Dynamic concentration of the triangle‐free process

The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Random structures & algorithms Ročník 58; číslo 2; s. 221 - 293
Hlavní autoři: Bohman, Tom, Keevash, Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.03.2021
Wiley Subscription Services, Inc
Témata:
ISSN:1042-9832, 1098-2418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R(3, t): we show R(3,t)>(1/4−o(1))t2/logt, which is within a 4 + o(1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self‐correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle‐free graph produced by the triangle‐free process: they are precisely those triangle‐free graphs with density at most 2.
AbstractList The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R(3, t): we show R(3,t)>(1/4−o(1))t2/logt, which is within a 4 + o(1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self‐correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle‐free graph produced by the triangle‐free process: they are precisely those triangle‐free graphs with density at most 2.
The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R (3,  t ): we show , which is within a 4 +  o (1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self‐correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle‐free graph produced by the triangle‐free process: they are precisely those triangle‐free graphs with density at most 2.
The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle‐free graph at which the triangle‐free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the Ramsey numbers R(3, t): we show R(3,t)>(1/4−o(1))t2/logt, which is within a 4 + o(1) factor of the best known upper bound. Our improvement on previous analyses of this process exploits the self‐correcting nature of key statistics of the process. Furthermore, we determine which bounded size subgraphs are likely to appear in the maximal triangle‐free graph produced by the triangle‐free process: they are precisely those triangle‐free graphs with density at most 2.
Author Keevash, Peter
Bohman, Tom
Author_xml – sequence: 1
  givenname: Tom
  surname: Bohman
  fullname: Bohman, Tom
  email: tbohman@math.cmu.edu
  organization: Carnegie Mellon University
– sequence: 2
  givenname: Peter
  surname: Keevash
  fullname: Keevash, Peter
  organization: University of Oxford
BookMark eNp1kL1OwzAUhS1UJNrAwBtEYmJI67_E8VgVCkiVkPiZLcfY4Cq1i50KZeMReEaeBPdnQjDdO3zn3HvOCAycdxqAcwTHCEI8CVGOMeSMHIEhgrwuMEX1YLtTXPCa4BMwinEJIWQEkyGgV72TK6ty5Z3Srguys97l3uTdm867YKV7bfX355cJWufr4JWO8RQcG9lGfXaYGXieXz_NbovF_c3dbLooFE4fFFpS03BCGYMlohJx01ScKYZUSXDZUGywrJWqVP0iNeGKYFNhhBppeFIhQzJwsfdNd983OnZi6TfBpZMCU1ZRXpeJzMBkT6ngYwzaCGW7XYyUxrYCQbGtRqRqxK6apLj8pVgHu5Kh_5M9uH_YVvf_g-LhcbpX_AAYrHU1
CitedBy_id crossref_primary_10_1002_rsa_21278
crossref_primary_10_1137_21M1437573
crossref_primary_10_1137_21M1444953
crossref_primary_10_1002_rsa_21284
crossref_primary_10_1017_S0963548325000124
crossref_primary_10_1002_rsa_21050
crossref_primary_10_1016_j_ejc_2024_104092
crossref_primary_10_1016_j_jctb_2025_08_001
crossref_primary_10_1112_plms_12400
crossref_primary_10_1016_j_ejc_2022_103551
crossref_primary_10_1016_j_ejc_2023_103872
crossref_primary_10_1016_j_disc_2022_113071
crossref_primary_10_1002_jgt_23180
crossref_primary_10_1002_jgt_22873
crossref_primary_10_1002_jgt_22973
crossref_primary_10_1017_S0963548322000360
crossref_primary_10_1017_S0963548324000105
crossref_primary_10_1112_blms_13040
crossref_primary_10_1137_23M1588706
crossref_primary_10_1016_j_jctb_2024_07_002
crossref_primary_10_1007_s00493_023_00023_w
crossref_primary_10_1112_blms_13214
Cites_doi 10.1214/aop/1176996452
10.1016/j.aim.2009.02.018
10.1002/rsa.20444
10.1017/S0963548311000368
10.1016/j.aim.2015.04.015
10.1007/s00222-010-0247-x
10.37236/1496
10.1002/rsa.3240060217
10.1002/1098-2418(200101)18:1<61::AID-RSA5>3.0.CO;2-T
10.1002/rsa.20378
10.1002/jgt.20453
10.37236/93
10.1137/110824097
10.1007/s004930070014
10.37236/655
10.37236/1192
10.1002/0471722154
10.1016/0012-365X(83)90273-X
10.1017/CBO9781316339831
10.4153/CJM-1961-029-9
10.4310/JOC.2010.v1.n4.a5
10.1017/S0963548300000183
10.1002/rsa.20468
10.1016/0012-365X(77)90044-9
10.1016/0097-3165(90)90070-D
10.1002/rsa.20517
10.1016/j.disc.2011.08.008
10.1002/rsa.3240070302
10.1016/0097-3165(80)90030-8
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20973
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 293
ExternalDocumentID 10_1002_rsa_20973
RSA20973
Genre article
GrantInformation_xml – fundername: EPSRC
  funderid: EP/G056730/1
– fundername: ERC
  funderid: 647678; 239696
– fundername: NSF
  funderid: DMS‐1001638; DMS‐1100215
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2973-ea4fb934770514a19fb697c71c5325b42f2a8cc6c8dae39c32f6211baf99341f3
IEDL.DBID DRFUL
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589923600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Fri Jul 25 10:51:36 EDT 2025
Tue Nov 18 21:33:45 EST 2025
Sat Nov 29 02:48:13 EST 2025
Wed Jan 22 16:32:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-ea4fb934770514a19fb697c71c5325b42f2a8cc6c8dae39c32f6211baf99341f3
Notes Funding information
This research was supported by the NSF Grants, DMS‐1001638 and DMS‐1100215 (T.B.). ERC Grants, 647678 and 239696. EPSRC Grant, EP/G056730/1 (P.K.).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2476498599
PQPubID 1016429
PageCount 73
ParticipantIDs proquest_journals_2476498599
crossref_citationtrail_10_1002_rsa_20973
crossref_primary_10_1002_rsa_20973
wiley_primary_10_1002_rsa_20973_RSA20973
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2011; 333
2015; 280
1990; 55
1980; 29
1997; 20
2020; 263
2000; 7
2000; 20
2010; 181
2014; 28
2011; 39
1961; 13
2011; 18
1995; 6
2014; 45
2014; 44
1995; 7
2010; 64
2010; 1
2000
2011; 20
2009; 221
2016
2001; 18
1994; 1
1992; 1
1983; 46
2009; 16
1975; 3
2009; 18
e_1_2_10_23_1
Fiz Pontiveros G. (e_1_2_10_14_1) 2020; 263
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Bollobás B. (e_1_2_10_10_1) 2009
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 263
  start-page: 125
  year: 2020
  article-title: The triangle‐free process and (3,  )
  publication-title: Mem. Amer. Math. Soc.
– volume: 20
  start-page: 939
  year: 2011
  end-page: 955
  article-title: The final size of the ‐free process
  publication-title: Combin. Probab. Comput.
– volume: 55
  start-page: 247
  year: 1990
  end-page: 255
  article-title: Counting extensions
  publication-title: J. Combin. Theory Ser. A
– volume: 333
  start-page: 2703
  year: 2011
  end-page: 2707
  article-title: Dense subgraphs in the H‐free process
  publication-title: Discrete Math.
– volume: 3
  start-page: 100
  year: 1975
  end-page: 118
  article-title: On tail probabilities for martingales
  publication-title: Ann. Probab.
– volume: 18
  year: 2011
  article-title: No dense subgraphs appear in the triangle‐free graph process
  publication-title: Electron. J. Combin.
– year: 2000
– volume: 280
  start-page: 379
  year: 2015
  end-page: 438
  article-title: Random triangle removal
  publication-title: Adv. Math.
– volume: 18
  start-page: 15
  year: 2009
  end-page: 115
– volume: 64
  start-page: 244
  year: 2010
  end-page: 249
  article-title: A note on regular Ramsey Graphs
  publication-title: J. Graph Theory
– volume: 16
  year: 2009
  article-title: Lower bounds for the size of random maximal H‐free graphs
  publication-title: Electron. J. Combin.
– volume: 46
  start-page: 83
  year: 1983
  end-page: 87
  article-title: A note on the independence number of triangle‐free graphs
  publication-title: Discrete Math.
– volume: 45
  start-page: 513
  year: 2014
  end-page: 551
  article-title: The diamond‐free process
  publication-title: Random Structures Algorithms
– volume: 1
  start-page: 477
  year: 2010
  end-page: 488
  article-title: A note on the random greedy triangle‐packing algorithm
  publication-title: J. Combin.
– year: 2016
– volume: 18
  start-page: 61
  year: 2001
  end-page: 82
  article-title: Random maximal ‐free graphs
  publication-title: Random Structures Algorithms
– volume: 1
  year: 1994
  article-title: Explicit ramsey graphs and orthonormal labelings
  publication-title: Electron. J. Combin.
– volume: 20
  start-page: 69
  year: 1997
  end-page: 76
  article-title: Asymptotic lower bounds for Ramsey functions
  publication-title: Discrete Math.
– volume: 13
  start-page: 346
  year: 1961
  end-page: 352
  article-title: Graph theory and probability, II
  publication-title: Can. J. Math.
– volume: 28
  start-page: 1276
  year: 2014
  end-page: 1305
  article-title: The final size of the ‐free process
  publication-title: SIAM Discrete Math.
