXZwHmWdFTT0RcSXOr6TNWi4Lva1SSMyXBF3mZkPqJY82FYxiZVYIQd1qku_B6NVhvk1TzWBprf9r1fcga0iv7RucoPYhZpM92DzsYKzZvtwPdTmooQmcj7TA7WEFZs6jszSLfvpxBLThS5PTZeWWi0LQ3AS0poZmr_MDmDUu3vu3tvFHAVbIKbLLQOPcldSD0usafmBoJJQKhGLuHRdljhIOkGkAnlEpUcSJjUG0AsQj4UfUY4PoZ7OU3kElj7hIely7sVqrYQ49kVCuFIvDVhAcBMuSoWGooCM61kXr2GOR0ah0klodNKEs0r0LSdr_CTUKr9KWDhXFuqiPJXJUEc_zuj_9xuED91bc3D8d9ET2EC6ycHstbSgvly8y1NYFx_LabZoGytrQ-P2qTfqfwKeXdSS
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCPuQnqg9_idGoRH3ypa9Oka0AQcY6p2xiywd5KmqZj4jpZp3-_SfoxBQXBt1Iubblcepfj8juAC4tzgmQkYiJOIhNTHJoMO8JkQWRpAErENF2_0-j1vNGI9ktwnZ-FSfkQRcJNrQz9v1YLXCWk60tq6AsPr5SDxytQwdKMSBkqzefWsLOE7lLdIlDuehxTuiWak4UsVC8Gf_dHyyDza6iqfU1r639fuQ2bWYxp3KZGsQMlEe_CRrcAtCZ7cNNXJiOFxmI2VU21uBHqWo7EUMf247HBJ3NVohovDLlj5prixIUx1UR_kezDsHU_uGubWS8FkyOqSi49lzBbENcRjiLme5wITIhANGDCtmlkIWF5gXTmAREujqhQKEDXQyzkjYAw5wDK8SwWh2CoGy4SNmNuKPdLiDkNHmEm9Us86mGnCpe5Rn2egcZVv4tXP0UkI1_qxNc6qcJ5IfqW0jV-Eqrl0-JnCyzxVWGejGaIpV6nJ-D3B_iPd019cfR30TNYaw-6Hb_z0Hs6hnWkDj3o3EsNyov5uziBVf6xmCTz08zoPgGL7dhv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCPOUX0wW9xOrWID77UtWnSNSCIbA4_5tiDwt5Kml7HxHVjnf79Jmm3KSgIvpVy_eCSy92Fy-8Azh0pGVGRiE0kS2zKaWwL6qEtosQxAJREGLp-u97pBL0e75bganYWJudDzDfctGWY9VobOI7jpLaghr7K-FI7eLoEy5SpNVZznWl3gdzlpkGgynk8WzklPuMKOaQ2f_S7N1qEmF8DVeNpWpv_-8ct2CgiTOsmnxLbUMJ0B9af5njWbBeuu3rCKKE-joa6pZa0YlPJkVn60H7at-RgogtU06ml8mVpGE4SraHh-WO2By-t2-fGnV10UrAl4brgMvCZcJH5Hnqalx9IhpQxJDwS6Lo8cQg6QaRcecTQpwlHDQL0AyJiWY-Y8PahnI5SPABL3_AJukL4scqWiPDqMqFC6ZcFPKBeBS5mGg1lgRnX3S7ewhyQTEKlk9DopAJnc9Fxztb4Sag6G5awMK8s1GV5KpZhjv6cGYDfXxA-NJrm4vDvoqew2m22wvZ95_EI1og-8WA2XqpQnk7e8RhW5Md0kE1OzIz7BG6U1lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+geometric+designs+having+circulant+concurrence+matrices&rft.jtitle=Journal+of+combinatorial+designs&rft.au=Sung%E2%80%90Yell+Song&rft.au=Tranel%2C+Theodore&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1063-8539&rft.eissn=1520-6610&rft.volume=30&rft.issue=6&rft.spage=420&rft.epage=460&rft_id=info:doi/10.1002%2Fjcd.21834&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8539&client=summon