Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance‐Based Abstraction

The cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a different perspective. Unfortunately, i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 36; číslo 3; s. 227 - 238
Hlavní autori: Bögl, M., Filzmoser, P., Gschwandtner, T., Lammarsch, T., Leite, R. A., Miksch, S., Rind, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.06.2017
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a different perspective. Unfortunately, it is limited to univariate data. For multivariate time series, patterns that exist across several dimensions are much harder or impossible to explore. We propose a modified cycle plot using a distance‐based ion (Mahalanobis distance) to reduce multiple dimensions to one overview dimension and retain a representation similar to the original. Utilizing this distance‐based cycle plot in an interactive exploration environment, we enhance the Visual Analytics capacity of cycle plots for multivariate outlier detection. To enable interactive exploration and interpretation of outliers, we employ coordinated multiple views that juxtapose a distance‐based cycle plot with Cleveland's original cycle plots of the underlying dimensions. With our approach it is possible to judge the outlyingness regarding the seasonal cycle in multivariate periodic time series.
AbstractList The cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a different perspective. Unfortunately, it is limited to univariate data. For multivariate time series, patterns that exist across several dimensions are much harder or impossible to explore. We propose a modified cycle plot using a distance-based abstraction (Mahalanobis distance) to reduce multiple dimensions to one overview dimension and retain a representation similar to the original. Utilizing this distance-based cycle plot in an interactive exploration environment, we enhance the Visual Analytics capacity of cycle plots for multivariate outlier detection. To enable interactive exploration and interpretation of outliers, we employ coordinated multiple views that juxtapose a distance-based cycle plot with Cleveland's original cycle plots of the underlying dimensions. With our approach it is possible to judge the outlyingness regarding the seasonal cycle in multivariate periodic time series.
The cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a different perspective. Unfortunately, it is limited to univariate data. For multivariate time series, patterns that exist across several dimensions are much harder or impossible to explore. We propose a modified cycle plot using a distance‐based ion (Mahalanobis distance) to reduce multiple dimensions to one overview dimension and retain a representation similar to the original. Utilizing this distance‐based cycle plot in an interactive exploration environment, we enhance the Visual Analytics capacity of cycle plots for multivariate outlier detection. To enable interactive exploration and interpretation of outliers, we employ coordinated multiple views that juxtapose a distance‐based cycle plot with Cleveland's original cycle plots of the underlying dimensions. With our approach it is possible to judge the outlyingness regarding the seasonal cycle in multivariate periodic time series.
Author Gschwandtner, T.
Rind, A.
Miksch, S.
Lammarsch, T.
Bögl, M.
Leite, R. A.
Filzmoser, P.
Author_xml – sequence: 1
  givenname: M.
  surname: Bögl
  fullname: Bögl, M.
  organization: Vienna University of Technology
– sequence: 2
  givenname: P.
  surname: Filzmoser
  fullname: Filzmoser, P.
  organization: Vienna University of Technology
– sequence: 3
  givenname: T.
  surname: Gschwandtner
  fullname: Gschwandtner, T.
  organization: Vienna University of Technology
– sequence: 4
  givenname: T.
  surname: Lammarsch
  fullname: Lammarsch, T.
  organization: Vienna University of Technology
– sequence: 5
  givenname: R. A.
  surname: Leite
  fullname: Leite, R. A.
  organization: Vienna University of Technology
– sequence: 6
  givenname: S.
  surname: Miksch
  fullname: Miksch, S.
  organization: Vienna University of Technology
– sequence: 7
  givenname: A.
  surname: Rind
  fullname: Rind, A.
  organization: St. Pölten University of Applied Sciences
BookMark eNp9kLFOwzAURS0EEm1h4A8sMTGktZ3YTthKSwtSURGiA5PlxHblKiTFdoq68Ql8I19C2jIhwVveG869T_d2wXFVVxqAC4z6uJ1BsTR9HOOUHIEOThiPUkazY9BBuL05ovQUdL1fIYQSzmgHvIy2RanhY1kH-KQ31tug1TV8aMpgN9JZGTScN6G02sGxDroItq7gwttqCSUcWx9kVeivj88b6bWCw9wHJ_fQGTgxsvT6_Gf3wGJy-zy6i2bz6f1oOIsKknESKY4MophpxvIUoyTjJkOJYlzFKc0TqRRGsTFpRmLMMMuMJAQToilCMlUsj3vg8uC7dvVbo30Qq7pxVftS4AxTymKexC11daAKV3vvtBFrZ1-l2wqMxK450TYn9s217OAXW9ggd5nabLb8T_FuS73921qMppOD4hthaYDx
CitedBy_id crossref_primary_10_1109_TVCG_2018_2841385
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1111_cgf_15088
crossref_primary_10_1007_s12650_018_0531_1
crossref_primary_10_1109_TVCG_2018_2834341
crossref_primary_10_1002_sam_70001
Cites_doi 10.1007/978-3-662-04228-1
10.1145/2598153.2598172
10.1109/TVCG.2008.166
10.1109/TVCG.2010.82
10.1162/NECO_a_00250
10.1109/TVCG.2015.2513410
10.1109/TVCG.2011.179
10.1109/TVCG.2016.2534518
10.1109/TVCG.2010.162
10.1109/VAST.2015.7347672
10.1007/0-387-25465-X_7
10.1007/978-0-85729-079-3
10.1145/1842993.1843034
10.1007/s00362-013-0524-z
10.1109/TVCG.2010.150
10.1109/VAST.2012.6400557
10.1007/978-1-4614-6396-2
10.1007/978-94-009-5438-0_20
10.1109/VISUAL.1995.485140
10.1145/967900.968153
10.1198/004017001316975899
10.1109/TVCG.2015.2467851
10.1016/j.cageo.2004.11.013
10.1080/01621459.1982.10477766
10.1109/CMV.2004.1319531
10.1023/B:AIRE.0000045502.10941.a9
10.1109/TVCG.2015.2502587
10.1109/TVCG.2010.225
10.1109/IV.2009.52
10.1007/978-3-642-10748-1
ContentType Journal Article
Copyright 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2017 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 The Author(s) Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2017 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13182
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 238
ExternalDocumentID 10_1111_cgf_13182
CGF13182
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2972-d70f0516e66b810497f904d67d385b4add103ff892316169fa22122e500a8d6b3
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404881200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Mon Jul 14 10:00:43 EDT 2025
Sat Nov 29 07:53:49 EST 2025
Tue Nov 18 22:36:11 EST 2025
Wed Jan 22 16:28:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-d70f0516e66b810497f904d67d385b4add103ff892316169fa22122e500a8d6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1915563743
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_1915563743
crossref_primary_10_1111_cgf_13182
crossref_citationtrail_10_1111_cgf_13182
wiley_primary_10_1111_cgf_13182_CGF13182
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 16
2012
2011
2010
1982; 77
1998
2008; 14
2009
2008
1995
2006
2005
1994
2012; 18
1993
2004
2011; 17
1936
2001; 43
1999
2000
2005; 31
1985
2009; 8
2011; 24
2016
1983
2015
2014
2013
2014; 55
2016; 22
e_1_2_10_22_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
Greenaway‐McGrevy R. (e_1_2_10_23_2) 2013
Cleveland W. (e_1_2_10_15_2) 1993
R Core Team (e_1_2_10_38_2) 2016
Cleveland W.S. (e_1_2_10_16_2) 1994
Tufte E.R. (e_1_2_10_45_2) 2006
Schreck T. (e_1_2_10_41_2) 2009; 8
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
Barnett V. (e_1_2_10_10_2) 1998
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_5_2
e_1_2_10_4_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_32_2
e_1_2_10_31_2
e_1_2_10_30_2
Tufte E.R. (e_1_2_10_44_2) 1983
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_25_2
e_1_2_10_46_2
References_xml – year: 2011
– volume: 24
  start-page: 771
  year: 2011
  end-page: 804
  article-title: A general framework for dimensionality‐reducing data visualization mapping
  publication-title: Neural Computation
– start-page: 44
  year: 2009
  end-page: 50
– start-page: 4
  year: 1999
  end-page: 9
– volume: 16
  start-page: 963
  year: 2010
  end-page: 972
  article-title: Evaluating the impact of task demands and block resolution on the effectiveness of pixel‐based visualization
  publication-title: IEEE Trans. Visualization and Computer Graphics
– year: 1983
– volume: 8
  start-page: 14
  year: 2009
  end-page: 29
  article-title: Visual cluster analysis of trajectory data with interactive Kohonen maps
  publication-title: SAGE InfoVis
– start-page: 279
  year: 1995
  end-page: 286
– year: 2005
– start-page: 143
  year: 2012
  end-page: 152
– start-page: 189
  year: 2015
  end-page: 190
– year: 2000
– start-page: 233
  year: 2010
  end-page: 240
– start-page: 273
  year: 2014
  end-page: 280
– volume: 22
  start-page: 559
  year: 2016
  end-page: 568
  article-title: Time Curves: Folding time to visualize patterns of temporal evolution in data
  publication-title: IEEE Trans. Visualization and Computer Graphics
– year: 2016
– year: 1994
– year: 2014
– year: 2010
– year: 1998
– start-page: 73
  year: 2015
  end-page: 77
– volume: 22
  start-page: 2619
  year: 2016
  end-page: 2632
  article-title: What may visualization processes optimize?
  publication-title: IEEE Trans. Visualization and Computer Graphics
– volume: 77
  start-page: 52
  year: 1982
  end-page: 62
  article-title: Graphical methods for seasonal adjustment
  publication-title: Journal of the American Statistical Association
– volume: 17
  start-page: 440
  year: 2011
  end-page: 453
  article-title: Forecasting hotspots—a predictive analytics approach
  publication-title: IEEE Trans. Visualization and Computer Graphics
– volume: 31
  start-page: 579
  year: 2005
  end-page: 587
  article-title: Multivariate outlier detection in exploration geochemistry
  publication-title: Computers & Geosciences
– start-page: 107
  year: 2004
  end-page: 117
– start-page: 131
  year: 2005
  end-page: 146
– volume: 43
  start-page: 286
  year: 2001
  end-page: 310
  article-title: Multivariate outlier detection and robust covariance matrix estimation
  publication-title: Technometrics
– year: 2008
– volume: 55
  start-page: 29
  year: 2014
  end-page: 47
  article-title: Identification of local multivariate outliers
  publication-title: Statistical Papers
– volume: 14
  start-page: 1245
  year: 2008
  end-page: 1252
  article-title: Stacked graphs – geometry & aesthetics
  publication-title: IEEE Trans. Visualization and Computer Graphics
– year: 2006
– volume: 22
  start-page: 1640
  year: 2016
  end-page: 1651
  article-title: PieceStack: Toward better understanding of stacked graphs
  publication-title: IEEE Trans. Visualization and Computer Graphics
– start-page: 283
  year: 1985
  end-page: 297
– start-page: 1242
  year: 2004
  end-page: 1247
– start-page: 2174
  year: 2016
  end-page: 2186
– volume: 18
  start-page: 93
  year: 2012
  end-page: 105
  article-title: EvenRriver: Visually exploring text collections with temporal references
  publication-title: IEEE Trans. Visualization and Computer Graphics
– volume: 16
  start-page: 927
  year: 2010
  end-page: 934
  article-title: Graphical perception of multiple time series
  publication-title: IEEE Trans. Visualization and Computer Graphics
– year: 1993
– start-page: 85
  year: 2004
  end-page: 126
– start-page: 49
  year: 1936
  end-page: 55
– year: 2013
– volume: 17
  start-page: 2432
  year: 2011
  end-page: 2439
  article-title: CloudLines: Compact display of event episodes in multiple time‐series
  publication-title: IEEE Trans. Visualization and Computer Graphics
– ident: e_1_2_10_29_2
– ident: e_1_2_10_34_2
– ident: e_1_2_10_9_2
  doi: 10.1007/978-3-662-04228-1
– ident: e_1_2_10_21_2
  doi: 10.1145/2598153.2598172
– volume-title: Outliers in statistical data
  year: 1998
  ident: e_1_2_10_10_2
– ident: e_1_2_10_13_2
  doi: 10.1109/TVCG.2008.166
– ident: e_1_2_10_35_2
  doi: 10.1109/TVCG.2010.82
– ident: e_1_2_10_4_2
– ident: e_1_2_10_5_2
  doi: 10.1162/NECO_a_00250
– ident: e_1_2_10_14_2
  doi: 10.1109/TVCG.2015.2513410
– ident: e_1_2_10_28_2
  doi: 10.1109/TVCG.2011.179
– ident: e_1_2_10_47_2
  doi: 10.1109/TVCG.2016.2534518
– ident: e_1_2_10_27_2
  doi: 10.1109/TVCG.2010.162
– ident: e_1_2_10_7_2
  doi: 10.1109/VAST.2015.7347672
– volume-title: The Visual Display of Quantitative Information
  year: 1983
  ident: e_1_2_10_44_2
– volume-title: A Multivariate Approach to Seasonal Adjustment
  year: 2013
  ident: e_1_2_10_23_2
– ident: e_1_2_10_8_2
  doi: 10.1007/0-387-25465-X_7
– ident: e_1_2_10_3_2
  doi: 10.1007/978-0-85729-079-3
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2016
  ident: e_1_2_10_38_2
– volume-title: Visualizing data
  year: 1993
  ident: e_1_2_10_15_2
– ident: e_1_2_10_19_2
– ident: e_1_2_10_26_2
  doi: 10.1145/1842993.1843034
– ident: e_1_2_10_22_2
  doi: 10.1007/s00362-013-0524-z
– ident: e_1_2_10_11_2
  doi: 10.1109/TVCG.2010.150
– ident: e_1_2_10_18_2
  doi: 10.1109/VAST.2012.6400557
– ident: e_1_2_10_2_2
  doi: 10.1007/978-1-4614-6396-2
– ident: e_1_2_10_40_2
  doi: 10.1007/978-94-009-5438-0_20
– ident: e_1_2_10_36_2
– ident: e_1_2_10_30_2
  doi: 10.1109/VISUAL.1995.485140
– ident: e_1_2_10_43_2
  doi: 10.1145/967900.968153
– ident: e_1_2_10_39_2
– ident: e_1_2_10_37_2
  doi: 10.1198/004017001316975899
– ident: e_1_2_10_12_2
  doi: 10.1109/TVCG.2015.2467851
– ident: e_1_2_10_20_2
  doi: 10.1016/j.cageo.2004.11.013
– ident: e_1_2_10_32_2
– ident: e_1_2_10_17_2
  doi: 10.1080/01621459.1982.10477766
– ident: e_1_2_10_42_2
  doi: 10.1109/CMV.2004.1319531
– ident: e_1_2_10_24_2
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– volume-title: The elements of graphing data
  year: 1994
  ident: e_1_2_10_16_2
– ident: e_1_2_10_25_2
  doi: 10.1109/TVCG.2015.2502587
– ident: e_1_2_10_33_2
  doi: 10.1109/TVCG.2010.225
– volume-title: Beautiful Evidence
  year: 2006
  ident: e_1_2_10_45_2
– ident: e_1_2_10_46_2
– volume: 8
  start-page: 14
  year: 2009
  ident: e_1_2_10_41_2
  article-title: Visual cluster analysis of trajectory data with interactive Kohonen maps
  publication-title: SAGE InfoVis
– ident: e_1_2_10_31_2
  doi: 10.1109/IV.2009.52
– ident: e_1_2_10_6_2
  doi: 10.1007/978-3-642-10748-1
SSID ssj0004765
Score 2.2537239
Snippet The cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Analytics
Categories and Subject Descriptors (according to ACM CCS)
Data analysis
Exploration
Extreme values
Information Interfaces and Presentation [H.5.2]: User Interfaces—Graphical user interfaces
Mathematics of Computing [G.3]: Probability and Statistics—Time Series Analysis
Multivariate analysis
Outliers (statistics)
Time series
Title Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance‐Based Abstraction
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13182
https://www.proquest.com/docview/1915563743
Volume 36
WOSCitedRecordID wos000404881200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2K9aAHv8VqlUU8eIkk2WSz0VNtjR6klmKhnsImuytCSaVNC978Cf5Gf4mz26StoCB4S8jkg83MvjfDzluEziSzE6Ur9wzgwPIAACzuEjhNpfCD1BWk2GwiaLdZvx92Kuiq7IWZ6UPMC246Msx8rQOcJ-OlIE-f1YUDHgnzb1U3VUHmVW11o979oi0yoH4p7a1FYwphIb2QZ37zdzhacMxlpmqgJtr810duoY2CYeLGzCW2UUVmO2h9SXdwFz013-AS7gyGOe6a9nLgnZfYNONOIXkG_okfJjnQ0xFuydys1sqwWV2AOW5pygm-8vn-cQ0YKHAj0fUSY7SHetHNY_POKvZYsFI3DFxLBLaCuKSS0oRBahYGKrQ9QQNBmJ94MPs5NlGKaR5IHRoq7gLYudK3bc4ETcg-WsmGmTxA2FNcJH6qOPECSPo8xjlwMSJFKHjopW4NnZdDHaeFALneB2MQl4kIjFZsRquGTuemrzPVjZ-M6uX_iovAG8eO1runBHgRvM78md8fEDdvI3Nw-HfTI7TmamA3dZg6WslHE3mMVtNp_jIenRQe-AVGu92P
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2hBantgY-2qEspWIhDL6mS2LGdigvdbQCxbBECiZ4iJ7arSqss2g1I3PgJ_Mb-ko69ybKVilSpt0SZfMiZ8Xsz8jwD7BsZFtZV7iXCQcAQAAIVUzwtjU5EGWvabDYhhkN5fZ2eL8FB2wsz04eYF9xcZPj52gW4K0gvRHn5w36K0CVxAl5mnArZgeX-RXY1eOqLFDxptb2dakyjLORW8sxv_hOPnkjmIlX1WJOt_d9XrsNqwzHJ4cwpNmDJVK_h1YLy4Bv43rvHS-R8NK7JhW8wR-b5mfh23DtMn5GBkm-3NRLUCemb2q_XqohfX0AU6TvSid7y6-HxC6KgJoeFq5h4o7dwlX297B0HzS4LQRmnIg60CC1GJjecFxKTs1TYNGSaC01lUjCc_6KQWisdE-QRT62KEe5ik4ShkpoXdBM61bgy74Awq3SRlFZRJjDtY1IpZGPU6FSrlJVxFz62Y52XjQS52wljlLepCI5W7kerC3tz05uZ7sbfjLbbH5Y3oTfNI6d4j-7AKL7O_5rnH5D3jjJ_sPXvprvw4vjybJAPToan7-Fl7GDeV2W2oVNPbs0HWCnv6p_TyU7jjr8BkzThfw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kiujBt1ifi3jwEsljs0nEi7ZGRalFLNRT2GR3RShV2rTgzZ_gb_SXOLtNagUFwVtCJg82M_t9M-x8C3AgQztVunIfIhxYFAHA4q6Hp5kUfpC5wis2mwgajbDdjppTcFL2woz0IcYFNx0ZZr7WAS5fhJqI8uxRHTnokjgBT1M_8mkFput3cevmqy8yYH6p7a1VYwplIb2SZ3zzdzz6IpmTVNVgTbz4v69cgoWCY5LTkVMsw5TsrsD8hPLgKjzUXvESaXaec3JnGsyReR4T0447xPQZGSi5HeRIUHukLnOzXqtLzPoCwkldk070lo-39zNEQUFOU10xMUZr0IrP72uXVrHLgpW5UeBaIrAVRiaTjKUhJmdRoCKbChYIL_RTivOfY3tKhZoJModFirsId670bZuHgqXeOlS6z125AYQqLlI_U9yjAaZ9NOQc2ZgnRSR4RDO3CoflWCdZIUGud8LoJGUqgqOVmNGqwv7Y9GWku_GT0Xb5w5Ii9PqJoxXvmYfMCF9nfs3vD0hqF7E52Py76R7MNutxcnPVuN6COVejvCnKbEMl7w3kDsxkw_yp39stvPETSpzg-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cycle+Plot+Revisited%3A+Multivariate+Outlier+Detection+Using+a+Distance-Based+Abstraction&rft.jtitle=Computer+graphics+forum&rft.au=Bogl%2C+M&rft.au=Filzmoser%2C+P&rft.au=Gschwandtner%2C+T&rft.au=Lammarsch%2C+T&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=36&rft.issue=3&rft.spage=227&rft_id=info:doi/10.1111%2Fcgf.13182&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon