Dynamic concentration of the triangle‐free process

The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms Jg. 58; H. 2; S. 221 - 293
Hauptverfasser: Bohman, Tom, Keevash, Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York John Wiley & Sons, Inc 01.03.2021
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1042-9832, 1098-2418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R(3, t): we show R(3,t)>(1/4−o(1))t2/logt, which is within a 4 + o(1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self‐correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle‐free graph produced by the triangle‐free process: they are precisely those triangle‐free graphs with density at most 2.
Bibliographie:Funding information
This research was supported by the NSF Grants, DMS‐1001638 and DMS‐1100215 (T.B.). ERC Grants, 647678 and 239696. EPSRC Grant, EP/G056730/1 (P.K.).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20973