– volume: 44
  start-page: 355
  year: 2014
  end-page: 397
  article-title: When does the ‐free process stop?
  publication-title: Random Structures Algorithms
– volume: 20
  start-page: 417
  year: 2000
  end-page: 434
  article-title: Concentration of multivariate polynomials and its applications
  publication-title: Combinatorica
– volume: 181
  start-page: 291
  year: 2010
  end-page: 336
  article-title: The early evolution of the H‐free process
  publication-title: Invent. Math.
– volume: 6
  start-page: 309
  year: 1995
  end-page: 318
  article-title: On the size of a random maximal graph
  publication-title: Random Structures Algorithms
– volume: 221
  start-page: 1653
  year: 2009
  end-page: 1677
  article-title: The triangle‐free process
  publication-title: Adv. Math.
– volume: 44
  start-page: 490
  year: 2014
  end-page: 526
  article-title: The ‐free process
  publication-title: Random Structures Algorithms
– volume: 29
  start-page: 354
  year: 1980
  end-page: 360
  article-title: A note on Ramsey numbers
  publication-title: J. Combin. Theory Ser. A
– volume: 1
  start-page: 169
  year: 1992
  end-page: 180
  article-title: Random graph processes with degree restrictions
  publication-title: Combin. Probab. Comput.
– volume: 7
  year: 2000
  article-title: Constrained graph processes
  publication-title: Electron. J. Combin.
– volume: 7
  start-page: 173
  year: 1995
  end-page: 207
  article-title: The Ramsey number (3,  ) has order of magnitude
  publication-title: Random Structures Algorithms
– volume: 39
  start-page: 539
  year: 2011
  end-page: 543
  article-title: Triangle‐free subgraphs in the triangle‐free process
  publication-title: Random Structures Algorithms
– ident: e_1_2_10_15_1
  doi: 10.1214/aop/1176996452
– ident: e_1_2_10_6_1
  doi: 10.1016/j.aim.2009.02.018
– ident: e_1_2_10_33_1
– ident: e_1_2_10_31_1
  doi: 10.1002/rsa.20444
– ident: e_1_2_10_22_1
  doi: 10.1017/S0963548311000368
– ident: e_1_2_10_8_1
  doi: 10.1016/j.aim.2015.04.015
– ident: e_1_2_10_9_1
  doi: 10.1007/s00222-010-0247-x
– ident: e_1_2_10_11_1
  doi: 10.37236/1496
– ident: e_1_2_10_13_1
  doi: 10.1002/rsa.3240060217
– ident: e_1_2_10_20_1
  doi: 10.1002/1098-2418(200101)18:1<61::AID-RSA5>3.0.CO;2-T
– ident: e_1_2_10_34_1
  doi: 10.1002/rsa.20378
– ident: e_1_2_10_4_1
  doi: 10.1002/jgt.20453
– ident: e_1_2_10_32_1
  doi: 10.37236/93
– ident: e_1_2_10_23_1
  doi: 10.1137/110824097
– ident: e_1_2_10_26_1
– ident: e_1_2_10_19_1
  doi: 10.1007/s004930070014
– ident: e_1_2_10_17_1
  doi: 10.37236/655
– volume: 263
  start-page: 125
  year: 2020
  ident: e_1_2_10_14_1
  article-title: The triangle‐free process and R(3, k)
  publication-title: Mem. Amer. Math. Soc.
– ident: e_1_2_10_3_1
  doi: 10.37236/1192
– ident: e_1_2_10_5_1
  doi: 10.1002/0471722154
– ident: e_1_2_10_25_1
  doi: 10.1016/0012-365X(83)90273-X
– start-page: 15
  volume-title: Handbook of Large‐scale Random Networks, Bolyai Soc. Math. Stud
  year: 2009
  ident: e_1_2_10_10_1
– ident: e_1_2_10_16_1
  doi: 10.1017/CBO9781316339831
– ident: e_1_2_10_12_1
  doi: 10.4153/CJM-1961-029-9
– ident: e_1_2_10_7_1
  doi: 10.4310/JOC.2010.v1.n4.a5
– ident: e_1_2_10_24_1
  doi: 10.1017/S0963548300000183
– ident: e_1_2_10_30_1
  doi: 10.1002/rsa.20468
– ident: e_1_2_10_27_1
  doi: 10.1016/0012-365X(77)90044-9
– ident: e_1_2_10_28_1
  doi: 10.1016/0097-3165(90)90070-D
– ident: e_1_2_10_21_1
  doi: 10.1002/rsa.20517
– ident: e_1_2_10_29_1
  doi: 10.1016/j.disc.2011.08.008
– ident: e_1_2_10_18_1
  doi: 10.1002/rsa.3240070302
– ident: e_1_2_10_2_1
  doi: 10.1016/0097-3165(80)90030-8
SSID ssj0007323
Score 2.513313
Snippet The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no...
The triangle‐free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 221
SubjectTerms Apexes
dynamic concentration
Graph theory
Lower bounds
Ramsey numbers
triangle‐free
Upper bounds
Title Dynamic concentration of the triangle‐free process
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20973
https://www.proquest.com/docview/2476498599
Volume 58
WOSCitedRecordID wos000589923600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NSgMxEICHWj3owX-xWmURD15Cu0m62eCpWIuHWqRa6W3JZhMRyrbsVs8-gs_ok5jsXxUUBG97mOyGyUwyWWa-ATinvgojwgjyuScRpZoh3hYYaU205IpE7SzL93HAhkN_MuF3Nbgsa2FyPkT1w816RrZfWwcXYdpaQkOT1GKDOCMrsIqN3dI6rPZG_fGg2ogZwXl-PcWIG8stwUJt3KoGfz-OljHm10g1O2r6W_-a5DZsFhGm081NYgdqKt6FjdsKz5ruAe3lfegdaYsW44Kc68y0Y4Qc28gjfpqqj7d3nSjlzPNagn0Y968frm5Q0T4BSduQCilBdcgJZcwyzoXLdehxJpkrOwR3Qoo1Fr6UnvQjoQiXBGvPXAdDoU3MQl1NDqAez2J1CA6JQs0FwzrEkVld4RPPtew2aUa5bSEacFFqMZAFW9y2uJgGORUZB0YRQaaIBpxVovMcqPGTULNciqDwqTTAlHmU-x3Ozecypf_-gmB0380ejv4uegzr2CasZAlmTagvkhd1AmvydfGcJqeFcX0CIPbSqg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fS8MwEMCPuQnqg__F6dQiPvhS1iZZ04AvwzkmbkPmJnsraZqIMLqxTZ_9CH5GP4lJ23UKCoJvfbik5XKXXMPd7wAuiC_DCFNs-8wTNiGK2szhyFYKK8Ekjpwky_exTbtdfzhk9wW4WtTCpHyI_MLNeEayXxsHNxfS1SU1dDoz3CBG8QqUiDajWhFKjV5z0M53YopRmmBPkM206S7IQg6q5oO_n0fLIPNrqJqcNc2t_33lNmxmMaZVT41iBwoy3oWNTg5one0BaaSd6C1hyhbjjJ1rjZWlhSzTyiN-GsmPt3c1ldKapNUE-zBo3vSvW3bWQMEWpiWVLTlRIcOEUkM55y5ToceooK6oYVQLCVKI-0J4wo-4xExgpDz9QxhypaMW4ip8AMV4HMtDsHAUKsYpUiGK9PpyH3uuobcJPcp1OC_D5UKNgcjo4qbJxShIucgo0IoIEkWU4TwXnaRIjZ-EKou1CDKvmgWIUI8wv8aYfl2i9d8nCHoP9eTh6O-iZ7DW6nfaQfu2e3cM68ikryTpZhUozqcv8gRWxev8eTY9zSztE8aR1po
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fS8MwEMCPuYnog__F6dQiPvhStiZZ04Avw1kU5xjTyd5KmiYijG5s02c_gp_RT2LSf1NQEHzrw6UNl7vkUu5-B3BGPBlGmGLbY66wCVHUZg2ObKWwEkziqJFk-T52aLfrDYesV4KLvBYm5UMUP9yMZyT7tXFwOYlUfUENnc4MN4hRvAQV0mSudstKu-8POsVOTDFKE-wJspk23Zws1ED1YvD382gRZH4NVZOzxt_43yw3YT2LMa1WahRbUJLxNqzdFYDW2Q6QdtqJ3hKmbDHO2LnWWFlayDKtPOKnkfx4e1dTKa1JWk2wCwP_6uHy2s4aKNjCtKSyJScqZJhQaijn3GEqdBkV1BFNjJohQQpxTwhXeBGXmAmMlKsvhCFXOmohjsJ7UI7HsdwHC0ehYpwiFaJIry_3sOsYepvQo5wG51U4z9UYiIwubppcjIKUi4wCrYggUUQVTgvRSYrU-Emolq9FkHnVLECEuoR5Tcb05xKt__6CoH_fSh4O_i56Aiu9th90brq3h7CKTPZKkm1Wg_J8-iKPYFm8zp9n0-PM0D4BjsPWFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+concentration+of+the+triangle%E2%80%90free+process&rft.jtitle=Random+structures+%26+algorithms&rft.au=Bohman%2C+Tom&rft.au=Keevash%2C+Peter&rft.date=2021-03-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=58&rft.issue=2&rft.spage=221&rft.epage=293&rft_id=info:doi/10.1002%2Frsa.20973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rsa_20973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon