Broadmark: A Testing Framework for Broad‐Phase Collision Detection Algorithms
Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large‐scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground...
Saved in:
| Published in: | Computer graphics forum Vol. 39; no. 1; pp. 436 - 449 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.02.2020
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large‐scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted benchmark suites. In this paper, we delve into the broad‐phase of collision detection systems, providing both an open‐source framework, named Broadmark, to test, compare and validate algorithms, and an in‐deep analysis of the main techniques used so far to tackle the broad‐phase problem. The technical challenges of building this framework from the software and hardware perspectives are also described. Within our framework, several original and state‐of‐the‐art implementations of CPU and GPU algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among assembled solutions, detailing the current CPU and GPU state‐of‐the‐art on a common ground. We believe that Broadmark encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about successful broad‐phase collision detection solutions.
Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large‐scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted benchmark suites. In this paper, we delve into the broad‐phase of collision detection systems, providing both an open‐source framework, named Broadmark, to test, compare and validate algorithms, and an in‐deep analysis of the main techniques used so far to tackle the broad‐phase problem. The technical challenges of building this framework from the software and hardware perspectives are also described. Within our framework, several original and state‐of‐the‐art implementations of CPU and GPU algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among assembled solutions, detailing the current CPU and GPU state‐of‐the‐art on a common ground. We believe that Broadmark encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about successful broad‐phase collision detection solutions. |
|---|---|
| AbstractList | Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large‐scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted benchmark suites. In this paper, we delve into the broad‐phase of collision detection systems, providing both an open‐source framework, named Broadmark, to test, compare and validate algorithms, and an in‐deep analysis of the main techniques used so far to tackle the broad‐phase problem. The technical challenges of building this framework from the software and hardware perspectives are also described. Within our framework, several original and state‐of‐the‐art implementations of CPU and GPU algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among assembled solutions, detailing the current CPU and GPU state‐of‐the‐art on a common ground. We believe that Broadmark encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about successful broad‐phase collision detection solutions. Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large‐scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted benchmark suites. In this paper, we delve into the broad‐phase of collision detection systems, providing both an open‐source framework, named Broadmark, to test, compare and validate algorithms, and an in‐deep analysis of the main techniques used so far to tackle the broad‐phase problem. The technical challenges of building this framework from the software and hardware perspectives are also described. Within our framework, several original and state‐of‐the‐art implementations of CPU and GPU algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among assembled solutions, detailing the current CPU and GPU state‐of‐the‐art on a common ground. We believe that Broadmark encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about successful broad‐phase collision detection solutions. Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of the main bottlenecks for large‐scale systems. To this day, despite its importance, most subareas of collision detection lack a common ground to test and validate solutions, reference implementations and widely accepted benchmark suites. In this paper, we delve into the broad‐phase of collision detection systems, providing both an open‐source framework, named Broadmark, to test, compare and validate algorithms, and an in‐deep analysis of the main techniques used so far to tackle the broad‐phase problem. The technical challenges of building this framework from the software and hardware perspectives are also described. Within our framework, several original and state‐of‐the‐art implementations of CPU and GPU algorithms are bundled, alongside three benchmark scenes to stress algorithms under several conditions. Furthermore, the system is designed to be easily extensible. We use our framework to bring out an extensive performance comparison among assembled solutions, detailing the current CPU and GPU state‐of‐the‐art on a common ground. We believe that Broadmark encompasses the principal insights and tools to derive and evaluate novel algorithms, thus greatly facilitating discussion about successful broad‐phase collision detection solutions. |
| Author | Rodrigues, Maria Andréia Formico Serpa, Ygor Rebouças |
| Author_xml | – sequence: 1 givenname: Ygor Rebouças orcidid: 0000-0002-0850-4380 surname: Serpa fullname: Serpa, Ygor Rebouças email: ygor.reboucas@gmail.com organization: Universidade de Fortaleza (UNIFOR) – sequence: 2 givenname: Maria Andréia Formico orcidid: 0000-0003-1181-2971 surname: Rodrigues fullname: Rodrigues, Maria Andréia Formico email: andreia.formico@gmail.com organization: Universidade de Fortaleza (UNIFOR) |
| BookMark | eNp1kM1OAjEUhRuDiYAufINJXLkYaGf6M3WHo6AJCS5w3ZROBwrDFNshhJ2P4DP6JJafldG7uXfxnXvPPR3Qqm2tAbhFsIdC9dW87KE0y_AFaCNMWZxRwlugDVGYGSTkCnS8X0IIMaOkDSaPzspiLd3qIRpEU-0bU8-joZNrvbNuFZXWRUfk-_PrbSG9jnJbVcYbW0dPutGqOUyDam6daRZrfw0uS1l5fXPuXfA-fJ7mL_F4MnrNB-NYJZzhmDCSFJgUakYgp0WSzGiBqGQlZwiVkKM02OaUIxyeUJjJLIMQBdclY3AGi7QL7k57N85-bINtsbRbV4eTIkkpDlLOYKD6J0o5673TpVCmkQfLjZOmEgiKQ2oipCaOqQXF_S_FxpkQz_5P9rx9Zyq9_x8U-Wh4UvwA5-98hA |
| CitedBy_id | crossref_primary_10_1002_cav_2204 crossref_primary_10_1109_ACCESS_2024_3525025 crossref_primary_10_1109_ACCESS_2023_3274202 |
| Cites_doi | 10.1186/s13639-016-0037-7 10.1109/PDP.2013.62 10.1109/CCGrid.2011.13 10.1002/cpe.1849 10.1145/133994.134084 10.1145/1542362.1542404 10.1109/VR.2009.4811022 10.1145/336154.336192 10.1145/1882261.1866180 10.1145/2499913.2499918 10.1145/1053427.1053457 10.1016/j.nancom.2019.02.002 10.1201/b14581 10.1145/2948628.2948640 10.1145/3150919.3150921 10.1109/TVCG.2017.2709313 10.1111/j.1467-8659.2009.01377.x 10.1007/s00371-013-0880-7 10.1145/1980462.1980501 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors Computer Graphics Forum © 2019 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2019 The Authors Computer Graphics Forum © 2019 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd – notice: 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.13884 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 449 |
| ExternalDocumentID | 10_1111_cgf_13884 CGF13884 |
| Genre | article |
| GrantInformation_xml | – fundername: FUNCAP‐CE funderid: 88887.176617/2018‐00 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: 88887.176617/2018‐00 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 439067/2018‐9 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2974-5752d45dcb5096d22b6d16a7f9711f091365996914146c47a88001000f770b0d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492283700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 06:26:25 EST 2025 Tue Nov 18 21:07:07 EST 2025 Sat Nov 29 03:41:17 EST 2025 Wed Jan 22 16:34:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2974-5752d45dcb5096d22b6d16a7f9711f091365996914146c47a88001000f770b0d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1181-2971 0000-0002-0850-4380 |
| PQID | 2364969970 |
| PQPubID | 30877 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2364969970 crossref_citationtrail_10_1111_cgf_13884 crossref_primary_10_1111_cgf_13884 wiley_primary_10_1111_cgf_13884_CGF13884 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2012 2017; 2017 2011 2010 2013; 23 2009 2008 1997 2007 2005 2004 1992 2018; 24 2009; 28 2000 2010; 29 2017; 38 2019 2018 2017 2016 2014 2013 2014; 30 2012; 24 2014; 6 2018; 35 e_1_2_8_29_1 Woulfe M. (e_1_2_8_38_1) 2007 e_1_2_8_24_1 Ming C. (e_1_2_8_27_1) 2017 Serpa Ygor R. (e_1_2_8_33_1) 2017; 38 e_1_2_8_25_1 e_1_2_8_26_1 Kettner L. (e_1_2_8_20_1) 2016 Avril Q. (e_1_2_8_3_1) 2012 Mirtich B. (e_1_2_8_28_1) 1997 Le Grand S. (e_1_2_8_22_1) 2007 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 Avril Q. (e_1_2_8_2_1) 2010 Weller R. (e_1_2_8_39_1) 2013 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Avril Q. (e_1_2_8_4_1) 2014; 6 Yvens R. (e_1_2_8_34_1) 2018; 35 Capannini G. (e_1_2_8_8_1) 2016 Daniel S. (e_1_2_8_15_1) 2005 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
| References_xml | – volume: 29 start-page: 1 issue: 6 year: 2010 end-page: 8 article-title: Real‐time collision culling of a million bodies on graphics processing units publication-title: ACM Transactions on Graphics – start-page: 1 year: 1997 end-page: 26 – start-page: 697 year: 2007 end-page: 722 – start-page: 1029 year: 2017 end-page: 1056 – start-page: 384 year: 2013 end-page: 391 – start-page: 1 year: 2013 end-page: 10 – start-page: 191 year: 2009 end-page: 198 – volume: 24 start-page: 125 issue: 2 year: 2012 end-page: 134 article-title: Accelerating physics in large, continuous virtual environments publication-title: Concurrency and Computation: Practice & Experience – year: 2016 – year: 2018 – volume: 35 start-page: 549 issue: 4 year: 2018 end-page: 563 article-title: A draw call‐oriented approach for visibility of static and dynamic scenes with large number of triangles publication-title: Visual Computer – year: 2014 – start-page: 217 year: 2009 end-page: 226 – start-page: 1 year: 2005 end-page: 10 – start-page: 179 year: 2005 end-page: 186 – start-page: 43 year: 2011 end-page: 52 – start-page: 22 year: 2016 end-page: 27 – start-page: 71 year: 2012 end-page: 80 – volume: 38 start-page: 1 issue: 1 year: 2017 end-page: 14 article-title: Flexible use of temporal and spatial reasoning for fast and scalable CPU broad‐phase collision detection using KD‐Trees publication-title: Computer Graphics Forum – start-page: 303 year: 1992 end-page: 308 – volume: 24 start-page: 2064 issue: 7 year: 2018 end-page: 2077 article-title: Adaptive collision culling for massive simulations by a parallel and context‐aware Sweep and Prune algorithm publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 25 year: 2016 end-page: 32 – year: 2008 – volume: 28 start-page: 375 issue: 2 year: 2009 end-page: 384 article-title: Fast BVH construction on GPUs publication-title: Computer Graphics Forum – start-page: 1 year: 2007 end-page: 10 – year: 2004 – volume: 6 start-page: 1 issue: 11 year: 2014 end-page: 13 article-title: Collision detection: Broad phase adaptation from multi‐core to multi‐GPU architecture publication-title: Journal of Virtual Reality and Broadcasting – start-page: 205 year: 2009 end-page: 212 – start-page: 129 year: 2000 end-page: 138 – start-page: 20 year: 2017 end-page: 26 – year: 2017 – volume: 23 start-page: 1 issue: 3 year: 2013 end-page: 22 article-title: Optimizing pairwise box intersection checking on GPUs for large‐scale simulations publication-title: ACM Transactions on Modeling and Computer Simulation – year: 2019 – start-page: 20 year: 2019 end-page: 30 article-title: Parallel algorithms for simulating interacting carriers in nanocommunication publication-title: Nano Communication Networks 20 – volume: 2017 start-page: 1 issue: 1 year: 2017 end-page: 15 article-title: A hybrid fixed‐function and microprocessor solution for high‐throughput broad‐phase collision det publication-title: EURASIP Journal on Embedded Systems – start-page: 95 year: 2010 end-page: 101 – volume: 30 start-page: 553 issue: 5 year: 2014 end-page: 564 article-title: 1D sweep‐and‐prune self‐collision detection for deforming cables publication-title: Visual Computer – ident: e_1_2_8_41_1 doi: 10.1186/s13639-016-0037-7 – ident: e_1_2_8_37_1 – ident: e_1_2_8_14_1 – ident: e_1_2_8_11_1 – ident: e_1_2_8_18_1 doi: 10.1109/PDP.2013.62 – ident: e_1_2_8_25_1 doi: 10.1109/CCGrid.2011.13 – start-page: 1 volume-title: Efficient Algorithms for Two‐Phase Collision Detection year: 1997 ident: e_1_2_8_28_1 – ident: e_1_2_8_35_1 doi: 10.1002/cpe.1849 – ident: e_1_2_8_6_1 doi: 10.1145/133994.134084 – start-page: 22 volume-title: Proceedings of the 2016 Swedish Chapter of Eurographics (SIGRAD) year: 2016 ident: e_1_2_8_8_1 – ident: e_1_2_8_5_1 doi: 10.1145/1542362.1542404 – ident: e_1_2_8_36_1 doi: 10.1109/VR.2009.4811022 – ident: e_1_2_8_42_1 doi: 10.1145/336154.336192 – ident: e_1_2_8_13_1 – ident: e_1_2_8_24_1 doi: 10.1145/1882261.1866180 – start-page: 1 volume-title: Proceedings of the 2007 Workshop in Virtual Reality Interactions and Physical Simulations year: 2007 ident: e_1_2_8_38_1 – ident: e_1_2_8_10_1 – start-page: 1 volume-title: Proceedings of the Workshop in Virtual Reality Interactions and Physical Simulations year: 2005 ident: e_1_2_8_15_1 – start-page: 1 volume-title: Proceedings of the 2013 Workshop on Virtual Reality Interaction and Physical Simulations year: 2013 ident: e_1_2_8_39_1 – volume: 6 start-page: 1 issue: 11 year: 2014 ident: e_1_2_8_4_1 article-title: Collision detection: Broad phase adaptation from multi‐core to multi‐GPU architecture publication-title: Journal of Virtual Reality and Broadcasting – ident: e_1_2_8_26_1 doi: 10.1145/2499913.2499918 – start-page: 95 volume-title: Proceedings of the 2010 Virtual Reality International Conference year: 2010 ident: e_1_2_8_2_1 – start-page: 71 volume-title: Proceedings of the 2012 Eurographics Symposium year: 2012 ident: e_1_2_8_3_1 – ident: e_1_2_8_19_1 – volume: 35 start-page: 549 issue: 4 year: 2018 ident: e_1_2_8_34_1 article-title: A draw call‐oriented approach for visibility of static and dynamic scenes with large number of triangles publication-title: Visual Computer – ident: e_1_2_8_30_1 – start-page: 697 volume-title: GPU Gems 3 year: 2007 ident: e_1_2_8_22_1 – ident: e_1_2_8_21_1 doi: 10.1145/1053427.1053457 – ident: e_1_2_8_31_1 doi: 10.1016/j.nancom.2019.02.002 – ident: e_1_2_8_12_1 – ident: e_1_2_8_16_1 doi: 10.1201/b14581 – start-page: 1029 volume-title: Handbook of Discrete and Computational Geometry year: 2017 ident: e_1_2_8_27_1 – ident: e_1_2_8_7_1 doi: 10.1145/2948628.2948640 – ident: e_1_2_8_17_1 doi: 10.1145/3150919.3150921 – ident: e_1_2_8_9_1 doi: 10.1109/TVCG.2017.2709313 – ident: e_1_2_8_23_1 doi: 10.1111/j.1467-8659.2009.01377.x – volume: 38 start-page: 1 issue: 1 year: 2017 ident: e_1_2_8_33_1 article-title: Flexible use of temporal and spatial reasoning for fast and scalable CPU broad‐phase collision detection using KD‐Trees publication-title: Computer Graphics Forum – ident: e_1_2_8_29_1 – ident: e_1_2_8_32_1 doi: 10.1007/s00371-013-0880-7 – ident: e_1_2_8_40_1 doi: 10.1145/1980462.1980501 – volume-title: CGAL v4.13.1: User and Reference Manual year: 2016 ident: e_1_2_8_20_1 |
| SSID | ssj0004765 |
| Score | 2.2947497 |
| Snippet | Research in the area of collision detection permeates most of the literature on simulations, interaction and agents planning, being commonly regarded as one of... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 436 |
| SubjectTerms | Algorithms Benchmarks broad phase Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [Computing Methodologies]: Animation–Collision detection collision detection Computer simulation CPU and GPU algorithms open‐source framework state‐of‐the‐art implementations |
| Title | Broadmark: A Testing Framework for Broad‐Phase Collision Detection Algorithms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13884 https://www.proquest.com/docview/2364969970 |
| Volume | 39 |
| WOSCitedRecordID | wos000492283700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEIBPpWWAgX9E-ZOFGFiCEsexG5iqQmBApUKt1C1yHLutKAG1hZlH4Bl5Emw3aYsEEhJbhkti2T7fnX33GeCUK5-TgAuHJa5yiNDhTi3AxPGkxIHyE5zIxF42wZrNWrcbtkpwWdTCTPkQsw03oxl2vTYKzpPxgpKLnjr3_FqNLEEF63lLylC5eog6d_OySEaDAu1toDE5WMgk8sxe_m6O5j7moqdqTU20_q9GbsBa7mGi-nRKbEJJZluwusAd3IZ7HXzz9ImPHi9QHbUNaCProajI00LakUVW5PP9o9XXdg6Z_QVbhY6u5MRmb2WoPuw9jwaT_tN4BzrRdbtx6-Q3KzgC6wDC0T4aTkmQisTQX1KME5p6lDMVMs9TBhVKDbYl9IheSAVhXGu5a04CFGNu4qb-LpSz50zuARJUUhkqKSjlhCkSemFKXeEHnp-GzCdVOCs6OBY5dtzcfjGMi_BD91Fs-6gKJzPRlylr4yehw2KU4lzdxrGh4OvmhszVv7Pj8fsH4sZNZB_2_y56ACvYxNk2W_sQypPRqzyCZfE2GYxHx_m8-wI9FdnL |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60CurBt1ituogHL5E8NruJeCmtUbHWIhW8hWSz24o2lbR69if4G_0l7m6TtoKC4C2HSbLMzuw8duYbgKNIOBF2I2bQ2BQGZjLc8VwbGxbntiuc2I55rIdN0GbTe3jwWzNwVvTCjPAhxgk3pRn6vFYKrhLSU1rOOuLEcjwPz8IclmLklmCufhfcNyZ9kZS4Bba3Qo3JkYVUJc_45e_2aOJkTruq2tYEK_9b5Sos5z4mqo6EYg1meLoOS1PIgxtwK8PvKOlF2dMpqqK2gtpIOygoKrWQdGWRJvl8_2h1paVDKsOg-9BRnQ91_VaKqs-dfvY47PYGm3AfnLdrl0Y-W8FgtgwhDOml2Ql2ExYr_JfEtmOSWCSiwqeWJRRYKFHALb6F5VHKMI2knpvqLkBQasZm4mxBKe2nfBsQI5xwX3BGSISpwL7lJ8Rkjms5iU8dXIbjgsMhy4HH1fyL57AIQCSPQs2jMhyOSV9GaBs_EVWKbQpzhRuECgdfLtenpvyd3pDfPxDWLgL9sPN30gNYuGzfNMLGVfN6FxZtFXXr2u0KlIbZK9-DefY2fBxk-7kQfgFUwt27 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7qA9GDb7E-g3jwsrKPbNKIl9K6KpZaRMHbsptHW6yrtNWzP8Hf6C8xSXdrBQXB2x5md8MkX2YmmfkG4DBRQYLDhDs0dZWDuQ53KqGPHU9KP1RB6qcytc0maLNZub9nrRKcFrUwI36I8YGbQYbdrw3A5bNQEyjnbXXsBZUKnoIZHDKiYTlTv4nuGl91kZSEBbe3YY3JmYVMJs_45e_26MvJnHRVra2Jlv43ymVYzH1MVB0tihUoyWwVFiaYB9fgWoffiXhM-g8nqIpuDdVG1kZRkamFtCuLrMjH23uroy0dMicMtg4d1eXQ5m9lqNprP_W7w87jYB3uorPb2oWT91ZwuK9DCEd7ab7AoeCp4X8Rvp8S4ZGEKkY9TxmyUGKIW5iH9VbKMU00zl1zF6AodVNXBBswnT1lchMQJ5JIpiQnJMFUYeYxQVwehF4gGA1wGY4KDcc8Jx43_S96cRGAaB3FVkdlOBiLPo_YNn4S2immKc4BN4gND74eLqOu_p2dkN8_ENfOI_uw9XfRfZhr1aO4cdm82oZ53wTdNnV7B6aH_Re5C7P8ddgd9PfyNfgJEX7dNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadmark%3A+A+Testing+Framework+for+Broad%E2%80%90Phase+Collision+Detection+Algorithms&rft.jtitle=Computer+graphics+forum&rft.au=Serpa%2C+Ygor+Rebou%C3%A7as&rft.au=Rodrigues%2C+Maria+Andr%C3%A9ia+Formico&rft.date=2020-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=39&rft.issue=1&rft.spage=436&rft.epage=449&rft_id=info:doi/10.1111%2Fcgf.13884&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |