Two‐dimensional medical image segmentation based on U‐shaped structure
With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively applied in medical image segmentation. One popular strategy for such tasks is the encoder‐decoder‐based U‐Net architecture and its variants. Most s...
Gespeichert in:
| Veröffentlicht in: | International journal of imaging systems and technology Jg. 34; H. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2024
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0899-9457, 1098-1098 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively applied in medical image segmentation. One popular strategy for such tasks is the encoder‐decoder‐based U‐Net architecture and its variants. Most segmentation methods based on fully convolutional networks will cause the loss of spatial and contextual information due to continuous pooling operations or strided convolution when decreasing image resolution, and make less use of contextual information and global information under different receptive fields. To overcome this shortcoming, this paper proposes a novel structure called RAAU‐Net. In our proposed RAAU‐Net structure, which is a modified U‐shaped architecture, we aim to capture high‐level information while preserving spatial information and focusing on the regions of interest. RAAU‐Net comprises three main components: a feature encoder module that utilizes a pre‐trained ResNet‐18 model as a fixed feature extractor, a multi‐receptive field extraction module that we developed, and a feature decoder module. We have tested our method on several 2D medical image segmentation tasks such as retinal nerve, breast tumor, skin lesion, lung, gland, and polyp segmentation. All the indexes of the model reached the best in the dataset of skin lesions, in which Accuracy, Precision, IoU, Recall, and Dice Score were 3.26%, 5.42%, 9.92%, 6.52%, and 5.95% higher than UNet. |
|---|---|
| AbstractList | With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively applied in medical image segmentation. One popular strategy for such tasks is the encoder‐decoder‐based U‐Net architecture and its variants. Most segmentation methods based on fully convolutional networks will cause the loss of spatial and contextual information due to continuous pooling operations or strided convolution when decreasing image resolution, and make less use of contextual information and global information under different receptive fields. To overcome this shortcoming, this paper proposes a novel structure called RAAU‐Net. In our proposed RAAU‐Net structure, which is a modified U‐shaped architecture, we aim to capture high‐level information while preserving spatial information and focusing on the regions of interest. RAAU‐Net comprises three main components: a feature encoder module that utilizes a pre‐trained ResNet‐18 model as a fixed feature extractor, a multi‐receptive field extraction module that we developed, and a feature decoder module. We have tested our method on several 2D medical image segmentation tasks such as retinal nerve, breast tumor, skin lesion, lung, gland, and polyp segmentation. All the indexes of the model reached the best in the dataset of skin lesions, in which Accuracy, Precision, IoU, Recall, and Dice Score were 3.26%, 5.42%, 9.92%, 6.52%, and 5.95% higher than UNet. |
| Author | Wang, Yanyu Cai, Sijing Xiao, Yuwei |
| Author_xml | – sequence: 1 givenname: Sijing orcidid: 0009-0005-8052-1782 surname: Cai fullname: Cai, Sijing email: caisijing@fjut.edu.cn organization: Fujian University of Technology – sequence: 2 givenname: Yuwei surname: Xiao fullname: Xiao, Yuwei organization: Fujian University of Technology – sequence: 3 givenname: Yanyu surname: Wang fullname: Wang, Yanyu organization: Fujian University of Technology |
| BookMark | eNp1kL1OwzAUhS0EEm1h4A0iMTGktePYiceq4qeoiKWdLcd2iqs0KXaiqhuPwDPyJNySTggWX1vnO0c-d4jO66a2CN0QPCYYJxO3VeOE4oSeoQHBIo-Pxzka4FyIWKQsu0TDEDYYE8IwG6Dn5b75-vg0bmvr4JpaVdHWGqdhQtTaRsGuQWpVC2JUqGBNBJcVeMKb2sErtL7TbeftFbooVRXs9WmO0Orhfjl7ihevj_PZdBHrRGQ0ViLlStO0ZFSL1FBuaclzbHhRZIYIjg3LC0UFYFmhiKLMamugBk-4zlhKR-i2z9355r2zoZWbpvPw8yATQQSljGQMqElPad-E4G0ptetbtF65ShIsjwuT0FL-LAwcd78cOw-qP_zJntL3rrKH_0E5f5n2jm-n4H3V |
| CitedBy_id | crossref_primary_10_54525_bbmd_1537055 crossref_primary_10_3390_jimaging11080274 |
| Cites_doi | 10.1109/WACV.2018.00163 10.1007/978-3-031-16443-9_3 10.1109/TPAMI.2017.2699184 10.1109/CVPR.2016.90 10.1109/TPAMI.2016.2644615 10.1109/CVPR.2017.243 10.1016/j.patcog.2023.109524 10.1007/978-3-319-46493-0_38 10.1109/ICCV.2019.00140 10.1007/978-3-319-24574-4_28 10.1016/j.neunet.2019.08.025 10.1109/TMI.2019.2903562 10.1109/JBHI.2020.2986926 10.1109/TMI.2018.2835303 10.1007/978-3-030-00889-5_1 10.1109/CBMS49503.2020.00111 10.1109/TMI.2018.2845918 10.1109/CVPR.2015.7298965 10.1109/TMI.2021.3130469 10.1109/NAECON.2018.8556686 10.1016/j.media.2018.10.004 10.1016/j.patcog.2022.108963 10.1109/CVPR.2018.00745 10.1007/978-3-031-16434-7_14 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley Periodicals LLC. 2024 Wiley Periodicals, LLC. |
| Copyright_xml | – notice: 2024 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals, LLC. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.23023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ima_23023 IMA23023 |
| Genre | article |
| GrantInformation_xml | – fundername: Fujian Provincial Research Project, China funderid: 2020J01879 – fundername: Fujian University of Technology Research Initiation Fund funderid: GY‐Z220291 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X |
| ID | FETCH-LOGICAL-c2973-a946ac34f53c94d36e3f680d6bb7d1960d58ba399467ba1a35eced109626c7543 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001148327800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0899-9457 |
| IngestDate | Sun Nov 30 04:01:45 EST 2025 Sat Nov 29 02:46:17 EST 2025 Tue Nov 18 22:14:55 EST 2025 Wed Jan 22 16:16:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2973-a946ac34f53c94d36e3f680d6bb7d1960d58ba399467ba1a35eced109626c7543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-8052-1782 |
| PQID | 2919335175 |
| PQPubID | 1026352 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2919335175 crossref_citationtrail_10_1002_ima_23023 crossref_primary_10_1002_ima_23023 wiley_primary_10_1002_ima_23023_IMA23023 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 25 2015; 37 2022; 132 2019; 51 2022 2017; 39 2020 2020; 121 2023; 139 2019 2019; 38 2018 2017 2022; 41 2016 2015 2018; 40 2018; 37 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Liu L (e_1_2_9_4_1) 2019 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 loffe S (e_1_2_9_14_1) 2015 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Zhou C (e_1_2_9_7_1) 2018 e_1_2_9_29_1 |
| References_xml | – start-page: 234 year: 2015 end-page: 241 – start-page: 140 year: 2022 end-page: 149 – start-page: 558 year: 2020 end-page: 564 – start-page: 1 year: 2019 end-page: 4 – start-page: 630 year: 2016 end-page: 645 – start-page: 770 year: 2016 end-page: 778 – volume: 40 start-page: 834 year: 2018 end-page: 848 article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 121 start-page: 74 year: 2020 end-page: 87 article-title: MultiResUNet: rethinking the U‐net architecture for multimodal biomedical image segmentation publication-title: Neural Netw – start-page: 23 year: 2022 end-page: 33 – volume: 41 start-page: 965 year: 2022 end-page: 976 article-title: KiU‐net: overcomplete convolutional architectures for biomedical image and volumetric segmentation publication-title: IEEE Trans Med Imaging – start-page: 3 year: 2018 end-page: 11 – volume: 132 year: 2022 article-title: GFNet: automatic segmentation of COVID‐19 lung infection regions using CT images based on boundary features publication-title: Pattern Recogn – start-page: 3431 year: 2015 end-page: 3440 – start-page: 7132 year: 2018 end-page: 7141 – year: 2018 – start-page: 637 year: 2018 end-page: 645 – start-page: 1451 year: 2018 end-page: 1460 – volume: 38 start-page: 2281 year: 2019 end-page: 2292 article-title: CE‐net: context encoder network for 2D medical image segmentation publication-title: IEEE Trans Med Imaging – volume: 37 start-page: 448 year: 2015 end-page: 456 – volume: 37 start-page: 2453 year: 2018 end-page: 2462 article-title: DRINet for medical image segmentation publication-title: IEEE Trans Med Imaging – start-page: 1314 year: 2019 end-page: 1324 – volume: 39 start-page: 2481 year: 2017 end-page: 2495 article-title: SegNet: a deep convolutional encoder‐decoder architecture for image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 139 year: 2023 article-title: MSCA‐net: multi‐scale contextual attention network for skin lesion segmentation publication-title: Pattern Recogn – volume: 51 start-page: 21 year: 2019 end-page: 45 article-title: Fully convolutional multi‐scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers publication-title: Med Image Anal – year: 2017 – start-page: 4700 year: 2017 end-page: 4708 – year: 2019 – volume: 37 start-page: 2663 year: 2018 end-page: 2674 article-title: H‐DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes publication-title: IEEE Trans Med Imaging – volume: 25 start-page: 121 year: 2021 end-page: 130 article-title: Multi‐scale self‐guided attention for medical image segmentation publication-title: IEEE J Biomed Health Inform – ident: e_1_2_9_25_1 doi: 10.1109/WACV.2018.00163 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-031-16443-9_3 – ident: e_1_2_9_17_1 – ident: e_1_2_9_26_1 doi: 10.1109/TPAMI.2017.2699184 – ident: e_1_2_9_20_1 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_31_1 doi: 10.1109/TPAMI.2016.2644615 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR.2017.243 – ident: e_1_2_9_22_1 doi: 10.1016/j.patcog.2023.109524 – ident: e_1_2_9_12_1 doi: 10.1007/978-3-319-46493-0_38 – ident: e_1_2_9_27_1 doi: 10.1109/ICCV.2019.00140 – ident: e_1_2_9_2_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_16_1 doi: 10.1016/j.neunet.2019.08.025 – ident: e_1_2_9_19_1 doi: 10.1109/TMI.2019.2903562 – ident: e_1_2_9_21_1 doi: 10.1109/JBHI.2020.2986926 – ident: e_1_2_9_18_1 doi: 10.1109/TMI.2018.2835303 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-030-00889-5_1 – ident: e_1_2_9_10_1 doi: 10.1109/CBMS49503.2020.00111 – start-page: 1 volume-title: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) year: 2019 ident: e_1_2_9_4_1 – ident: e_1_2_9_15_1 – ident: e_1_2_9_3_1 doi: 10.1109/TMI.2018.2845918 – ident: e_1_2_9_8_1 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_9_11_1 doi: 10.1109/TMI.2021.3130469 – ident: e_1_2_9_28_1 doi: 10.1109/NAECON.2018.8556686 – ident: e_1_2_9_6_1 doi: 10.1016/j.media.2018.10.004 – ident: e_1_2_9_30_1 doi: 10.1016/j.patcog.2022.108963 – start-page: 637 volume-title: Medical Image Computing and Computer Assisted Intervention (MICCAI) year: 2018 ident: e_1_2_9_7_1 – start-page: 448 volume-title: Proceedings of the 32nd International Conference on Machine Learning. year: 2015 ident: e_1_2_9_14_1 – ident: e_1_2_9_24_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_9_5_1 doi: 10.1007/978-3-031-16434-7_14 |
| SSID | ssj0011505 |
| Score | 2.3576715 |
| Snippet | With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial neural networks Coders deep learning Feature extraction Image processing Image resolution Image segmentation Lesions Machine learning medical image segmentation Medical imaging Modules Spatial data U‐net |
| Title | Two‐dimensional medical image segmentation based on U‐shaped structure |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.23023 https://www.proquest.com/docview/2919335175 |
| Volume | 34 |
| WOSCitedRecordID | wos001148327800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UVkEPLlWxWiWIBy-haWYmC56KWlS0iLTQW5gttWAXGperP8Hf6C_xTZIugoLgbQIzk-TNW77ZvgdwYhRBB1LYimhtUy8mNgYF1_aE72P0UmgkTppswm-1gm43vC_A2fQuTMYPMVtwM5aR-mtj4FwktTlpaN_QBpmUN0tQclFvaRFKFw_Nzu1sEwGxTnqCMTAklJT5U2Ihx63NGn8PR3OMuYhU01DT3PjXR27Ceo4wrUamEltQ0MMyrC3wDpZhJT33KZNtuGm_jT7fP5Th-M_4OaxBtnVjYac9bSW6N8ivJw0tE_KUhYUOtkke-RifMgLal4negU7zsn1-ZefpFWxpElbZPKQel4TGjMiQKuJpEnuBozwhfIWG6SgWCI4ABn2p4HVOmJZa1XHO43rSZ5TsQnE4Guo9sGjocC7cUMVMUs049wPKcK4kHOmjx5AVOJ1KOZI597hJgfEUZazJboT_FKWCqsDxrOo4I9z4qVJ1OlRRbnNJ5IYIRglDPISvSwfl9w6i67tGWtj_e9UDWHUR0WTrL1Uoonj1ISzL1-d-MjnKle8LjxbdDw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UVlEP7mK1ahAPXkLTzEwW8FLU0mpbRFroLUxmprVgFxqXqz_B3-gv8U2SLoKC4G0CbybJzFu-2b4HcK4VQXkiNCVRyqROl5gYFGzTCV0Xo5dEI7HiZBNus-l1Ov59Bi6nd2ESfojZgpu2jNhfawPXC9LFOWtoX_MG6Zw3S5CjqEYsC7nrh0q7PttFQLATH2H0NAslZe6UWciyi7PK3-PRHGQuQtU41lQ2__eVW7CRYkyjnCjFNmTUcAfWF5gHd2AlPvkpol24bb2NPt8_pGb5Txg6jEGyeWNgoz1lRKo3SC8oDQ0d9KSBhTbWiR75GJ8SCtqXidqDduWmdVU10wQLptApq0zuU4cLQruMCJ9K4ijSdTxLOmHoSjRNSzIv5Ahh0JuGvMQJU0LJEs56bEe4jJJ9yA5HQ3UABvUtzkPbl10mqGKcux5lOFsKLeGizxB5uJh2cyBS9nGdBOMpSHiT7QD_KYg7Kg9nM9FxQrnxk1BhOlZBanVRYPsIRwlDRISvi0fl9waCWqMcFw7_LnoKq9VWox7Ua827I1izEd8kqzEFyGJXq2NYFq_P_WhykmriF9DR4P8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64owd3cbeIBy9lapN0AS-iFpdxEHHAW8lWHXDGwbpc_Qn-Rn-JL-niCAqCtxSStH15y5ftewA7RhF0JIWriNYuDTLiYlDw3UCEIUYvhUbi2WQTYasV3dzEl0OwX92FKfgh6gU3YxnWXxsD132VNb5YQzuGN8jkvBmGUcriAM1y9OgqaTfrXQQEO_YIY2RYKCkLK2Yhz2_Ujb_Hoy-QOQhVbaxJZv73lbMwXWJM56BQijkY0r15mBpgHpyHcXvyU-YLcHb9-vDx9q4My3_B0OF0i80bBzu91U6ub7vlBaWeY4KecrDQxjb5He_jU0FB-_yoF6GdHF8fnrhlggVXmpRVLo9pwCWhGSMypooEmmRB5KlAiFChaXqKRYIjhEFvKvgeJ0xLrfZw1uMHMmSULMFI76Gnl8Ghsce58GOVMUk14zyMKMPZkvBkiD5DrsBuJeZUluzjJgnGfVrwJvsp_lNqBbUC23XVfkG58VOl9Wqs0tLq8tSPEY4ShogIX2dH5fcO0tOLA1tY_XvVLZi4PErS5mnrfA0mfYQ3xWLMOoygpPUGjMmXp07-uFkq4ieJf-B6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90dimensional+medical+image+segmentation+based+on+U%E2%80%90shaped+structure&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Cai%2C+Sijing&rft.au=Xiao%2C+Yuwei&rft.au=Wang%2C+Yanyu&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fima.23023&rft.externalDBID=10.1002%252Fima.23023&rft.externalDocID=IMA23023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |