A systematic study on weak Galerkin finite element method for second‐order parabolic problems

In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations Jg. 39; H. 3; S. 2444 - 2474
Hauptverfasser: Deka, Bhupen, Kumar, Naresh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0749-159X, 1098-2426
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L∞L2$$ {L}^{\infty}\left({L}^2\right) $$ and L∞H1$$ {L}^{\infty}\left({H}^1\right) $$ norms for a general WG element 𝒫k(K),𝒫j(∂K),𝒫l(K)2, where k≥1$$ k\ge 1 $$, j≥0$$ j\ge 0 $$ and l≥0$$ l\ge 0 $$ are arbitrary integers. The fully discrete space–time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
AbstractList In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L∞L2$$ {L}^{\infty}\left({L}^2\right) $$ and L∞H1$$ {L}^{\infty}\left({H}^1\right) $$ norms for a general WG element ð'«k(K),ð'«j(∂K),ð'«l(K)2, where k≥1$$ k\ge 1 $$, j≥0$$ j\ge 0 $$ and l≥0$$ l\ge 0 $$ are arbitrary integers. The fully discrete space–time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L∞L2$$ {L}^{\infty}\left({L}^2\right) $$ and L∞H1$$ {L}^{\infty}\left({H}^1\right) $$ norms for a general WG element 𝒫k(K),𝒫j(∂K),𝒫l(K)2, where k≥1$$ k\ge 1 $$, j≥0$$ j\ge 0 $$ and l≥0$$ l\ge 0 $$ are arbitrary integers. The fully discrete space–time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in and norms for a general WG element , where , and are arbitrary integers. The fully discrete space–time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
Author Kumar, Naresh
Deka, Bhupen
Author_xml – sequence: 1
  givenname: Bhupen
  orcidid: 0000-0003-2193-063X
  surname: Deka
  fullname: Deka, Bhupen
  email: bdeka@iitg.ac.in
  organization: Indian Institute of Technology Guwahati
– sequence: 2
  givenname: Naresh
  orcidid: 0000-0002-1913-7950
  surname: Kumar
  fullname: Kumar, Naresh
  organization: Indian Institute of Technology Guwahati
BookMark eNp1kL1OwzAUhS1UJNrCwBtYYmJIaydxUo9VBQWpwEIlNsuJr0XaxC62oyobj8Az8iSklAnBdJfv_NwzQgNjDSB0ScmEEhJPTdtM4pjnyQkaUsJnUZzG2QANSZ7yiDL-coZG3m8IoZRRPkRijn3nAzQyVCX2oVUdtgbvQW7xUtbgtpXBujJVAAw1NGACbiC8WoW1ddhDaY36fP-wToHDO-lkYeveaeds0eP-HJ1qWXu4-LljtL69eV7cRaun5f1ivorKQ9mo0AnLVMZUkadaK6WZ4gmfZRoKqUByBTSDhLKSyzwpVapYSXLFGFASFzyBZIyujr598FsLPoiNbZ3pI0WczzKeZCnnPTU9UqWz3jvQoqxC_7k1wcmqFpSIw4qiX1F8r9grrn8pdq5qpOv-ZH_c91UN3f-geFw_HBVfdW2HEA
CitedBy_id crossref_primary_10_1515_jnma_2021_0128
crossref_primary_10_1007_s10092_023_00541_5
crossref_primary_10_1007_s40314_023_02553_x
crossref_primary_10_1002_num_70025
crossref_primary_10_1007_s11831_025_10222_x
crossref_primary_10_1007_s11075_025_02061_5
crossref_primary_10_1007_s40314_024_02745_z
crossref_primary_10_1007_s42967_024_00444_4
crossref_primary_10_1016_j_apnum_2024_03_013
Cites_doi 10.1016/j.chaos.2005.11.010
10.1137/16M1083244
10.1007/s10915-016-0176-y
10.1007/978-1-4899-6824-1
10.1137/19M1283604
10.1007/s10444-016-9471-2
10.1142/S0218202512500492
10.1137/S0036142901384162
10.1007/s10444-015-9415-2
10.1016/j.apnum.2018.11.002
10.1016/S0898-1221(02)00113-X
10.1007/s10915-017-0564-y
10.1002/num.20150
10.1016/j.apnum.2018.01.021
10.1090/S0025-5718-2014-02852-4
10.1016/j.aml.2018.10.023
10.1142/S0218202514500146
10.1093/imanum/drt018
10.1051/m2an/2015051
10.1137/17M1152528
10.1090/mcom/3220
10.1137/070706616
10.1002/num.21982
10.1016/j.apnum.2018.12.005
10.1080/01630563.2018.1549074
10.1016/j.jcp.2016.08.024
10.1007/s00211-017-0940-4
10.1007/s10915-014-9964-4
10.1016/j.apnum.2004.02.002
10.1007/s10915-017-0496-6
10.1016/j.camwa.2017.07.047
10.1002/num.20071
10.1137/19M1266320
10.1137/16M1073285
10.1016/j.cam.2012.10.003
10.1137/17M1145677
10.1007/s10915-020-01239-4
10.1002/num.21786
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.22973
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 2474
ExternalDocumentID 10_1002_num_22973
NUM22973
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2973-bf356d65db74ffddf5d93986febadea9de16e315c9a73cd4d5c07d55e102b93e3
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906147400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-159X
IngestDate Fri Jul 25 12:13:10 EDT 2025
Sat Nov 29 05:35:19 EST 2025
Tue Nov 18 22:37:04 EST 2025
Wed Jan 22 16:14:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-bf356d65db74ffddf5d93986febadea9de16e315c9a73cd4d5c07d55e102b93e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1913-7950
0000-0003-2193-063X
PQID 2786936499
PQPubID 1016406
PageCount 31
ParticipantIDs proquest_journals_2786936499
crossref_citationtrail_10_1002_num_22973
crossref_primary_10_1002_num_22973
wiley_primary_10_1002_num_22973_NUM22973
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 29
2002; 39
2009; 47
2019; 90
2020; 42
2018; 128
2020; 83
2013; 23
2015; 31
2020; 38
2020; 58
2014; 24
2016; 50
2018; 40
2016; 325
2003
2013; 241
1996; 13
2007; 32
2018; 87
2014; 83
2016; 13
2007; 15
2017; 74
2019; 40
2018; 139
2017; 39
2006; 22
2002; 43
2015; 65
2019; 137
2016; 42
2019
2005; 52
2018
2018; 74
2018; 56
2018; 75
2014; 34
2016; 68
1984; 1054
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Zhang H. (e_1_2_9_14_1) 2016; 13
Brenner S. (e_1_2_9_40_1) 2007
Abbaszadeh M. (e_1_2_9_41_1) 2020; 38
e_1_2_9_15_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Thomée V. (e_1_2_9_2_1) 1984
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Adams R. (e_1_2_9_38_1) 2003
e_1_2_9_29_1
References_xml – volume: 139
  start-page: 447
  issue: 2
  year: 2018
  end-page: 478
  article-title: Interior energy error estimates for the weak Galerkin finite element method
  publication-title: Numer. Math.
– volume: 56
  start-page: 1482
  issue: 3
  year: 2018
  end-page: 1497
  article-title: A weak Galerkin finite element method for singularly perturbed convection‐diffusion–reaction problems
  publication-title: SIAM J. Numer. Anal.
– volume: 39
  start-page: 1749
  issue: 5
  year: 2002
  end-page: 1779
  article-title: Unified analysis of discontinuous galerkin methods for elliptic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 325
  start-page: 157
  year: 2016
  end-page: 173
  article-title: A new weak Galerkin finite element method for elliptic interface problems
  publication-title: J. Comput. Phys.
– volume: 15
  year: 2007
– volume: 65
  start-page: 363
  issue: 1
  year: 2015
  end-page: 386
  article-title: A weak Galerkin finite element method for the Maxwell equations
  publication-title: J. Sci. Comput.
– volume: 128
  start-page: 65
  year: 2018
  end-page: 80
  article-title: A relaxed weak Galerkin method for elliptic interface problems with low regularity
  publication-title: Appl. Numer. Math.
– volume: 22
  start-page: 220
  issue: 1
  year: 2006
  end-page: 257
  article-title: A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 23
  start-page: 199
  issue: 1
  year: 2013
  end-page: 214
  article-title: Basic principles of virtual element methods
  publication-title: Math. Models Methods Appl. Sci.
– volume: 31
  start-page: 2110
  issue: 6
  year: 2015
  end-page: 2134
  article-title: Virtual element methods for parabolic problems on polygonal meshes
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 42
  start-page: 155
  issue: 1
  year: 2016
  end-page: 174
  article-title: A weak Galerkin finite element method for the Stokes equations
  publication-title: Adv. Comput. Math.
– year: 2003
– volume: 50
  start-page: 635
  issue: 3
  year: 2016
  end-page: 650
  article-title: Bridging the hybrid high‐order and hybridizable discontinuous galerkin methods
  publication-title: Math. Model. Numer. Anal.
– volume: 52
  start-page: 39
  issue: 1
  year: 2005
  end-page: 62
  article-title: Efficient techniques for the second‐order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
– volume: 137
  start-page: 213
  year: 2019
  end-page: 229
  article-title: A globally divergence‐free weak Galerkin method for Brinkman equations
  publication-title: Appl. Numer. Math.
– volume: 13
  start-page: 525
  issue: 4
  year: 2016
  end-page: 544
  article-title: Weak Galerkin finite element method for second order parabolic equations
  publication-title: Int. J. Numer. Anal. Model.
– volume: 42
  start-page: B608
  issue: 3
  year: 2020
  end-page: B629
  article-title: Pressure robust weak galerkin finite element methods for stokes problems
  publication-title: SIAM J. Sci. Comput.
– volume: 58
  start-page: 1422
  issue: 3
  year: 2020
  end-page: 1439
  article-title: A uniformly robust H(DIV) weak Galerkin finite element methods for Brinkman problems
  publication-title: SIAM J. Numer. Anal.
– volume: 68
  start-page: 1144
  issue: 3
  year: 2016
  end-page: 1171
  article-title: Discretization of div–curl systems by weak Galerkin finite element methods on polyhedral partitions
  publication-title: J. Sci. Comput.
– volume: 24
  start-page: 2009
  issue: 10
  year: 2014
  end-page: 2041
  article-title: hp‐version discontinuous Galerkin methods on polygonal and polyhedral meshes
  publication-title: Math. Models Methods Appl. Sci.
– volume: 75
  start-page: 782
  issue: 2
  year: 2018
  end-page: 802
  article-title: A weak Galerkin method for the Reissner–Mindlin plate in primary form
  publication-title: J. Sci. Comput.
– volume: 22
  start-page: 1255
  issue: 6
  year: 2006
  end-page: 1266
  article-title: Numerical solution of two‐dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral legendre method
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 2018
– volume: 74
  start-page: 1369
  issue: 3
  year: 2018
  end-page: 1396
  article-title: A systematic study on weak Galerkin finite element methods for second order elliptic problems
  publication-title: J. Sci. Comput.
– volume: 13
  year: 1996
– volume: 43
  start-page: 1477
  issue: 12
  year: 2002
  end-page: 1488
  article-title: A new adi technique for two‐dimensional parabolic equation with an integral condition
  publication-title: Comput. Math. Appl.
– volume: 90
  start-page: 118
  year: 2019
  end-page: 123
  article-title: Weak Galerkin finite element method with second‐order accuracy in time for parabolic problems
  publication-title: Appl. Math. Lett.
– volume: 241
  start-page: 103
  year: 2013
  end-page: 115
  article-title: A weak Galerkin finite element method for second‐order elliptic problems
  publication-title: J. Comput. Appl. Math.
– volume: 40
  start-page: B1229
  issue: 5
  year: 2018
  end-page: B1252
  article-title: Lowest‐order weak Galerkin finite element method for darcy flow on convex polygonal meshes
  publication-title: SIAM J. Sci. Comput.
– volume: 87
  start-page: 515
  issue: 310
  year: 2018
  end-page: 545
  article-title: A primal‐dual weak Galerkin finite element method for second order elliptic equations in non‐divergence form
  publication-title: Math. Comput.
– volume: 34
  start-page: 759
  issue: 2
  year: 2014
  end-page: 781
  article-title: A virtual element method with arbitrary regularity
  publication-title: IMA J. Numer. Anal.
– volume: 39
  start-page: A1531
  issue: 4
  year: 2017
  end-page: A1557
  article-title: A least‐squares‐based weak Galerkin finite element method for second order elliptic equations
  publication-title: SIAM J. Sci. Comput.
– volume: 38
  start-page: 1
  year: 2020
  end-page: 21
  article-title: Meshless local numerical procedure based on interpolating moving least squares approximation and exponential time differencing fourth‐order Runge–Kutta (ETDRK4) for solving stochastic parabolic interface problems
  publication-title: Eng. Comput.
– volume: 83
  start-page: 2101
  issue: 289
  year: 2014
  end-page: 2126
  article-title: A weak Galerkin mixed finite element method for second order elliptic problems
  publication-title: Math. Comput.
– volume: 1054
  year: 1984
– volume: 83
  start-page: 47
  year: 2020
  article-title: Penalty‐free any‐order weak galerkin fems for elliptic problems on quadrilateral meshes
  publication-title: J. Sci. Comput.
– volume: 32
  start-page: 661
  issue: 2
  year: 2007
  end-page: 675
  article-title: The one‐dimensional heat equation subject to a boundary integral specification
  publication-title: Chaos Soliton Fract.
– volume: 40
  start-page: 259
  issue: 3
  year: 2019
  end-page: 279
  article-title: Weak Galerkin finite element methods for parabolic interface problems with nonhomogeneous jump conditions
  publication-title: Numer. Funct. Anal. Optim.
– volume: 42
  start-page: 1473
  issue: 6
  year: 2016
  end-page: 1490
  article-title: A weak Galerkin finite element method for the Oseen equations
  publication-title: Adv. Comput. Math.
– volume: 29
  start-page: 2004
  issue: 6
  year: 2013
  end-page: 2024
  article-title: Weak Galerkin finite element methods for parabolic equations
  publication-title: Numer. Methods Partial Differ. Equ.
– volume: 74
  start-page: 2106
  issue: 9
  year: 2017
  end-page: 2124
  article-title: Weak Galerkin methods for time‐dependent Maxwell's equations
  publication-title: Comput. Math. Appl.
– volume: 47
  start-page: 1319
  issue: 2
  year: 2009
  end-page: 1365
  article-title: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems
  publication-title: SIAM J. Numer. Anal.
– year: 2019
– volume: 137
  start-page: 19
  year: 2019
  end-page: 33
  article-title: Error analysis of weak Galerkin finite element methods for time‐dependent convection–diffusion equations
  publication-title: Appl. Numer. Math.
– volume: 39
  start-page: A1251
  issue: 4
  year: 2017
  end-page: A1279
  article-title: hp‐version space‐time discontinuous galerkin methods for parabolic problems on prismatic meshes
  publication-title: SIAM J. Sci. Comput.
– ident: e_1_2_9_45_1
  doi: 10.1016/j.chaos.2005.11.010
– ident: e_1_2_9_8_1
  doi: 10.1137/16M1083244
– ident: e_1_2_9_22_1
  doi: 10.1007/s10915-016-0176-y
– ident: e_1_2_9_39_1
  doi: 10.1007/978-1-4899-6824-1
– ident: e_1_2_9_18_1
  doi: 10.1137/19M1283604
– volume: 38
  start-page: 1
  year: 2020
  ident: e_1_2_9_41_1
  article-title: Meshless local numerical procedure based on interpolating moving least squares approximation and exponential time differencing fourth‐order Runge–Kutta (ETDRK4) for solving stochastic parabolic interface problems
  publication-title: Eng. Comput.
– ident: e_1_2_9_16_1
  doi: 10.1007/s10444-016-9471-2
– ident: e_1_2_9_31_1
  doi: 10.1142/S0218202512500492
– ident: e_1_2_9_34_1
  doi: 10.1137/S0036142901384162
– ident: e_1_2_9_23_1
  doi: 10.1007/s10444-015-9415-2
– ident: e_1_2_9_24_1
  doi: 10.1016/j.apnum.2018.11.002
– ident: e_1_2_9_42_1
  doi: 10.1016/S0898-1221(02)00113-X
– ident: e_1_2_9_19_1
  doi: 10.1007/s10915-017-0564-y
– volume-title: Galerkin finite element methods for parabolic problems
  year: 1984
  ident: e_1_2_9_2_1
– ident: e_1_2_9_46_1
  doi: 10.1002/num.20150
– ident: e_1_2_9_27_1
  doi: 10.1016/j.apnum.2018.01.021
– volume-title: Sobolev spaces
  year: 2003
  ident: e_1_2_9_38_1
– ident: e_1_2_9_11_1
  doi: 10.1090/S0025-5718-2014-02852-4
– ident: e_1_2_9_15_1
  doi: 10.1016/j.aml.2018.10.023
– volume-title: The mathematical theory of finite element methods
  year: 2007
  ident: e_1_2_9_40_1
– ident: e_1_2_9_36_1
  doi: 10.1142/S0218202514500146
– ident: e_1_2_9_32_1
  doi: 10.1093/imanum/drt018
– ident: e_1_2_9_37_1
  doi: 10.1051/m2an/2015051
– ident: e_1_2_9_5_1
  doi: 10.1137/17M1152528
– ident: e_1_2_9_9_1
  doi: 10.1090/mcom/3220
– ident: e_1_2_9_28_1
  doi: 10.1137/070706616
– ident: e_1_2_9_33_1
  doi: 10.1002/num.21982
– ident: e_1_2_9_13_1
  doi: 10.1016/j.apnum.2018.12.005
– ident: e_1_2_9_25_1
  doi: 10.1080/01630563.2018.1549074
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jcp.2016.08.024
– ident: e_1_2_9_4_1
  doi: 10.1007/s00211-017-0940-4
– ident: e_1_2_9_30_1
– ident: e_1_2_9_20_1
  doi: 10.1007/s10915-014-9964-4
– ident: e_1_2_9_43_1
  doi: 10.1016/j.apnum.2004.02.002
– ident: e_1_2_9_10_1
  doi: 10.1007/s10915-017-0496-6
– ident: e_1_2_9_21_1
  doi: 10.1016/j.camwa.2017.07.047
– volume: 13
  start-page: 525
  issue: 4
  year: 2016
  ident: e_1_2_9_14_1
  article-title: Weak Galerkin finite element method for second order parabolic equations
  publication-title: Int. J. Numer. Anal. Model.
– ident: e_1_2_9_44_1
  doi: 10.1002/num.20071
– ident: e_1_2_9_17_1
  doi: 10.1137/19M1266320
– ident: e_1_2_9_35_1
  doi: 10.1137/16M1073285
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cam.2012.10.003
– ident: e_1_2_9_6_1
  doi: 10.1137/17M1145677
– ident: e_1_2_9_7_1
  doi: 10.1007/s10915-020-01239-4
– ident: e_1_2_9_29_1
– ident: e_1_2_9_12_1
  doi: 10.1002/num.21786
SSID ssj0011519
Score 2.388842
Snippet In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second‐order linear parabolic problems by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2444
SubjectTerms convergence analysis
discrete weak gradient
Finite element method
Galerkin method
Norms
parabolic problems
Polynomials
Robustness (mathematics)
semidiscrete and fully discrete schemes
weak Galerkin finite element method
Title A systematic study on weak Galerkin finite element method for second‐order parabolic problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.22973
https://www.proquest.com/docview/2786936499
Volume 39
WOSCitedRecordID wos000906147400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ27TsMwFIaPoDDAwB1xl4UYWAJtEju1mBBQGGiFEEXdItvHliqgRU0LK4_AM_Ik2E6aggQSEpsHO7F8yfl9yfcDHHimWMx0wBFlECtubEpUA00FhjbiaeFvVd5fJ61WvdPhN1NwMv4XJudDlBtubmb477Wb4EJmx1-goaOno9A5L03DTGjHLa3AzPlto31dHiLYYMZzCicPbNTujMFC1fC4LPw9HE005lel6kNNY_FflVyChUJhktN8SCzDlO6twHyzxLNmq5CekgnBmXjCLOn3yKsWD-TSRgy3f05M18lRovP75SS3miZW45LMLaLx4-3dczuJo4dLhxcmhTtNtgbtxsXd2VVQOC0EylUukCaiDBlFmcTGIBqKPOJ1ZrQUqAVHXWM6qlHFRRIpjJGqaoKUaitPJI90tA6VXr-nN4BUpWFhTdpVN2JsQi2kqiHactQKEyXZJhyOGzxVBYbcuWE8pjlAOXRWKKlvs03YL7M-5-yNnzLtjHstLaZfloZJnfGI2dWcfZ3vn98fkLbaTZ_Y-nvWbZhztvP5xccdqAwHI70Ls-pl2M0Ge8U4_ARwU-VK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMcf5guoB9_Fl6lBPHipbm2TLuBlqHPiNkSc7FaaPAmIOmWdevUj-Bn9JCZpVxUUBG85pG1InvT5J01_f4BdxxQLmfI4ovBCybUpJRVP0QR9k_FU4k5VXreiTqfW6_GLEhyO_oXJ-BDFhpudGe59bSe43ZA--EINfbrf96310hhMhCaMTHxPHF82uq3iK4LJZjzDcHLPpO3eiCxU8Q-Ki7_no0-R-VWqulzTmPtfK-dhNteYpJ4FxQKUVH8RZtoFoDVdgrhOPhnOxDFmyUOfvKjklpyanGF30Im-sYKUqOyEOcnMpolRuSS1y2h8f31z5E5i-eHCAoZJ7k-TLkO3cXJ11PRyrwVP2sZ5QgeUIaMoolBrRE2RB7zGtBIJqoSjqjIVVKnkSRRIDJHKSoSUKiNQBA9UsALj_Ye-WgVSEZr5VWHW3Yih9lUiZBXRXEeNNJGCrcHeqMdjmYPIrR_GXZwhlH1rhhK7PluDnaLqY0bf-KlSeTRscT4B09iPaowHzKznzOPcAP1-g7jTbbvC-t-rbsNU86rdiltnnfMNmLYm9NkxyDKMDwdPahMm5fPwJh1s5UH5ASH_6To
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMcfdIrowXfxZWoQD16qW9ukC3gZ6lTchoiT3UqTJwFRp6xTr34EP6OfxCTtOgUFwVsOSRvy0uefl_7-ALuOKRYy5XFE4YWSa5NKKp6iCfom4qnE3aq8aUbtdq3b5ZdjcDj8FybjQxQbbnZmuO-1neDqCfXBF2ro88O-b62XxmEitCYyJZg4vmp0msUpgolmPMNwcs-E7e6QLFTxD4rC3-PRSGR-laou1jTm_lfLeZjNNSapZ4NiAcZUbxFmWgWgNV2CuE5GDGfiGLPksUdeVXJHTk3MsDvoRN9aQUpUdsOcZGbTxKhcktplNH68vTtyJ7H8cGEBwyT3p0mXodM4uT4683KvBU_aynlCB5QhoyiiUGtETZEHvMa0EgmqhKOqMhVUqeRJFEgMkcpKhJQqI1AED1SwAqXeY0-tAqkIzfyqMOtuxFD7KhGyimjKUSNNpGBrsDds8VjmIHLrh3EfZwhl35qhxK7N1mCnyPqU0Td-ylQedlucT8A09qMa4wEz6znzOtdBvz8gbndaLrH-96zbMHV53Iib5-2LDZi2HvTZLcgylAb9Z7UJk_JlcJv2t_Ix-QnQo-i1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+study+on+weak+Galerkin+finite+element+method+for+second%E2%80%90order+parabolic+problems&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Deka%2C+Bhupen&rft.au=Kumar%2C+Naresh&rft.date=2023-05-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=39&rft.issue=3&rft.spage=2444&rft.epage=2474&rft_id=info:doi/10.1002%2Fnum.22973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_num_22973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon