Singular Abreu Equations and Minimizers of Convex Functionals with a Convexity Constraint

We study the solvability of second boundary value problems of fourth‐order equations of Abreu type arising from approximation of convex functionals whose Lagrangians depend on the gradient variable, subject to a convexity constraint. These functionals arise in different scientific disciplines such a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications on pure and applied mathematics Ročník 73; číslo 10; s. 2248 - 2283
Hlavní autor: Le, Nam Q.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Melbourne John Wiley & Sons Australia, Ltd 01.10.2020
John Wiley and Sons, Limited
Témata:
ISSN:0010-3640, 1097-0312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the solvability of second boundary value problems of fourth‐order equations of Abreu type arising from approximation of convex functionals whose Lagrangians depend on the gradient variable, subject to a convexity constraint. These functionals arise in different scientific disciplines such as Newton's problem of minimal resistance in physics and the monopolist's problem in economics. The right‐hand sides of our Abreu‐type equations are quasilinear expressions of second order; they are highly singular and a priori just measures. However, our analysis in particular shows that minimizers of the 2D Rochet‐Choné model perturbed by a strictly convex lower‐order term, under a convexity constraint, can be approximated in the uniform norm by solutions of the second boundary value problems of singular Abreu equations. © 2019 Wiley Periodicals, Inc.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21883