Two‐dimensional medical image segmentation based on U‐shaped structure

With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively applied in medical image segmentation. One popular strategy for such tasks is the encoder‐decoder‐based U‐Net architecture and its variants. Most s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology Jg. 34; H. 1
Hauptverfasser: Cai, Sijing, Xiao, Yuwei, Wang, Yanyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0899-9457, 1098-1098
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively applied in medical image segmentation. One popular strategy for such tasks is the encoder‐decoder‐based U‐Net architecture and its variants. Most segmentation methods based on fully convolutional networks will cause the loss of spatial and contextual information due to continuous pooling operations or strided convolution when decreasing image resolution, and make less use of contextual information and global information under different receptive fields. To overcome this shortcoming, this paper proposes a novel structure called RAAU‐Net. In our proposed RAAU‐Net structure, which is a modified U‐shaped architecture, we aim to capture high‐level information while preserving spatial information and focusing on the regions of interest. RAAU‐Net comprises three main components: a feature encoder module that utilizes a pre‐trained ResNet‐18 model as a fixed feature extractor, a multi‐receptive field extraction module that we developed, and a feature decoder module. We have tested our method on several 2D medical image segmentation tasks such as retinal nerve, breast tumor, skin lesion, lung, gland, and polyp segmentation. All the indexes of the model reached the best in the dataset of skin lesions, in which Accuracy, Precision, IoU, Recall, and Dice Score were 3.26%, 5.42%, 9.92%, 6.52%, and 5.95% higher than UNet.
AbstractList With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively applied in medical image segmentation. One popular strategy for such tasks is the encoder‐decoder‐based U‐Net architecture and its variants. Most segmentation methods based on fully convolutional networks will cause the loss of spatial and contextual information due to continuous pooling operations or strided convolution when decreasing image resolution, and make less use of contextual information and global information under different receptive fields. To overcome this shortcoming, this paper proposes a novel structure called RAAU‐Net. In our proposed RAAU‐Net structure, which is a modified U‐shaped architecture, we aim to capture high‐level information while preserving spatial information and focusing on the regions of interest. RAAU‐Net comprises three main components: a feature encoder module that utilizes a pre‐trained ResNet‐18 model as a fixed feature extractor, a multi‐receptive field extraction module that we developed, and a feature decoder module. We have tested our method on several 2D medical image segmentation tasks such as retinal nerve, breast tumor, skin lesion, lung, gland, and polyp segmentation. All the indexes of the model reached the best in the dataset of skin lesions, in which Accuracy, Precision, IoU, Recall, and Dice Score were 3.26%, 5.42%, 9.92%, 6.52%, and 5.95% higher than UNet.
Author Wang, Yanyu
Cai, Sijing
Xiao, Yuwei
Author_xml – sequence: 1
  givenname: Sijing
  orcidid: 0009-0005-8052-1782
  surname: Cai
  fullname: Cai, Sijing
  email: caisijing@fjut.edu.cn
  organization: Fujian University of Technology
– sequence: 2
  givenname: Yuwei
  surname: Xiao
  fullname: Xiao, Yuwei
  organization: Fujian University of Technology
– sequence: 3
  givenname: Yanyu
  surname: Wang
  fullname: Wang, Yanyu
  organization: Fujian University of Technology
BookMark eNp1kL1OwzAUhS0EEm1h4A0iMTGktePYiceq4qeoiKWdLcd2iqs0KXaiqhuPwDPyJNySTggWX1vnO0c-d4jO66a2CN0QPCYYJxO3VeOE4oSeoQHBIo-Pxzka4FyIWKQsu0TDEDYYE8IwG6Dn5b75-vg0bmvr4JpaVdHWGqdhQtTaRsGuQWpVC2JUqGBNBJcVeMKb2sErtL7TbeftFbooVRXs9WmO0Orhfjl7ihevj_PZdBHrRGQ0ViLlStO0ZFSL1FBuaclzbHhRZIYIjg3LC0UFYFmhiKLMamugBk-4zlhKR-i2z9355r2zoZWbpvPw8yATQQSljGQMqElPad-E4G0ptetbtF65ShIsjwuT0FL-LAwcd78cOw-qP_zJntL3rrKH_0E5f5n2jm-n4H3V
CitedBy_id crossref_primary_10_54525_bbmd_1537055
crossref_primary_10_3390_jimaging11080274
Cites_doi 10.1109/WACV.2018.00163
10.1007/978-3-031-16443-9_3
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2016.90
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2017.243
10.1016/j.patcog.2023.109524
10.1007/978-3-319-46493-0_38
10.1109/ICCV.2019.00140
10.1007/978-3-319-24574-4_28
10.1016/j.neunet.2019.08.025
10.1109/TMI.2019.2903562
10.1109/JBHI.2020.2986926
10.1109/TMI.2018.2835303
10.1007/978-3-030-00889-5_1
10.1109/CBMS49503.2020.00111
10.1109/TMI.2018.2845918
10.1109/CVPR.2015.7298965
10.1109/TMI.2021.3130469
10.1109/NAECON.2018.8556686
10.1016/j.media.2018.10.004
10.1016/j.patcog.2022.108963
10.1109/CVPR.2018.00745
10.1007/978-3-031-16434-7_14
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
2024 Wiley Periodicals, LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.23023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage n/a
ExternalDocumentID 10_1002_ima_23023
IMA23023
Genre article
GrantInformation_xml – fundername: Fujian Provincial Research Project, China
  funderid: 2020J01879
– fundername: Fujian University of Technology Research Initiation Fund
  funderid: GY‐Z220291
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
ID FETCH-LOGICAL-c2973-a946ac34f53c94d36e3f680d6bb7d1960d58ba399467ba1a35eced109626c7543
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001148327800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-9457
IngestDate Sun Nov 30 04:01:45 EST 2025
Sat Nov 29 02:46:17 EST 2025
Tue Nov 18 22:14:55 EST 2025
Wed Jan 22 16:16:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-a946ac34f53c94d36e3f680d6bb7d1960d58ba399467ba1a35eced109626c7543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-8052-1782
PQID 2919335175
PQPubID 1026352
PageCount 17
ParticipantIDs proquest_journals_2919335175
crossref_citationtrail_10_1002_ima_23023
crossref_primary_10_1002_ima_23023
wiley_primary_10_1002_ima_23023_IMA23023
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 25
2015; 37
2022; 132
2019; 51
2022
2017; 39
2020
2020; 121
2023; 139
2019
2019; 38
2018
2017
2022; 41
2016
2015
2018; 40
2018; 37
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Liu L (e_1_2_9_4_1) 2019
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
loffe S (e_1_2_9_14_1) 2015
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Zhou C (e_1_2_9_7_1) 2018
e_1_2_9_29_1
References_xml – start-page: 234
  year: 2015
  end-page: 241
– start-page: 140
  year: 2022
  end-page: 149
– start-page: 558
  year: 2020
  end-page: 564
– start-page: 1
  year: 2019
  end-page: 4
– start-page: 630
  year: 2016
  end-page: 645
– start-page: 770
  year: 2016
  end-page: 778
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  article-title: MultiResUNet: rethinking the U‐net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw
– start-page: 23
  year: 2022
  end-page: 33
– volume: 41
  start-page: 965
  year: 2022
  end-page: 976
  article-title: KiU‐net: overcomplete convolutional architectures for biomedical image and volumetric segmentation
  publication-title: IEEE Trans Med Imaging
– start-page: 3
  year: 2018
  end-page: 11
– volume: 132
  year: 2022
  article-title: GFNet: automatic segmentation of COVID‐19 lung infection regions using CT images based on boundary features
  publication-title: Pattern Recogn
– start-page: 3431
  year: 2015
  end-page: 3440
– start-page: 7132
  year: 2018
  end-page: 7141
– year: 2018
– start-page: 637
  year: 2018
  end-page: 645
– start-page: 1451
  year: 2018
  end-page: 1460
– volume: 38
  start-page: 2281
  year: 2019
  end-page: 2292
  article-title: CE‐net: context encoder network for 2D medical image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 448
  year: 2015
  end-page: 456
– volume: 37
  start-page: 2453
  year: 2018
  end-page: 2462
  article-title: DRINet for medical image segmentation
  publication-title: IEEE Trans Med Imaging
– start-page: 1314
  year: 2019
  end-page: 1324
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  article-title: SegNet: a deep convolutional encoder‐decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 139
  year: 2023
  article-title: MSCA‐net: multi‐scale contextual attention network for skin lesion segmentation
  publication-title: Pattern Recogn
– volume: 51
  start-page: 21
  year: 2019
  end-page: 45
  article-title: Fully convolutional multi‐scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers
  publication-title: Med Image Anal
– year: 2017
– start-page: 4700
  year: 2017
  end-page: 4708
– year: 2019
– volume: 37
  start-page: 2663
  year: 2018
  end-page: 2674
  article-title: H‐DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes
  publication-title: IEEE Trans Med Imaging
– volume: 25
  start-page: 121
  year: 2021
  end-page: 130
  article-title: Multi‐scale self‐guided attention for medical image segmentation
  publication-title: IEEE J Biomed Health Inform
– ident: e_1_2_9_25_1
  doi: 10.1109/WACV.2018.00163
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-031-16443-9_3
– ident: e_1_2_9_17_1
– ident: e_1_2_9_26_1
  doi: 10.1109/TPAMI.2017.2699184
– ident: e_1_2_9_20_1
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_31_1
  doi: 10.1109/TPAMI.2016.2644615
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_9_22_1
  doi: 10.1016/j.patcog.2023.109524
– ident: e_1_2_9_12_1
  doi: 10.1007/978-3-319-46493-0_38
– ident: e_1_2_9_27_1
  doi: 10.1109/ICCV.2019.00140
– ident: e_1_2_9_2_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neunet.2019.08.025
– ident: e_1_2_9_19_1
  doi: 10.1109/TMI.2019.2903562
– ident: e_1_2_9_21_1
  doi: 10.1109/JBHI.2020.2986926
– ident: e_1_2_9_18_1
  doi: 10.1109/TMI.2018.2835303
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-030-00889-5_1
– ident: e_1_2_9_10_1
  doi: 10.1109/CBMS49503.2020.00111
– start-page: 1
  volume-title: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)
  year: 2019
  ident: e_1_2_9_4_1
– ident: e_1_2_9_15_1
– ident: e_1_2_9_3_1
  doi: 10.1109/TMI.2018.2845918
– ident: e_1_2_9_8_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_9_11_1
  doi: 10.1109/TMI.2021.3130469
– ident: e_1_2_9_28_1
  doi: 10.1109/NAECON.2018.8556686
– ident: e_1_2_9_6_1
  doi: 10.1016/j.media.2018.10.004
– ident: e_1_2_9_30_1
  doi: 10.1016/j.patcog.2022.108963
– start-page: 637
  volume-title: Medical Image Computing and Computer Assisted Intervention (MICCAI)
  year: 2018
  ident: e_1_2_9_7_1
– start-page: 448
  volume-title: Proceedings of the 32nd International Conference on Machine Learning.
  year: 2015
  ident: e_1_2_9_14_1
– ident: e_1_2_9_24_1
  doi: 10.1109/CVPR.2018.00745
– ident: e_1_2_9_5_1
  doi: 10.1007/978-3-031-16434-7_14
SSID ssj0011505
Score 2.3576715
Snippet With rapid developments in convolutional neural networks for image processing, deep learning methods based on pixel classification have been extensively...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Coders
deep learning
Feature extraction
Image processing
Image resolution
Image segmentation
Lesions
Machine learning
medical image segmentation
Medical imaging
Modules
Spatial data
U‐net
Title Two‐dimensional medical image segmentation based on U‐shaped structure
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.23023
https://www.proquest.com/docview/2919335175
Volume 34
WOSCitedRecordID wos001148327800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UVkEPLlWxWiWIBy-haWYmC56KWlS0iLTQW5gttWAXGperP8Hf6C_xTZIugoLgbQIzk-TNW77ZvgdwYhRBB1LYimhtUy8mNgYF1_aE72P0UmgkTppswm-1gm43vC_A2fQuTMYPMVtwM5aR-mtj4FwktTlpaN_QBpmUN0tQclFvaRFKFw_Nzu1sEwGxTnqCMTAklJT5U2Ihx63NGn8PR3OMuYhU01DT3PjXR27Ceo4wrUamEltQ0MMyrC3wDpZhJT33KZNtuGm_jT7fP5Th-M_4OaxBtnVjYac9bSW6N8ivJw0tE_KUhYUOtkke-RifMgLal4negU7zsn1-ZefpFWxpElbZPKQel4TGjMiQKuJpEnuBozwhfIWG6SgWCI4ABn2p4HVOmJZa1XHO43rSZ5TsQnE4Guo9sGjocC7cUMVMUs049wPKcK4kHOmjx5AVOJ1KOZI597hJgfEUZazJboT_FKWCqsDxrOo4I9z4qVJ1OlRRbnNJ5IYIRglDPISvSwfl9w6i67tGWtj_e9UDWHUR0WTrL1Uoonj1ISzL1-d-MjnKle8LjxbdDw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UVlEP7mK1ahAPXkLTzEwW8FLU0mpbRFroLUxmprVgFxqXqz_B3-gv8U2SLoKC4G0CbybJzFu-2b4HcK4VQXkiNCVRyqROl5gYFGzTCV0Xo5dEI7HiZBNus-l1Ov59Bi6nd2ESfojZgpu2jNhfawPXC9LFOWtoX_MG6Zw3S5CjqEYsC7nrh0q7PttFQLATH2H0NAslZe6UWciyi7PK3-PRHGQuQtU41lQ2__eVW7CRYkyjnCjFNmTUcAfWF5gHd2AlPvkpol24bb2NPt8_pGb5Txg6jEGyeWNgoz1lRKo3SC8oDQ0d9KSBhTbWiR75GJ8SCtqXidqDduWmdVU10wQLptApq0zuU4cLQruMCJ9K4ijSdTxLOmHoSjRNSzIv5Ahh0JuGvMQJU0LJEs56bEe4jJJ9yA5HQ3UABvUtzkPbl10mqGKcux5lOFsKLeGizxB5uJh2cyBS9nGdBOMpSHiT7QD_KYg7Kg9nM9FxQrnxk1BhOlZBanVRYPsIRwlDRISvi0fl9waCWqMcFw7_LnoKq9VWox7Ua827I1izEd8kqzEFyGJXq2NYFq_P_WhykmriF9DR4P8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64owd3cbeIBy9lapN0AS-iFpdxEHHAW8lWHXDGwbpc_Qn-Rn-JL-niCAqCtxSStH15y5ftewA7RhF0JIWriNYuDTLiYlDw3UCEIUYvhUbi2WQTYasV3dzEl0OwX92FKfgh6gU3YxnWXxsD132VNb5YQzuGN8jkvBmGUcriAM1y9OgqaTfrXQQEO_YIY2RYKCkLK2Yhz2_Ujb_Hoy-QOQhVbaxJZv73lbMwXWJM56BQijkY0r15mBpgHpyHcXvyU-YLcHb9-vDx9q4My3_B0OF0i80bBzu91U6ub7vlBaWeY4KecrDQxjb5He_jU0FB-_yoF6GdHF8fnrhlggVXmpRVLo9pwCWhGSMypooEmmRB5KlAiFChaXqKRYIjhEFvKvgeJ0xLrfZw1uMHMmSULMFI76Gnl8Ghsce58GOVMUk14zyMKMPZkvBkiD5DrsBuJeZUluzjJgnGfVrwJvsp_lNqBbUC23XVfkG58VOl9Wqs0tLq8tSPEY4ShogIX2dH5fcO0tOLA1tY_XvVLZi4PErS5mnrfA0mfYQ3xWLMOoygpPUGjMmXp07-uFkq4ieJf-B6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90dimensional+medical+image+segmentation+based+on+U%E2%80%90shaped+structure&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Cai%2C+Sijing&rft.au=Xiao%2C+Yuwei&rft.au=Wang%2C+Yanyu&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fima.23023&rft.externalDBID=10.1002%252Fima.23023&rft.externalDocID=IMA23023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon