A systematic study on weak Galerkin finite element method for second‐order parabolic problems

In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations Jg. 39; H. 3; S. 2444 - 2474
Hauptverfasser: Deka, Bhupen, Kumar, Naresh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0749-159X, 1098-2426
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L∞L2$$ {L}^{\infty}\left({L}^2\right) $$ and L∞H1$$ {L}^{\infty}\left({H}^1\right) $$ norms for a general WG element 𝒫k(K),𝒫j(∂K),𝒫l(K)2, where k≥1$$ k\ge 1 $$, j≥0$$ j\ge 0 $$ and l≥0$$ l\ge 0 $$ are arbitrary integers. The fully discrete space–time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22973