Generalizing determinization from automata to coalgebras

The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coalgebras with structured state spaces. Coalgebra is an...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 9, Issue 1; no. 1
Main Authors: Silva, Alexandra, Bonchi, Filippo, Bonsangue, Marcello, Rutten, Jan
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science Association 04.03.2013
Logical Methods in Computer Science e.V
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coalgebras with structured state spaces. Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (F-coalgebras) and a notion of behavioural equivalence (~_F) amongst them. Many types of transition systems and their equivalences can be captured by a functor F. For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. We give several examples of applications of our generalized determinization construction, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata, and, somewhat surprisingly, even pushdown automata. To further witness the generality of the approach we show how to characterize coalgebraically several equivalences which have been object of interest in the concurrency community, such as failure or ready semantics.
AbstractList The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coalgebras with structured state spaces. Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (F-coalgebras) and a notion of behavioural equivalence (~_F) amongst them. Many types of transition systems and their equivalences can be captured by a functor F. For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. We give several examples of applications of our generalized determinization construction, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata, and, somewhat surprisingly, even pushdown automata. To further witness the generality of the approach we show how to characterize coalgebraically several equivalences which have been object of interest in the concurrency community, such as failure or ready semantics.
The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coalgebras with structured state spaces. Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (F-coalgebras) and a notion of behavioural equivalence (~_F) amongst them. Many types of transition systems and their equivalences can be captured by a functor F. For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. We give several examples of applications of our generalized determinization construction, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata, and, somewhat surprisingly, even pushdown automata. To further witness the generality of the approach we show how to characterize coalgebraically several equivalences which have been object of interest in the concurrency community, such as failure or ready semantics.
Author Bonchi, Filippo
Silva, Alexandra
Rutten, Jan
Bonsangue, Marcello
Author_xml – sequence: 1
  givenname: Alexandra
  surname: Silva
  fullname: Silva, Alexandra
– sequence: 2
  givenname: Filippo
  surname: Bonchi
  fullname: Bonchi, Filippo
– sequence: 3
  givenname: Marcello
  surname: Bonsangue
  fullname: Bonsangue, Marcello
– sequence: 4
  givenname: Jan
  surname: Rutten
  fullname: Rutten, Jan
BackLink https://hal.science/hal-00909339$$DView record in HAL
BookMark eNp1kMtLxDAQxoOs4GvPXnvUQ91M07y8LYsvWPGgnsM0m6yRtpG0Cu5fb-uKqODAMMPH_L6B74BM2tg6Qo6BnhUg1Gx5u7jP9Qmc69OCAtsh-6AEzbmW5eTHvkemXfdMh2IMVCH2ibpyrUtYh01o19nK9S41oQ0b7ENsM59ik-FrHxvsMetjZiPWa1cl7I7Irse6c9OveUgeLy8eFtf58u7qZjFf5rbQkuWq8sgqFN4rpwvkqD1UJbUFXznLwAETleTIBQgKtkDNnNLcKokgrATPDsnN1ncV8dm8pNBgejcRg_kUYlobTH2wtTNSltIybh23uizKEoFLOnxh3nKvFQxep1uvJ6x_WV3Pl2bUKNVUM6bfxtvZ9tam2HXJ-W8AqBkzN2PmRhsYesx8IPgfwob-M8c-Yaj_5T4AHamGog
CitedBy_id crossref_primary_10_1145_2766189_2766193
crossref_primary_10_1016_j_jlamp_2015_09_002
crossref_primary_10_1145_3720501
crossref_primary_10_1016_j_jcss_2014_12_005
crossref_primary_10_1007_s10009_017_0479_9
crossref_primary_10_3390_math9030272
crossref_primary_10_1016_j_entcs_2018_11_013
crossref_primary_10_1007_s00165_020_00526_z
crossref_primary_10_1016_j_tcs_2014_01_018
crossref_primary_10_1145_3571245
crossref_primary_10_1093_logcom_exab050
crossref_primary_10_1007_s00012_020_00680_8
crossref_primary_10_1017_S0960129514000449
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOA
DOI 10.2168/LMCS-9(1:9)2013
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_7747c35ce5c94244a1570ec33fc5f981
oai:HAL:hal-00909339v1
10_2168_LMCS_9_1_9_2013
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
ARCSS
MK~
ML~
ID FETCH-LOGICAL-c2973-8bfa3ba6ff8e92a5a9f1b40c25dec31e136b75a561601c2a93e895c87a16c71f3
IEDL.DBID DOA
ISSN 1860-5974
IngestDate Fri Oct 03 12:45:00 EDT 2025
Tue Oct 14 06:53:00 EDT 2025
Tue Nov 18 22:19:43 EST 2025
Sat Nov 29 06:21:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-8bfa3ba6ff8e92a5a9f1b40c25dec31e136b75a561601c2a93e895c87a16c71f3
OpenAccessLink https://doaj.org/article/7747c35ce5c94244a1570ec33fc5f981
ParticipantIDs doaj_primary_oai_doaj_org_article_7747c35ce5c94244a1570ec33fc5f981
hal_primary_oai_HAL_hal_00909339v1
crossref_primary_10_2168_LMCS_9_1_9_2013
crossref_citationtrail_10_2168_LMCS_9_1_9_2013
PublicationCentury 2000
PublicationDate 2013-03-04
PublicationDateYYYYMMDD 2013-03-04
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-04
  day: 04
PublicationDecade 2010
PublicationTitle Logical methods in computer science
PublicationYear 2013
Publisher Logical Methods in Computer Science Association
Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science Association
– name: Logical Methods in Computer Science e.V
References 691:not-found
References_xml – ident: 691:not-found
SSID ssj0000331826
Score 2.28694
Snippet The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this...
The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms Computer Science
computer science - logic in computer science
f.3.2
Logic in Computer Science
Title Generalizing determinization from automata to coalgebras
URI https://hal.science/hal-00909339
https://doaj.org/article/7747c35ce5c94244a1570ec33fc5f981
Volume 9, Issue 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPHjxW5xfFPEwD3FN0jaNtzk2dtiGoMJuIUkTHMgmW7eDB_92X9pubAfxIrQ9hPTrvTbv90Le74fQXWotTWzEccYYx5ElFmvNM0ytDUPDOHPOFWITfDhMRyPxvCH15deElfTApeGaAE-4YbGxsRG-KEuRmIfWMOZM7ERRdE1DLjaSqWIMZswD55LLh5IkbfYH7RcsGuRR3EPMY1thqGDrh-DyvppMLYJL9xDtV6gwaJVPc4R27OQYHawUF4LqBzxBacUSPf6CiBNk1VKWqpQy8KUigVrkU0ChKsingZl6FQ_Ih-en6K3beW33cKV9gI1Xk8KpdopplTiXWkFVrIQjOgoNjTN4eWIJSzSPFaAfyKgMVYLZVMQm5YokhhPHzlBtMp3YcxQoZklEtIBYpCOdGS00NCQG8uIIRhdSRw8rU0hTEYN7fYoPCQmCt530tpNCEti97eqosT7hs-TE-L3rk7ftupsnsy4awMWycrH8y8V1dAue2bpGr9WXvg0Qop-SEUty8R93ukR7tJC7gC26QrV8trDXaNcs8_F8dlN8YnAcfHd-AB901OM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizing+determinization+from+automata+to+coalgebras&rft.jtitle=Logical+methods+in+computer+science&rft.au=Silva%2C+Alexandra&rft.au=Bonchi%2C+Filippo&rft.au=Bonsangue%2C+Marcello&rft.au=Rutten%2C+Jan&rft.date=2013-03-04&rft.pub=Logical+Methods+in+Computer+Science+Association&rft.eissn=1860-5974&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2168%2FLMCS-9%281%3A9%292013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00909339v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon